Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpage under LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherTAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)
The Digital Glacial and Surficial Geologic-GIS Map of Summit County and Parts of Cuyahoga County, Ohio is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (cuva_glacial_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (cuva_glacial_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (cuva_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cuva_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (cuva_glacial_surficial_geology_metadata_faq.pdf). Please read the cuva_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Ohio Division of Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (cuva_glacial_surficial_geology_metadata.txt or cuva_glacial_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
A map used in the Floodplain Inquiry application to locate parcels impacted by FEMA floodplain boundaries.UNDER REVIEW 3/22/2024 GIS TEAM
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpage under Basic Parcels."Database containing parcel boundary, parcel identifier, parcel address, owner type, and county recorder contact information" - HB113. The intent of the bill was to not include any attributes that the counties rely on for data sales. If you want other attributes associated with the parcels you need to contact the county recorder.Users should be aware the owner type field 'OWN_TYPE' in the parcel polygons is a very generalized ownership type (Federal, Private, State, Tribal). It is populated with the value of the 'OWNER' field where the parcel's centroid intersects the CADASTRE.LandOwnership polygon layer.This dataset is a snapshot in time and may not be the most current. For the most current data contact the county recorder.
Geospatial data about Summit County, Ohio Wetlands. Export to CAD, GIS, PDF, CSV and access via API.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipThis theme shows detailed watersheds for Summit County, as digitized in vector mode from mylar copies of maps maintained by the U.S. Geological Survey, Water Resources Division.
Original coverage data was converted from the .e00 file to a more standard ESRI shapefile(s) in November 2014.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesReal Estate & Land ManagementReal Estate and Lands Management2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6462Email: gis.support@dnr.ohio.gov
Geospatial data about Summit County, Ohio Sewer Lines. Export to CAD, GIS, PDF, CSV and access via API.
Summit County riparian setbacks with buffer distances
Dataset created and maintained by the Summit County Engineer showing school signals within the Engineer's jurisdiction.
This map shows specific water-quality items and hydrologic data site information which come from QWDATA (Water Quality) and GWSI (Ground Water Information System). Both QWDATA and GWSI are subsystems of NWIS (National Water Inventory System)of the USGS (United States Geologic Survey). This map is for Summit County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
New 1:24,000-scale geologic mapping along the Interstate-70 urban corridor in western Colorado, in support of the USGS Central Region State/USGS Cooperative Geologic Mapping Project, is contributing to a more complete understanding of the stratigraphy, structure, tectonic evolution, and hazard potential of this rapidly developing region. The 1:24,000-scale Frisco quadrangle is near the headwaters of the Blue River and straddles features of the Blue River graben (Kellogg, K.S., 1999, Neogene basins of the northern Rio Grande rift partitioning and asymmetry inherited from Laramide and older uplifts: Tectonophysics, v. 305, p. 141-152.), part of the northernmost reaches of the Rio Grande rift, a major late Oligocene to recent zone of extension that extends from Colorado to Mexico. The Williams Range thrust fault, the western structural margin of the Colorado Front Range, cuts the northeastern corner of the quadrangle. The oldest rocks in the quadrangle underlie the Tenmile Range and include biotite-sillimanite schist and gneiss, amphibolite, and migmatite that are intruded by granite inferred to be part of the 1,667-1,750 Ma Routt Plutonic Suite (Tweto, Ogden, 1987, Rock units of the Precambrian- basement in Colorado: U.S. Geological Survey Professional Paper 1321-A, 54 p.). The oldest sedimentary unit is the Pennsylvanian Maroon Formation, a sequence of red sandstone, conglomerate, and interbedded shale. The thickest sequence of sedimentary rocks is Cretaceous in age and includes at least 500 m of the Upper Cretaceous Pierre Shale. The sedimentary rocks are intruded by sills and dikes of dacite porphyry sills of Swan Mountain, dated at 44 Ma (Marvin, R.F., Mehnert, H.H., Naeser, C.W., and Zartman, R.E., 1989, U.S. Geological Survey radiometric ages, compilation  C  Part five Colorado, Montana, Utah, and Wyoming: Isochron/West, no. 53, p. 14-19. Simmons, E.C., and Hedge, C.E., 1978, Minor-element and Sr-isotope geochemistry of Tertiary stocks, Colorado mineral belt: Contributions to Mineralogy and Petrology, v. 67, p. 379-396.). Surficial deposits include (1) an old, deeply dissected landslide deposit, possibly as old as Tertiary, on the south flank of Tenderfoot Mountain, (2) deeply weathered, very coarse gravel deposits, mostly along Gold Run and underlying Mesa Cortina; the gravels are gold bearing and were mined by hydraulic methods in the 1800's, (3) glacial deposits of both Bull Lake (middle Pleistocene) and Pinedale (late Pleistocene) that were derived from large valley glaciers that flowed down Tenmile and North Tenmile Creeks; the town of Frisco is underlain mostly by Pinedale-age glacial outwash, (4) recent landslide deposits, including one large (about 1 square kilometer) area just downslope from Lilly Pad Lake, west of I-70, and (5)extensive colluvial and alluvial deposits. The latest seismic events appear to be middle Pliestocene in age and are associated with small scarps that cut Bull Lake till but do not cut Pinedale till.
