The 2022 CIUS aims to measure the impact of digital technologies on the lives of Canadians. Information gathered will help to better understand how individuals use the Internet, including intensity of use, demand for online activities and online interactions. The CIUS examines, use of online government services, use of social networking websites or apps, smartphone use, digital skills, e-commerce, online work, and security, privacy and trust as it relates to the Internet. The 2022 iteration has been updated to collect data on information sharing online, harmful content online, digital credentials, cryptocurrencies, Artificial Intelligence and working in the Gig Economy. The survey is built off the previous iterations of the CIUS conducted in 2018 and 2020.
Part of the What Works Cities criterion to achieve Certification, we need to meet the industry standard of at least 75% of our households have subscriptions / access to high-speed broadband servicesPart of the American Community Survey (ACS) asks the levels of internet access residents have. We use the 5-Year Estimates to have a greater level of precision to our data, according to the Distinguishing features of ACS 1-year, 1-year supplemental, 3-year, and 5-year estimates table.We query attributes of the DP02 (Selected Social Characteristics in the United States) Group of questions for years available.This dataset has been narrowed down to Cary township using following the geographies codes supported for the ACS dataset:state: 37county: 183county subdivision: 90536
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The public use microdata file (PUMF) from the Canadian Internet Use Survey (CIUS) provides data on the adoption and use of digital technologies and the online behaviors of individuals 15 years of age and older living in the ten provinces of Canada. The survey is built off the previous iteration of the CIUS, last conducted in 2012. While there is some comparability with the 2012 CIUS, the 2018 survey was redesigned in 2018 to reflect the rapid pace at which Internet technology has evolved since the previous survey iteration. The files include information on how individuals use the Internet, smartphones, and social networking websites and apps, including their intensity of use, demand for certain online activities, and interactions through these technologies. It also provides information on the use of online government services, digital skills, online work, and security, privacy and trust as it relates to the Internet.
Information on person and household broadband (high-speed Internet) use, where it is used, by what types of devices, what type of service provider, and other characteristics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Internet Users Survey - Access Devices by the Internet Users since 2012
This layer shows computer ownership and internet access by income group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of households without a broadband internet subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28004Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
The Oxford Internet Survey, 2013 (OxIS 2013) is a representative survey of British internet use in 2013. Data were collected via in-home interviews with respondents. It includes internet users, ex-users and non-users. The dataset contains almost 800 variables measuring internet activities, attitudes and effects. This wave included an oversample of people living in rural areas.
Further information about the OxIS, including publications, is available from the Oxford Internet Surveys webpages.
Users should note the data are only available in Stata format.
This study is Open Access. It is freely available to download and does not require UK Data Service registration.
Nearly one fifth of Russians stated in February 2020 that once over the past 12 months, they were forced to have no internet connection. Another 46 percent admitted to have experienced several interruptions.
A survey assessment on home broadband and device access in the City of Philadelphia.
When asked about "Attitudes towards the internet", most Mexican respondents pick "It is important to me to have mobile internet access in any place" as an answer. 56 percent did so in our online survey in 2025. Looking to gain valuable insights about users of internet providers worldwide? Check out our reports on consumers who use internet providers. These reports give readers a thorough picture of these customers, including their identities, preferences, opinions, and methods of communication.
description: A national survey conducted to obtain information about the extent of the nation's internet and computer use. The computer usage questions are asked of all household reference persons, or the spouses of the reference person, if the reference person is not available for interview.; abstract: A national survey conducted to obtain information about the extent of the nation's internet and computer use. The computer usage questions are asked of all household reference persons, or the spouses of the reference person, if the reference person is not available for interview.
This graph shows the results of a survey on the internet usage of children in Germany in 2018. During the survey period it was found that 28 percent of children stated to access the internet daily or nearly every day via a computer or laptop.
