79 datasets found
  1. R

    Residential Real Estate Market in the United States Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-market-in-the-united-states-17275
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

  2. F

    Average Sales Price of Houses Sold for the United States

    • fred.stlouisfed.org
    json
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Average Sales Price of Houses Sold for the United States [Dataset]. https://fred.stlouisfed.org/series/ASPUS
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 24, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.

  3. T

    United States FHFA House Price Index

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States FHFA House Price Index [Dataset]. https://tradingeconomics.com/united-states/housing-index
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1991 - May 31, 2025
    Area covered
    United States
    Description

    Housing Index in the United States decreased to 434.40 points in May from 435.10 points in April of 2025. This dataset provides the latest reported value for - United States House Price Index MoM Change - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  4. b

    Median Price of Homes Sold

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +2more
    Updated Mar 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Price of Homes Sold [Dataset]. https://data.baltimorecity.gov/maps/eb55867e580740228b0d4317464ea040
    Explore at:
    Dataset updated
    Mar 24, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    The median home sales price is the middle value of the prices for which homes are sold (both market and private transactions) within a calendar year. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the prices for which homes are sold. This measure does not take into account the assessed value of a property.Source: First American Real Estate Solutions (FARES) and RBIntel (2022-forward)Years Available: 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2022, 2023

  5. F

    All-Transactions House Price Index for Fairfield County, CT

    • fred.stlouisfed.org
    json
    Updated Mar 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). All-Transactions House Price Index for Fairfield County, CT [Dataset]. https://fred.stlouisfed.org/series/ATNHPIUS09001A
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 25, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    Fairfield County, Connecticut
    Description

    Graph and download economic data for All-Transactions House Price Index for Fairfield County, CT (ATNHPIUS09001A) from 1975 to 2024 about Fairfield County, CT; Bridgeport; CT; HPI; housing; price index; indexes; price; and USA.

  6. Average resale house prices Canada 2011-2024, with a forecast until 2026, by...

    • statista.com
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Average resale house prices Canada 2011-2024, with a forecast until 2026, by province [Dataset]. https://www.statista.com/statistics/587661/average-house-prices-canada-by-province/
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Canada
    Description

    The average resale house price in Canada was forecast to reach nearly ******* Canadian dollars in 2026, according to a January forecast. In 2024, house prices increased after falling for the first time since 2019. One of the reasons for the price correction was the notable drop in transaction activity. Housing transactions picked up in 2024 and are expected to continue to grow until 2026. British Columbia, which is the most expensive province for housing, is projected to see the average house price reach *** million Canadian dollars in 2026. Affordability in Vancouver Vancouver is the most populous city in British Columbia and is also infamously expensive for housing. In 2023, the city topped the ranking for least affordable housing market in Canada, with the average homeownership cost outweighing the average household income. There are a multitude of reasons for this, but most residents believe that foreigners investing in the market cause the high housing prices. Victoria housing market The capital of British Columbia is Victoria, where housing prices are also very high. The price of a single family home in Victoria's most expensive suburb, Oak Bay was *** million Canadian dollars in 2024.

  7. D

    Detached House Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Detached House Report [Dataset]. https://www.datainsightsmarket.com/reports/detached-house-1892028
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The detached house market, a significant segment of the residential real estate sector, is experiencing robust growth driven by several key factors. Strong population growth, particularly in suburban areas, coupled with increasing household incomes and a preference for larger living spaces, fuels demand. Low interest rates in recent years (though this is subject to change) have also stimulated buyer activity, further bolstering the market. However, supply chain constraints impacting construction materials and labor shortages have presented significant challenges, leading to higher construction costs and limited inventory. This has contributed to increased house prices and heightened competition among buyers. The market is segmented by size (e.g., single-story, multi-story), location (urban, suburban, rural), and price point (luxury, mid-range, entry-level), each segment exhibiting its own unique growth trajectory. While the current market is characterized by strong demand and higher prices, potential future economic downturns or shifts in interest rate policies represent key risks. Major players in the market, including Horton, Pulte Homes, and Invitation Homes, are adapting to these challenges through strategic land acquisitions, innovative construction techniques, and diversified rental portfolios. The forecast for the detached house market indicates continued expansion, albeit at a potentially moderated pace compared to recent years. Growth will likely be driven by ongoing population growth and the continued preference for single-family homes. Technological advancements in construction and sustainable building practices are anticipated to increase efficiency and address environmental concerns. However, affordability remains a major concern, potentially limiting market expansion, particularly for first-time homebuyers. Government regulations aimed at increasing housing affordability and addressing climate change will significantly influence the market's trajectory. The long-term outlook remains positive, contingent upon addressing supply chain challenges and managing economic volatility. Careful analysis of these factors is crucial for stakeholders to navigate the market effectively and make informed investment decisions.