Summit County old lots
This data set maps and describes the geology of the Butler Peak 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage showing geologic contacts and units,(2) a scanned topographic base at a scale of 1:24,000, and (3) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map on a 1:24,000 topographic base accompanied by a Description of Map Units (DMU), a Correlation of Map Units (CMU), and a key to point and line symbols; (2) PDF files of the DMU and CMU, and of this Readme, and (3) this metadata file. The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 mylar orthophoto-quadrangle and then to a base-stable topographic map. This map was then scribed, and a .007 mil, right-reading, black line clear film made by contact photographic processes.The black line was scanned and auto-vectorized by Optronics Specialty Company, Northridge, CA. The non-attributed scan was imported into ARC/INFO, where the database was built. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum and link it to other tables (.rel) that provide more detailed geologic information.
Thirty-nine types of surficial geologic deposits and residual materials of Quaternary age are described and mapped in the greater Denver area, in part of the Front Range, and in the piedmont and plains east of Denver, Boulder, and Castle Rock. Descriptions appear in the pamphlet that accompanies the map. Landslide deposits, colluvium, residuum, alluvium, and other deposits or materials are described in terms of predominant grain size, mineral or rock composition (e.g., gypsiferous, calcareous, granitic, andesitic), thickness of deposits, and other physical characteristics. Origins and ages of the deposits and geologic hazards related to them are noted. Many lines between geologic units on our map were placed by generalizing contacts on published maps. However, in 1997-1999 we mapped new boundaries, as well. The map was projected to the UTM projection. This large map area extends from the Continental Divide near Winter Park and Fairplay ( on the west edge), eastward about 107 mi (172 km); and extends from Boulder on the north edge to Woodland Park at the south edge (68 mi; 109 km).
This map shows the USGS (United States Geologic Survey), NWIS (National Water Inventory System) Hydrologic Data Sites for Summit County, Utah. The scope and purpose of NWIS is defined on the web site: http://water.usgs.gov/public/pubs/FS/FS-027-98/
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Download .zipA potentiometric surface map is a contour map that represents the top of the ground water surface in an aquifer. The contour lines illustrate the potentiometric surface much like the contour lines of a topographic map represent a visual model of the ground surface. A potentiometric surface map is very similar to a water table map in that both show the horizontal direction and gradient of ground water flow.Contact Information:GIS Support, ODNR GIS ServicesOhio Department of Natural ResourcesDivision of Geological Survey2045 Morse Rd, Bldg I-2Columbus, OH, 43229Telephone: 614-265-6693Email: gis.support@dnr.ohio.gov
This data set maps and describes the geology of the Telegraph 7.5' quadrangle, San Bernardino County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a double precision map coverage containing geologic contacts and units, (2) a coverage containing site-specific structural data, (3) a coverage containing geologic-unit label leaders and their associated attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) A PostScript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), an index map, a regional geologic and structure map, and a key for point and line symbols; (2) PDF files of this Readme (including the metadata file as an appendix), Description of Map Units (DMU), and the graphic produced by the PostScript plot file. The Telegraph Peak quadrangle is located in the eastern San Gabriel Mountains part of the Transverse Ranges Province of southern California. The generally east-striking structural grain characteristic of the crystalline rocks of much of the San Gabriel Mountains is apparent, but not well developed in the Telegraph Peak quadrangle. Here, the east-striking structural grain is somewhat masked by the northwest-striking grain associated with the San Andreas Fault zone. Faults within the quadrangle include northwest-striking, right-lateral strike-slip faults of the San Andreas system. The active San Andreas Fault, located in the northern part of the quadrangle, dominates the younger structural elements. North of the San Andreas Fault is the inactive Cajon Valley Fault that was probably an early strand of the San Andreas system. It was active during deposition of the middle Miocene Cajon Valley Formation. South of the San Andreas, the Punchbowl Fault, which is probably a long-abandoned segment of the San Andreas Fault (Matti and Morton, 1993), has a sinuous trace apparently due to compression in the eastern San Gabriel Mountains that post-dates displacement on the fault. The Punchbowl Fault separates two major subdivisions of the Mesozoic Pelona Schist and is left-laterally offset by a northeast-striking fault in the northwestern part of the quadrangle. Within the Punchbowl Fault zone is a thin layer of highly deformed basement rock, which is clearly not part of the Pelona Schist. To the southeast, in the Devore quadrangle, this included basement rock attains a thickness of several hundred feet. Along strike to the northwest, Tertiary sedimentary rocks are included within the fault zone. South of the Punchbowl Fault are several arcuate (in plan) faults that are part of an antiformal schuppen-like fault complex of the eastern San Gabriel Mountains. Most of these arcuate faults are reactivated and deformed older faults, and probably include the eastern part of the San Gabriel Fault. The Vincent Thrust of late Cretaceous or early Tertiary age separates the Pelona Schist in the lower plate from a heterogeneous basement complex in the upper plate. Immediately above the Vincent Thrust is a variable thickness of mylonitic rock generally interpreted as a product of displacement on the thrust. The upper plate includes two Paleozoic units, a schist and gneiss sequence and a schist, quartzite, and marble metasedimentary sequence. Both sequences are thrust over the Mesozoic Pelona Schist along the Vincent Thrust, and intruded by Tertiary (late Oligocene) granitic rocks, granodiorite of Telegraph Peak, that also intrude the Vincent Thrust. The Pelona Schist consists mostly of greenschist to amphibolite metamorphic grade meta-basalt (greenschist and amphibolite) and meta-graywacke (siliceous and white mica schist), with minor impure quartzite and marble, in which all primary structures have been destroyed and all layering transposed. Cretaceous granitic rocks, chiefly tonalite, intrude the schist and gneiss sequence, but not the Pelona Schist or the Vincent Thrust. North of the San Andreas Fault, bedrock units consist of undifferentiated Cretaceous tonalite, here informally named tonalite of Circle Mountain, with some included small boldies of gneiss and marble. These basement rocks are the westward continuation of rocks of the San Bernardino Mountains and not rocks of the San Gabriel Mountains south of the San Andreas Fault. Also north of the San Andreas Fault are the Oligocene Vaqueros Formation, middle Miocene Cajon Valley Formation, and Pliocene rocks of Phelan Peak. The latter two formations are divided into several conglomerate and arkosic sandstone subunits. In the northeastern corner of the quadrangle, the rocks of Phelan Peak are unconformably overlain by the Quaternary Harold Formation and Shoemaker Gravel. Quaternary units ranging from early Pleistocene to recent are mapped, and represent alluvial fan, landslide, talus, and wash environments. The geologic map database contains original U.S. Geological Survey data generated by detailed field observation and by interpretation of aerial photographs. This digital Open-File map supercedes an older analog Open-File map of the quadrangle, and includes extensive new data on the Quaternary deposits, and revises some fault and bedrock distribution within the San Gabriel Mountains. The digital map was compiled on a base-stable cronoflex copy of the Telegraph 7.5' topographic base and then scribed. This scribe guide was used to make a 0.007 mil blackline clear-film, from which lines and point were hand digitized. Lines, points, and polygons were subsequently edited at the USGS using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units as polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