  8. r

    housing-planning

    • researchdata.edu.au
    • acquire.cqu.edu.au
    Updated Feb 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md Zillur Rahman (2024). housing-planning [Dataset]. http://doi.org/10.25946/25018466.V1
    Explore at:
    Dataset updated
    Feb 29, 2024
    Dataset provided by
    Central Queensland University
    Authors
    Md Zillur Rahman
    Description

    Urban housing location and locational amenities play an important role in median house price distribution and growth among the suburbs of many metropolitan cities in developed countries, such as Australia. In particular, distance from the central business district (CBD) and access to the transport network plays a vital role in house price distribution and growth over various suburbs in a city. However, Australian metropolitan cities have experienced increases in housing prices by up to 120% over the last 20 years, and the growth pattern was different across all suburbs in a city, such as in Melbourne. Therefore, this study examines the impacts of locational amenities on house price changes across various suburbs in Melbourne over the three census periods of 2006, 2011, and 2016, and suggests some strategic guidelines to improve the availability and accessibility of locational amenities in the suburbs with less concentrated amenities.

    This study chose three Local Government Areas (LGAs) of Maribyrnong, Brimbank and Wyndham in Melbourne. Each LGA has been selected as a case study because many low-income people live in these LGAs’ areas. Further, some suburbs of these LGAs have maintained similar housing prices for an extended time, while some have not.

    The study applied a quantitative spatial methodology to examine the housing price distribution and growth patterns by evaluating the concentration and accessibility of locational urban amenities using GIS-based techniques and a spatial data set. The spatial data analyses were performed by spatial statistics methods to measure central tendency, Local Moran’s I of LISA clustering, Kernel Density Estimation (KDE), Kernel Density Smoothing (KDS). These tests were used to find the patterns of house price distribution and growth. The study also identified the accessibility of amenities in relation to median house price distribution and growth. Spatial Autoregressive Regression (SAR), Spatial Lag, and Spatial Errors models were used to identify the spatial dependencies to test the statistical significance between the median house price and the concentration and access of local urban amenities over the three census years.

    This study found three median house price distribution and growth patterns among the suburbs in the three selected LGAs. There are growth differences in the median house price for different census years between 2006 and 2011, 2011 and 2016, and 2006 and 2016. The Low-High (LH) median house price distribution clusters between 2006 and 2011 became High-High (HH) clusters between the census years 2011 and 2016, and 2006 and 2016. The median house price growth rate increased significantly in the census years between 2006 and 2011. Most of the HH median house price distribution and growth clusters’ tendencies were closer to the Melbourne CBD. On the other hand, the Low-Low (LL) distribution and growth clusters were closer to Melbourne’s periphery. The suburbs located further away had low access to amenities. The HH median house price clusters are located closer to stations and educational institutes. Better access to locational amenities led to more significant HH median house price clusters, as the median house price increased at an increasing rate between 2011 and 2016. The HH median house price clusters recorded more growth between 2006 and 2016. The suburbs with train stations had better access to most other locational amenities. Almost all HH median house price clusters had train stations with higher access to amenities.

    There was a consistent relationship between median house price distribution, growth patterns, and locational urban amenities. The spatial lag and spatial error model tests showed that between 2006 and 2011, and 2006 and 2016, there were differences in the amenities. Still, these did not affect the outcomes in observations, and were related only to immeasurable factors for some reason. Therefore, the higher house price in the neighbouring suburb could increase the price in that suburb. The research also found from the regression analysis that highly significant amenities confirming travel time to the CBD by bus, and distance to the CBD, were negatively related in all three previous census years. This negative relationship estimates that the house price growth is lower when the distance is longer. Due to this travel to the CBD by bus is not a popular option for households. The train stations are essential for high house price growth. The house price growth is low when homes are further away from train stations and workplaces.