This data set maps and describes the geology of the Steele Peak 7.5' quadrangle, Riverside County, California. Created using Environmental Systems Research Institute's ARC/INFO software, the data base consists of the following items: (1) a map coverage containing geologic contacts and units, (2) a coverage containing structural data, (3) a coverage containing geologic unit annotation and leaders, and (4) attribute tables for geologic units (polygons), contacts (arcs), and site-specific data (points). In addition, the data set includes the following graphic and text products: (1) a postscript graphic plot-file containing the geologic map, topography, cultural data, a Correlation of Map Units (CMU) diagram, a Description of Map Units (DMU), and a key for point and line symbols, and (2) PDF files of the Readme (including the metadata file as an appendix), and the graphic produced by the Postscript plot file. The Steele Peak quadrangle is located in the northern part of the Peninsular Ranges Province within the central part of the Perris block, a relatively stable, rectangular in plan area located between the Elsinore and San Jacinto fault zones. The quadrangle is underlain by Cretaceous and older basement rocks. Cretaceous plutonic rocks are part of the composite Peninsular Ranges batholith. A wide variety of mafic to intermediate composition granitic rocks occur in the quadrangle, and are mainly of tonalitic composition, but range from monzogranite to gabbro. Most rock units are faintly to intensely foliated, compositionally heterogenous, and contain varying amounts of meso-and melanocratic discoidal-shaped inclusions. Some rocks are composed almost wholly of inclusion material and some are migmatitic. Included within these granitic rocks are septa not shown on the geologic map of Paleozoic(?) schist of upper amphibolite metamorphic grade. Metamorphic rocks of primarily Mesozoic age occur in a discontinuous belt extending from the southeast to the northwest corner of the quadrangle. Most of these rocks are well foliated biotite-bearing schist. Near the southern edge of the quadrangle phyllitic rocks dominate. Northwestward, metamorphism increases from greenschist or sub-greenschist grade near the south edge of the quadrangle to sillimanite-bearing schist of upper amphibolite grade in the vicinity of Cajalco Road. Biotite-hornblende tonalite of the relatively large Val Verde pluton dominates the northeastern half of the quadrangle. In most places this tonalite has a northwest oriented crude to well developed planar fabric produced by oriented biotite and hornblende. Schlieren and massive clots of mafic tonalite locally occur. Discoidal- to pancake-shaped mafic inclusions are widespread and are oriented in the plane defined by the biotite and hornblende. This planar fabric typically dips moderately to the northeast, but locally shallows to a horizontal to subhorizontal planar fabric, or fades to an isotropic fabric. West of the Val Verde pluton are a number of plutons having fabrics ranging from massive isotropic to foliated. Compositions of these plutons range from monzogranite to pyroxene gabbro. Most of these granitic rocks fall within the composition range from monzogranite to tonalite, and are part of the composite Gavilan ring complex. Hypersthene is a characteristic mineral of most of the rocks of this complex, which includes black hypersthene-bearing monzogranite that has been quarried as a source of 'black granite' building stone. Several inactive gold mines, e.g., Goodhope, Gavilan, and Santa Rosa mines that constituted the Pinacate mining district, are located in the Gavilan ring complex. In the center of the Gavilan ring complex is the near circular Arroyo del Toro pluton, a massive-textured granodiorite essentially devoid of inclusions. Only the northern half of this pluton is located in the quadrangle. Some rock of this pluton was quarried for building stone. The southwestern corner of the quadrangle is underlain by siliceous volcanic and volcanoclastic rock considered to be coeval with the batholith and be the supra-part of the batholithic magmatism. Most of these volcanic rocks range in composition from rhyolite to andesite with latitic composition rocks predominating. In the northeastern part of the quadrangle is the proximal parts of a Pleistocene alluvial fan complex. The geologic map data base contains original U.S. Geological Survey data generated by detailed field observation recorded on 1:24,000 scale aerial photographs. The map was created by transferring lines from the aerial photographs to a 1:24,000 scale topographic base. The map was digitized and lines, points, and polygons were subsequently edited using standard ARC/INFO commands. Digitizing and editing artifacts significant enough to display at a scale of 1:24,000 were corrected. Within the database, geologic contacts are represented as lines (arcs), geologic units are polygons, and site-specific data as points. Polygon, arc, and point attribute tables (.pat, .aat, and .pat, respectively) uniquely identify each geologic datum.