    This thesis has three contributions. Firstly, it uses the Rational Choice Theory (RCT), providing a theoretical basis for analysing households’ mutually interdependent preferences of urban amenities that are found to regulate house price growth clusters. Secondly, the methodological contribution uses the GIS-defined cluster mapping and spatial statistics in queries and reasoning, measurements, transformations, descriptive summaries, optimisation, and hypothesis testing models between house price distribution and growth, and access to urban locational amenities. Thirdly, this research contributes to designing practical guidelines to identify local urban amenities for planning local area development.

    Overall, this thesis demonstrates that the median house price distribution and growth patterns are highly correlated with the concentration and accessibility of locational urban amenities among the suburbs in three selected LGAs in Melbourne over the three census years (i.e., 2006, 2011, and 2016). The findings bring to the fore the need for research at the local and state levels to identify specific amenities relevant to the middle-class house distribution strategy, which can be helpful for investors, estate agents, town planners, and builders as partners for effective local development. The future study might use social, psychological, and macroeconomic variables not considered or used in this research.

  9. Single family house prices in Victoria BC 2025, by suburb

    • statista.com
    Updated Jul 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Single family house prices in Victoria BC 2025, by suburb [Dataset]. https://www.statista.com/statistics/647969/single-family-house-prices-in-victoria-bc-by-suburb/
    Explore at:
    Dataset updated
    Jul 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    Canada
    Description

    In June 2025, a single-family house in Oak Bay cost **** million Canadian dollars. Oak Bay was the most expensive suburb in Victoria, British Columbia, followed by Highlands and North Saanich. Victoria: an overview Victoria is the capital city of the province of British Columbia. The city is located south of Vancouver, and across the U.S. border from Seattle. In 2020, the average home price in Victoria was ****million Canadian dollars, which placed the city as the sixth most expensive Canadian city for residential real estate. Home affordability in Canada Housing affordability is, undoubtedly, one of the biggest barriers to homeownership in Canada. In 2025, the ratio of homeownership costs to income was **** percent. Nevertheless, more expensive locations in the country had a higher ratio, with Vancouver exceeding ** percent, suggesting that on average, mortgage payments were slightly lower than the average income.

  10. R

    Residential Real Estate Market in the United States Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jul 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.archivemarketresearch.com/reports/residential-real-estate-market-in-the-united-states-868928
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jul 12, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global, United States
    Variables measured
    Market Size
    Description

    The US residential real estate market, a cornerstone of the national economy, is projected to experience steady growth over the forecast period (2025-2033). While precise market size figures for 2019-2024 are unavailable, leveraging the provided 2.04% CAGR and considering typical market fluctuations, a reasonable estimate for the 2025 market size can be derived. Assuming a 2025 market size of $4 trillion (a conservative estimate considering the scale of the US housing market), the projected growth reflects ongoing demand fueled by population growth, urbanization, and a persistent need for housing across various price points. Key drivers include rising household formations, particularly among millennials and Gen Z, low interest rates (historically speaking) stimulating borrowing, and ongoing investment in infrastructure improvements that enhances desirability in certain areas. Emerging trends like the increasing popularity of sustainable and smart homes, remote work's impact on suburban demand, and the growing preference for multi-family dwellings are shaping market dynamics. Restraining factors include persistently high construction costs, limited housing inventory in desirable locations, and the potential for interest rate adjustments that could dampen buying activity. Leading players like Simon Property Group, Mill Creek Residential, and others are navigating this evolving landscape through strategic acquisitions, development projects, and innovative property management techniques. The steady, albeit moderate, CAGR of 2.04% reflects a market maturing beyond periods of rapid expansion. This controlled growth indicates a market finding a stable equilibrium between supply and demand. While challenges remain, particularly concerning affordability and inventory, the underlying drivers of population growth and the fundamental need for housing suggest that the long-term outlook for the US residential real estate market remains positive. The segmentation of the market (while unspecified here) likely includes distinctions based on property type (single-family homes, condos, townhouses, apartments), location (urban, suburban, rural), and price range. A granular analysis of these segments would provide a more nuanced understanding of the growth trajectory and potential opportunities within each sub-sector. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

  11. Most affordable suburbs for capital city houses Australia 2024, by median...

    • statista.com
    Updated May 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most affordable suburbs for capital city houses Australia 2024, by median value [Dataset]. https://www.statista.com/statistics/1441279/australia-most-affordable-capital-city-housing-suburbs-by-median-value/
    Explore at:
    Dataset updated
    May 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Australia
    Description

    Moulden in Greater Darwin, Northern Territory was the most affordable capital city housing suburb in Australia as of November 2024, with a median property value of around ******* Australian dollars. The Gray suburb, also in Greater Darwin, was the second-most affordable capital city housing suburb.

  12. d

    Zillow Real Estate Data Extraction | Real-time Real Estate Market Data | No...

    • datarade.ai
    Updated Nov 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2023). Zillow Real Estate Data Extraction | Real-time Real Estate Market Data | No Infra Cost | Pre-built AI & Automation | 50% Cost Saving | Free Sample [Dataset]. https://datarade.ai/data-products/zillow-real-estate-data-extraction-real-time-real-estate-ma-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Nov 7, 2023
    Dataset authored and provided by
    APISCRAPY
    Area covered
    Iceland, Bulgaria, Isle of Man, Spain, Liechtenstein, Canada, Albania, Croatia, Belgium, Portugal
    Description

    Note:- Only publicly available data can be worked upon

    APISCRAPY collects and organizes data from Zillow's massive database, whether it's property characteristics, market trends, pricing histories, or more. Because of APISCRAPY's first-rate data extraction services, tracking property values, examining neighborhood trends, and monitoring housing market variations become a straightforward and efficient process.

    APISCRAPY's Zillow real estate data scraping service offers numerous advantages for individuals and businesses seeking valuable insights into the real estate market. Here are key benefits associated with their advanced data extraction technology:

    1. Real-time Zillow Real Estate Data: Users can access real-time data from Zillow, providing timely updates on property listings, market dynamics, and other critical factors. This real-time information is invaluable for making informed decisions in a fast-paced real estate environment.

    2. Data Customization: APISCRAPY allows users to customize the data extraction process, tailoring it to their specific needs. This flexibility ensures that the extracted Zillow real estate data aligns precisely with the user's requirements.

    3. Precision and Accuracy: The advanced algorithms utilized by APISCRAPY enhance the precision and accuracy of the extracted Zillow real estate data. This reliability is crucial for making well-informed decisions related to property investments and market trends.

    4. Efficient Data Extraction: APISCRAPY's technology streamlines the data extraction process, saving users time and effort. The efficiency of the extraction workflow ensures that users can access the desired Zillow real estate data without unnecessary delays.

    5. User-friendly Interface: APISCRAPY provides a user-friendly interface, making it accessible for individuals and businesses to navigate and utilize the Zillow real estate data scraping service with ease.

    APISCRAPY provides real-time real estate market data drawn from Zillow, ensuring that consumers have access to the most up-to-date and comprehensive real estate insights available. Our real-time real estate market data services aren't simply a game changer in today's dynamic real estate landscape; they're an absolute requirement.

    Our dedication to offering high-quality real estate data extraction services is based on the utilization of Zillow Real Estate Data. APISCRAPY's integration of Zillow Real Estate Data sets it different from the competition, whether you're a seasoned real estate professional or a homeowner wanting to sell, buy, or invest.

    APISCRAPY's data extraction is a key element, and it is an automated and smooth procedure that is at the heart of the platform's operation. Our platform gathers Zillow real estate data quickly and offers it in an easily consumable format with the click of a button.

    [Tags;- Zillow real estate scraper, Zillow data, Zillow API, Zillow scraper, Zillow web scraping tool, Zillow data extraction, Zillow Real estate data, Zillow scraper, Zillow scraping API, Zillow real estate da extraction, Extract Real estate Data, Property Listing Data, Real estate Data, Real estate Data sets, Real estate market data, Real estate data extraction, real estate web scraping, real estate api, real estate data api, real estate web scraping, web scraping real estate data, scraping real estate data, real estate scraper, best real, estate api, web scraping real estate, api real estate, Zillow scraping software ]

  13. f

    Who sells to whom in the suburbs? Home price inflation and the dynamics of...