1:24,000 scale Geologic Map of the Delamar Lake Quadrangle, Lincoln County, Nevada, USGS GQ-1754. Detailed geologic mapping by Robert B. Scott, W C Swadley, and Steven W. Novak in 1993. Previous work includes the Geologic map of Tertiary rocks (Ekren, Orkild, Sargent, and Dixon, 1997); Preliminary Geologic map of the Delamar 3 SW quadrangle (Page, Swadley, and Scott, 1990); Preliminary Geologic map of the Vigo NW quadrangle (Scott, Harding, Swadley, Novak, and Pampeyan, 1991); Preliminary Geologic map of the Delamar 3 NE quadrangle (Scott, Novak, and Swadley, 1990a); Preliminary geologic map of the Delamar 3 NW quadrangle (Scott, Page, and Swadley, 1990b); Preliminary geologic map of the Pahroc Summit Pass and part of the Hiko SE quadrangle (Scott and Swadley, 1992); Preliminary geologic map of the Gregerson Basin quadrangle (Scott, Swadley, Page, and Novak, 1990); Preliminary Geologic map of the Delamar 3 SE quadrangle (Swadley, Page, Scott, and Pampeyan, 1990); Preliminary geologic map of the Delamar NW quadrangle (Swadley and Scott, 1990). Geologic Map of the Delamar 3 SE 7.5' quadrangle in Lincoln County, Nevada, with 0 cross sections and description of 44 units. The GIS work was in support of the U. S. Geological Survey COGEOMAP program. The Geodatabase specifies feature datasets and feature classes, together with feature attributes, subtypes and domains, suitable for a variety of geologic maps. In addition to basic geology (lithology, contacts and faults, etc.), the maps may include metamorphic overprints, cross sections, and explanatory legend-graphics such as correlation charts, used to supplement columnar legends. For more information about this resource or to download the map and associated legend text and GIS zipped data sets, please see the links provided.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset depicts the Utah State Boundary as digitized from USGS 7.5 minute quad map series. The boundary should be coincident with the outer boundary of the SGID024.CountyBoundaries dataset. Minor adjustments were made to align with the Newest PLSS-GCDB layers from BLM (CadNSDIv2), biggest move was along the Wyoming and Summit County lines, 47 feet all in non-populated areas (7/18/2014).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update information can be found within the layer’s attributes and in a table on the Utah Parcel Data webpage under LIR Parcels.In Spring of 2016, the Land Information Records work group, an informal committee organized by the Governor’s Office of Management and Budget’s State Planning Coordinator, produced recommendations for expanding the sharing of GIS-based parcel information. Participants in the LIR work group included representatives from county, regional, and state government, including the Utah Association of Counties (County Assessors and County Recorders), Wasatch Front Regional Council, Mountainland and Bear River AOGs, Utah League of Cities and Towns, UDOT, DNR, AGRC, the Division of Emergency Management, Blue Stakes, economic developers, and academic researchers. The LIR work group’s recommendations set the stage for voluntary sharing of additional objective/quantitative parcel GIS data, primarily around tax assessment-related information. Specifically the recommendations document establishes objectives, principles (including the role of local and state government), data content items, expected users, and a general process for data aggregation and publishing. An important realization made by the group was that ‘parcel data’ or ‘parcel record’ products have a different meaning to different users and data stewards. The LIR group focused, specifically, on defining a data sharing recommendation around a tax year parcel GIS data product, aligned with the finalization of the property tax roll by County Assessors on May 22nd of each year. The LIR recommendations do not impact the periodic sharing of basic parcel GIS data (boundary, ID, address) from the County Recorders to AGRC per 63F-1-506 (3.b.vi). Both the tax year parcel and the basic parcel GIS layers are designed for general purpose uses, and are not substitutes for researching and obtaining the most current, legal land records information on file in County records. This document, below, proposes a schedule, guidelines, and process for assembling county parcel and assessment data into an annual, statewide tax parcel GIS layer. gis.utah.gov/data/sgid-cadastre/It is hoped that this new expanded parcel GIS layer will be put to immediate use supporting the best possible outcomes in public safety, economic development, transportation, planning, and the provision of public services. Another aim of the work group was to improve the usability of the data, through development of content guidelines and consistent metadata documentation, and the efficiency with which the data sharing is distributed.GIS Layer Boundary Geometry:GIS Format Data Files: Ideally, Tax Year Parcel data should be provided in a shapefile (please include the .shp, .shx, .dbf, .prj, and .xml component files) or file geodatabase format. An empty shapefile and