    • plos.figshare.com
    pdf
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Renaud Le Goix; Timothée Giraud; Robin Cura; Thibault Le Corre; Julien Migozzi (2023). Who sells to whom in the suburbs? Home price inflation and the dynamics of sellers and buyers in the metropolitan region of Paris, 1996–2012 [Dataset]. http://doi.org/10.1371/journal.pone.0213169
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Renaud Le Goix; Timothée Giraud; Robin Cura; Thibault Le Corre; Julien Migozzi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Price inflation has outbalanced the income of residents and buyers in major post-industrial city-regions, and real estate has become an important driver of these inequalities. In a context of a resilient inflation of home values during the last two decades in the greater Paris Region, it is critical to examine housing price dynamics to get a better understanding of socioeconomic segregation. This paper aims at presenting spatial analysis of the dynamics of segregation pertaining to inflation, analyzing price and sellers and buyers data. Using interpolation techniques and multivariate analysis, the paper presents a spatial analysis of property-level data from the Paris Chamber of Notaries (1996-2012) in a GIS (159,000 transactions in suburban areas, single family homes only). Multivariate analysis capture price change and local trajectories of occupational status, i.e. changes in balance between inward and outward flows of sellers and buyers. We adopt a method that fits the fragmented spatial patterns of suburbanization. To do so, we remove the spatial bias by means of a regular 1-km spatial grid, interpolating the variables within it, using a time-distance matrix. The main results are threefold. We document the spatial patterns of professionalization (a rise of executives, intermediate occupation and employees) to describe the main trends of inward mobility in property ownership in suburbs, offsetting the outward mobility of retired persons. Second, neighborhood trajectories are related the diverging patterns of appreciation, between local contexts of accumulation with a growth of residential prices, and suburbs with declining trends. The maturity of suburbanization yields a diversified structure of segregation between the social groups, that do not simply oppose executives vs. blue collar suburbs. A follow-up research agenda is finally outlined.

  14. c

    Real Estate DataSet

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Real Estate DataSet [Dataset]. https://cubig.ai/store/products/317/real-estate-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Real Estate DataSet consists of 506 examples, including home prices in the Boston suburbs and various residential and environmental characteristics.

    2) Data Utilization (1) Real Estate DataSet has characteristics that: • The dataset provides 13 continuous variables and one binary variable, including crime rate, house size, environmental pollution, accessibility, tax rate, and population characteristics. (2) Real Estate DataSet can be used to: • House Price Forecast: It can be used to develop a regression model that predicts the median price (MEDV) of a house based on various residential and environmental factors. • Analysis of Urban Planning and Policy: It can be used for urban development and policy making by analyzing the impact of residential environmental factors such as crime rates, environmental pollution, and educational environment on housing values.

  15. d

    Metro median house sales - Dataset - data.sa.gov.au

    • data.sa.gov.au
    Updated Jul 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Metro median house sales - Dataset - data.sa.gov.au [Dataset]. https://data.sa.gov.au/data/dataset/metro-median-house-sales
    Explore at:
    Dataset updated
    Jul 21, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Australia
    Description

    Quarterly median house prices for metropolitan Adelaide by suburb

  16. c

    Housing Market Study Typologies

    • data.cityofrochester.gov
    • hub.arcgis.com
    Updated Feb 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Housing Market Study Typologies [Dataset]. https://data.cityofrochester.gov/datasets/housing-market-study-typologies
    Explore at:
    Dataset updated
    Feb 18, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to inform development of the City's new Comprehensive Plan, Rochester 2034, and retained czb, LLC – a firm with national expertise based in Alexandria, VA – to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. Importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long recognized that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/Dictionary: STATEFP10: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state in the 2010 census. New York State is 36. COUNTYFP10: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county in the 2010 census. Monroe County is 055. TRACTCE10: The six-digit number assigned to each census tract in a US county in the 2010 census. BLKGRPCE10: The single-digit number assigned to each block group within a census tract. The number does not indicate ranking or quality, simply the label used to organize the data. GEOID10: A unique geographic identifier based on 2010 Census geography, typically as a concatenation of State FIPS code, County FIPS code, Census tract code, and Block group number. NAMELSAD10: Stands for Name, Legal/Statistical Area Description 2010. A human-readable field for BLKGRPCE10 (Block Groups). MTFCC10: Stands for MAF/TIGER Feature Class Code 2010. For this dataset, G5030 represents the Census Block Group. BLKGRP: The GEOID that identifies a specific block group in each census tract. TYPOLOGYFi: The point system for Block Groups. Lower scores indicate higher levels of demand – including housing values and value appreciation that are above the Rochester average and vulnerabilities to distress that are below average. Higher scores indicate lower levels of demand – including housing values and value appreciation that are below the Rochester average and above presence of distressed or vulnerable properties. Points range from 1.0 to 3.0. For more information on how the points are calculated, view page 16 on the Rochester Citywide Housing Study 2018. Shape_Leng: The built-in geometry field that holds the length of the shape. Shape_Area: The built-in geometry field that holds the area of the shape. Shape_Length: The built-in geometry field that holds the length of the shape. Source: This data comes from the City of Rochester Department of Neighborhood and Business Development.

  17. c

    2018 Housing Market Typologies

    • data.cityofrochester.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Mar 3, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). 2018 Housing Market Typologies [Dataset]. https://data.cityofrochester.gov/datasets/2018-housing-market-typologies
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    DisclaimerBefore using this layer, please review the 2018 Rochester Citywide Housing Market Study for the full background and context that is required for interpreting and portraying this data. Please click here to access the study. Please also note that the housing market typologies were based on analysis of property data from 2008 to 2018, and is a snapshot of market conditions within that time frame. For an accurate depiction of current housing market typologies, this analysis would need to be redone with the latest available data.About the DataThis is a webmap of a polygon feature layer containing the boundaries of all census blockgroups in the city of Rochester. Beyond the unique identifier fields including GEOID, the only other field is the housing market typology for that blockgroup. The map is visualized based on market typology score with strongest market in pink, and weakest market in dark blue.Information from the 2018 Housing Market Study- Housing Market TypologiesThe City of Rochester commissioned a Citywide Housing Market Study in 2018 as a technical study to help inform development of the City's new Comprehensive Plan, Rochester 2034 , and retained czb, LLC - a firm with national expertise based in Alexandria, VA - to perform the analysis.Any understanding of Rochester’s housing market – and any attempt to develop strategies to influence the market in ways likely to achieve community goals – must begin with recognition that market conditions in the city are highly uneven. On some blocks, competition for real estate is strong and expressed by pricing and investment levels that are above city averages. On other blocks, private demand is much lower and expressed by above average levels of disinvestment and physical distress. Still other blocks are in the middle – both in terms of condition of housing and prevailing prices. These block-by-block differences are obvious to most residents and shape their options, preferences, and actions as property owners and renters. And, importantly, these differences shape the opportunities and challenges that exist in each neighborhood, the types of policy and investment tools to utilize in response to specific needs, and the level and range of available resources, both public and private, to meet those needs. The City of Rochester has long appreciated that a one-size-fits-all approach to housing and neighborhood strategy is inadequate in such a diverse market environment, and that is no less true today. To concisely describe distinct market conditions and trends across the city in this study, a Housing Market Typology was developed using a wide range of indicators to gauge market health and investment behaviors. This section of the Citywide Housing Market Study introduces the typology and its components. In later sections, the typology is used as a tool for describing and understanding demographic and economic patterns within the city, the implications of existing market patterns on strategy development, and how existing or potential policy and investment tools relate to market conditions.Overview of Housing Market Typology PurposeThe Housing Market Typology in this study is a tool for understanding recent market conditions and variations within Rochester and informing housing and neighborhood strategy development. As with any typology, it is meant to simplify complex information into a limited number of meaningful categories to guide action. Local context and knowledge remain critical to understanding market conditions and should always be used alongside the typology to maximize its usefulness.Geographic Unit of Analysis The Block Group – a geographic unit determined by the U.S. Census Bureau – is the unit of analysis for this typology, which utilizes parcel-level data. There are over 200 Block Groups in Rochester, most of which cover a small cluster of city blocks and are home to between 600 and 3,000 residents. For this tool, the Block Group provides geographies large enough to have sufficient data to analyze and small enough to reveal market variations within small areas.Four Components for CalculationAnalysis of multiple datasets led to the identification of four typology components that were most helpful in drawing out market variations within the city:• Terms of Sale• Market Strength• Bank Foreclosures• Property DistressThose components are described one-by-one on in the full study document (LINK), with detailed methodological descriptions provided in the Appendix.A Spectrum of Demand The four components were folded together to create the Housing Market Typology. The seven categories of the typology describe a spectrum of housing demand – with lower scores indicating higher levels of demand, and higher scores indicating weaker levels of demand. Typology 1 are areas with the highest demand and strongest market, while typology 3 are the weakest markets. For more information please visit: https://www.cityofrochester.gov/HousingMarketStudy2018/

  18. E

    Europe Residential Real Estate Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Europe Residential Real Estate Market Report [Dataset]. https://www.datainsightsmarket.com/reports/europe-residential-real-estate-market-17256
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Europe
    Variables measured
    Market Size
    Description