file geodatabase schema are available for download at:At the request of a county, AGRC will provide technical assistance to counties to extract, transform, and load parcel and assessment information into the GIS layer format.Geographic Coverage: Tax year parcel polygons should cover the area of each county for which assessment information is created and digital parcels are available. Full coverage may not be available yet for each county. The county may provide parcels that have been adjusted to remove gaps and overlaps for administrative tax purposes or parcels that retain these expected discrepancies that take their source from the legally described boundary or the process of digital conversion. The diversity of topological approaches will be noted in the metadata.One Tax Parcel Record Per Unique Tax Notice: Some counties produce an annual tax year parcel GIS layer with one parcel polygon per tax notice. In some cases, adjacent parcel polygons that compose a single taxed property must be merged into a single polygon. This is the goal for the statewide layer but may not be possible in all counties. AGRC will provide technical support to counties, where needed, to merge GIS parcel boundaries into the best format to match with the annual assessment information.Standard Coordinate System: Parcels will be loaded into Utah’s statewide coordinate system, Universal Transverse Mercator coordinates (NAD83, Zone 12 North). However, boundaries stored in other industry standard coordinate systems will be accepted if they are both defined within the data file(s) and documented in the metadata (see below).Descriptive Attributes:Database Field/Column Definitions: The table below indicates the field names and definitions for attributes requested for each Tax Parcel Polygon record.FIELD NAME FIELD TYPE LENGTH DESCRIPTION EXAMPLE SHAPE (expected) Geometry n/a The boundary of an individual parcel or merged parcels that corresponds with a single county tax notice ex. polygon boundary in UTM NAD83 Zone 12 N or other industry standard coordinates including state plane systemsCOUNTY_NAME Text 20 - County name including spaces ex. BOX ELDERCOUNTY_ID (expected) Text 2 - County ID Number ex. Beaver = 1, Box Elder = 2, Cache = 3,..., Weber = 29ASSESSOR_SRC (expected) Text 100 - Website URL, will be to County Assessor in most all cases ex. webercounty.org/assessorBOUNDARY_SRC (expected) Text 100 - Website URL, will be to County Recorder in most all cases ex. webercounty.org/recorderDISCLAIMER (added by State) Text 50 - Disclaimer URL ex. gis.utah.gov...CURRENT_ASOF (expected) Date - Parcels current as of date ex. 01/01/2016PARCEL_ID (expected) Text 50 - County designated Unique ID number for individual parcels ex. 15034520070000PARCEL_ADD (expected, where available) Text 100 - Parcel’s street address location. Usually the address at recordation ex. 810 S 900 E #304 (example for a condo)TAXEXEMPT_TYPE (expected) Text 100 - Primary category of granted tax exemption ex. None, Religious, Government, Agriculture, Conservation Easement, Other Open Space, OtherTAX_DISTRICT (expected, where applicable) Text 10 - The coding the county uses to identify a unique combination of property tax levying entities ex. 17ATOTAL_MKT_VALUE (expected) Decimal - Total market value of parcel's land, structures, and other improvements as determined by the Assessor for the most current tax year ex. 332000LAND _MKT_VALUE (expected) Decimal - The market value of the parcel's land as determined by the Assessor for the most current tax year ex. 80600PARCEL_ACRES (expected) Decimal - Parcel size in acres ex. 20.360PROP_CLASS (expected) Text 100 - Residential, Commercial, Industrial, Mixed, Agricultural, Vacant, Open Space, Other ex. ResidentialPRIMARY_RES (expected) Text 1 - Is the property a primary residence(s): Y'(es), 'N'(o), or 'U'(nknown) ex. YHOUSING_CNT (expected, where applicable) Text 10 - Number of housing units, can be single number or range like '5-10' ex. 1SUBDIV_NAME (optional) Text 100 - Subdivision name if applicable ex. Highland Manor SubdivisionBLDG_SQFT (expected, where applicable) Integer - Square footage of primary bldg(s) ex. 2816BLDG_SQFT_INFO (expected, where applicable) Text 100 - Note for how building square footage is counted by the County ex. Only finished above and below grade areas are counted.FLOORS_CNT (expected, where applicable) Decimal - Number of floors as reported in county records ex. 2FLOORS_INFO (expected, where applicable) Text 100 - Note for how floors are counted by the County ex. Only above grade floors are countedBUILT_YR (expected, where applicable) Short - Estimated year of initial construction of primary buildings ex. 1968EFFBUILT_YR (optional, where applicable) Short - The 'effective' year built' of primary buildings that factors in updates after construction ex. 1980CONST_MATERIAL (optional, where applicable) Text 100 - Construction Material Types, Values for this field are expected to vary greatly by county ex. Wood Frame, Brick, etc Contact: Sean Fernandez, Cadastral Manager (email: sfernandez@utah.gov; office phone: 801-209-9359)