    The European residential real estate market, valued at €1.95 trillion in 2025, is projected to experience steady growth, exhibiting a compound annual growth rate (CAGR) of 4.5% from 2025 to 2033. This growth is driven by several key factors. Increasing urbanization across major European cities like London, Paris, and Berlin fuels demand for apartments and condominiums. A growing population, coupled with rising disposable incomes in several European countries, particularly in Western Europe, further boosts demand for housing, particularly in the higher-end villa and landed house segments. Government initiatives aimed at affordable housing in some regions also contribute to market activity, though this effect varies significantly across different nations. However, the market faces constraints such as fluctuating interest rates influencing mortgage affordability and the ongoing impact of economic uncertainty affecting investor confidence. The market is segmented geographically, with the United Kingdom, Germany, and France representing the largest national markets, showcasing diverse dynamics within each country based on local economic conditions and government policies. The strong performance of the UK market is primarily attributed to its robust economy and concentration of high-value properties in London. Germany, on the other hand, is characterized by a more balanced market spread across different property types, with solid growth driven by sustained economic activity and population growth in major cities. France's market reflects a mix of urban and suburban development, demonstrating a dynamic interplay between high-demand urban centers and more affordable suburban options. Major players like CPI Property Group, Aroundtown Property Holdings, and LEG Immobilien AG shape market trends through their development and investment activities. The long-term outlook remains positive, though subject to global economic fluctuations and national-specific regulatory changes. The competitive landscape is characterized by a mix of large publicly listed REITs and privately held companies. These companies compete based on their portfolio strategies, development capabilities, and financial strength. The future of the European residential real estate market will likely see a continued focus on sustainable development practices, technological advancements impacting property management, and a greater emphasis on meeting the needs of a diverse population with varying housing preferences. The varied regulatory frameworks across Europe necessitate a nuanced approach for developers and investors to successfully navigate the market dynamics in each specific country. Further growth will be influenced by demographic shifts, technological advancements, and evolving consumer preferences concerning sustainable and smart living environments. This comprehensive report provides an in-depth analysis of the European residential real estate market, covering the period from 2019 to 2033. With a base year of 2025 and an estimated year of 2025, this report offers valuable insights into market trends, key players, and future growth opportunities within the European residential real estate sector. It includes detailed analysis of condominiums, apartments, villas, and landed houses across major markets like Germany, the United Kingdom, France, and the rest of Europe. This report is crucial for investors, developers, policymakers, and anyone seeking to understand this dynamic and rapidly evolving market.
    Keywords: European residential real estate market, real estate market trends Europe, European property market, residential real estate investment Europe, Germany real estate market, UK property market, France real estate market, European real estate forecast, real estate market analysis Europe, PropTech Europe Recent developments include: November 2023: DoorFeed, a Proptech company, raised EUR 12 million (USD 13.24 million) in seed funding, led by Motive Ventures and Stride and supported by renowned investors, including Seedcamp. Founded by veteran proptech entrepreneur and ex-Uber employee James Kirimi, DoorFeed aims to be the first choice for institutional investors seeking to invest in residential real estate. The company is looking to expand its footprint across Europe, with a focus on Spain, Germany, and the United Kingdom., October 2023: H.I.G, a global alternative investment firm with over USD 59 billion in assets under management, invested in the real estate development company, The Grounds Real Estate Development AG (“the Transaction”), which is listed on the alternative stock exchange. The proceeds of the transaction are expected to be utilized to fund the capital expenditures of the current projects of The Grounds. The Grounds, based in Berlin, specializes in the acquisition and development of German residential properties located in large metropolitan areas. In the transaction, the major shareholders of The Grounds, which currently hold 73% of the company’s shares, have agreed to grant H. I.G. the right to share in future rights issues.. Key drivers for this market are: Increasing Developments in the Residential Segment, Investments in the Senior Living Units. Potential restraints include: Limited Availability of Land Hindering the Market. Notable trends are: Student Housing to Gain Traction.

  19. v

    Canada Condominiums and Apartments Market By Type (Condominiums,...

    • verifiedmarketresearch.com
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Canada Condominiums and Apartments Market By Type (Condominiums, Apartments), Price Range (Affordable Housing, Mid-Range, Luxury), Location (Urban, Suburban, Rural), End-User (Residential, Commercial), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/canada-condominiums-and-apartments-market/
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Canada
    Description

    Canada Condominiums and Apartments Market size was valued at USD 95.76 Billion in 2024 and is projected to reach USD 149.21 Billion by 2032, growing at a CAGR of 5.7% from 2026 to 2032.

    Canada Condominiums and Apartments Market Drivers

    Concentration in Urban Centers: Canada's population is increasingly concentrated in major urban centers like Toronto, Vancouver, and Montreal, driving demand for high-density housing solutions like condos and apartments.

    Immigration: Canada's immigration policies contribute to population growth, primarily in urban areas, further fueling demand for housing.

    Rising Single-Family Home Prices: The escalating cost of single-family homes in major cities makes condominiums and apartments a more affordable housing option for many.

    First-Time Homebuyers: Condos and apartments are often the entry point into the housing market for first-time buyers, particularly young professionals and couples.

    Rental Market: The rental market is strong, and apartments provide a crucial housing option for those not ready or able to purchase.

  20. F

    S&P CoreLogic Case-Shiller IL-Chicago Home Price Index

    • fred.stlouisfed.org
    json
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P CoreLogic Case-Shiller IL-Chicago Home Price Index [Dataset]. https://fred.stlouisfed.org/series/CHXRSA
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 29, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Area covered
    Illinois, Chicago
    Description

    Graph and download economic data for S&P CoreLogic Case-Shiller IL-Chicago Home Price Index (CHXRSA) from Jan 1987 to May 2025 about Chicago, WI, IN, IL, HPI, housing, price index, indexes, price, and USA.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Data Insights Market (2025). Residential Real Estate Market in the United States Report [Dataset]. https://www.datainsightsmarket.com/reports/residential-real-estate-market-in-the-united-states-17275

Residential Real Estate Market in the United States Report

Explore at:
doc, pdf, pptAvailable download formats
Dataset updated
Mar 7, 2025
Dataset authored and provided by
Data Insights Market
License

https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global, United States
Variables measured
Market Size
Description

The US residential real estate market, a cornerstone of the American economy, is projected to experience steady growth over the next decade. While the provided CAGR of 2.04% is a modest figure, it reflects a market maturing after a period of significant expansion. This sustained growth is driven by several key factors. Firstly, population growth and urbanization continue to fuel demand for housing, particularly in densely populated areas and emerging suburban markets. Secondly, low interest rates (historically, though this can fluctuate) have made mortgages more accessible, stimulating buyer activity. Thirdly, a robust construction sector, though facing challenges in material costs and labor shortages, is gradually increasing the housing supply, mitigating some of the upward pressure on prices. However, challenges remain. Rising inflation and potential interest rate hikes pose a risk to affordability, potentially dampening demand. Furthermore, the ongoing evolution of remote work is reshaping residential preferences, with a shift toward larger homes in suburban or exurban locations. This trend impacts the relative demand for various property types, potentially increasing the appeal of landed houses and villas compared to apartments and condominiums in certain regions. The segmentation of the market into apartments/condominiums and landed houses/villas provides crucial insights into consumer preferences and investment strategies. High-density urban areas will continue to see strong demand for apartments and condos, while suburban and rural areas are likely to experience a greater increase in landed property sales. Major players like Simon Property Group, Mill Creek Residential, and others are strategically adapting to these trends, focusing on both development and management across various property types and geographic locations. Analyzing regional data within the US (e.g., comparing growth in the Northeast versus the Southwest) will highlight market nuances and potential investment opportunities. While the global data provided is valuable for understanding broader market forces, focusing the analysis on the US market allows for a more granular understanding of the specific drivers, trends, and challenges within this significant segment of the real estate sector. The forecast period (2025-2033) suggests continued, albeit measured, expansion. Recent developments include: May 2022: Resource REIT Inc. completed the sale of all of its outstanding shares of common stock to Blackstone Real Estate Income Trust Inc. for USD 14.75 per share in an all-cash deal valued at USD 3.7 billion, including the assumption of the REIT's debt., February 2022: The largest owner of commercial real estate in the world and private equity company Blackstone is growing its portfolio of residential rentals and commercial properties in the United States. The company revealed that it would shell out about USD 6 billion to buy Preferred Apartment Communities, an Atlanta-based real estate investment trust that owns 44 multifamily communities and roughly 12,000 homes in the Southeast, mostly in Atlanta, Nashville, Charlotte, North Carolina, and the Florida cities of Jacksonville, Orlando, and Tampa.. Key drivers for this market are: Investment Plan Towards Urban Rail Development. Potential restraints include: Italy’s Fragmented Approach to Tenders. Notable trends are: Existing Home Sales Witnessing Strong Growth.

Search
Clear search
Close search
Google apps
Main menu