This web map visualizes the percentage of households in a given geography that do not subscribe to broadband internet services. Data are shown by tract, county, and state boundaries -- zoom out to see data visualized for larger geographies. The map also displays the boundary lines for the jurisdiction of Rochester, NY (visible when viewing the tract level data), as this map was created for a Rochester audience.This web map draws from an Esri Demographics service that is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2014-2018ACS Table(s): B28001, B28002 (Not all lines of ACS table B28002 are available in this feature layer)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 19, 2019National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
This layer shows Computers and Internet Use. This is shown by state and county boundaries. This service contains the 2017-2021 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 18, 2022National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
The 2018 Canadian Internet Use Survey (CIUS) measures access to the Internet and the online behaviours of individual residents of Canada 15 years of age and over, living in the provinces. The survey is built off the previous iteration of the CIUS, last conducted in 2012. The 2018 iteration has been redesigned and modernized to increase international comparability, answer government policy-relevant questions, and measure a wider range of online activities, given the rapid pace at which the Internet has evolved. The 2018 CIUS aims to measure the impact of digital technologies on the lives of Canadians. Information gathered will help to better understand how individuals use the Internet, including intensity of use, demand for online activities and online interactions. The CIUS examines, use of online government services, use of social networking websites or apps, smartphone use, digital skills, e-commerce, online work, and security, privacy and trust as it relates to the Internet. Collected data is used to inform evidence-based policymaking, research and program development, and provide internationally comparable statistics on the use of digital technologies. The 2018 iteration of the CIUS is sponsored by Innovation, Science and Economic Development Canada (ISED). Numerous other government departments also provided input during the questionnaire content development phase.
This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Abstract copyright UK Data Service and data collection copyright owner.
The Opinions and Lifestyle Survey (OPN) is an omnibus survey that collects data from respondents in Great Britain. Information is gathered on a range of subjects, commissioned both internally by the Office for National Statistics (ONS) and by external clients (other government departments, charities, non-profit organisations and academia).
One individual respondent, aged 16 or over, is selected from each sampled private household to answer questions. Data are gathered on the respondent, their family, address, household, income and education, plus responses and opinions on a variety of subjects within commissioned modules. Each regular OPN survey consists of two elements. Core questions, covering demographic information, are asked together with non-core questions that vary depending on the module(s) fielded.
The OPN collects timely data for research and policy analysis evaluation on the social impacts of recent topics of national importance, such as the coronavirus (COVID-19) pandemic and the cost of living. The OPN has expanded to include questions on other topics of national importance, such as health and the cost of living.
For more information about the survey and its methodology, see the gov.uk OPN Quality and Methodology Information (QMI) webpage.
Changes over time
Up to March 2018, the OPN was conducted as a face-to-face survey. From April 2018 to November 2019, the OPN changed to a mixed-mode design (online first with telephone interviewing where necessary). Mixed-mode collection allows respondents to complete the survey more flexibly and provides a more cost-effective service for module customers.
In March 2020, the OPN was adapted to become a weekly survey used to collect data on the social impacts of the coronavirus (COVID-19) pandemic on the lives of people of Great Britain. These data are held under Secure Access conditions in SN 8635, ONS Opinions and Lifestyle Survey, 2019-2023: Secure Access. (See below for information on other Secure Access OPN modules.)
From August 2021, as coronavirus (COVID-19) restrictions were lifted across Great Britain, the OPN moved to fortnightly data collection, sampling around 5,000 households in each survey wave to ensure the survey remained sustainable.
Secure Access OPN modules
Besides SN 8635 (which includes the COVID-19 Module), other Secure Access OPN data includes sensitive modules run at various points from 1997-2019, including Census religion (SN 8078), cervical cancer screening (SN 8080), contact after separation (SN 8089), contraception (SN 8095), disability (SNs 8680 and 8096), general lifestyle (SN 8092), illness and activity (SN 8094), and non-resident parental contact (SN 8093). See the individual studies for further details and information on how to apply to use them.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Canadian Internet use survey, Internet use at home, by sex and government on-line (GOL) activity
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This data provides estimates of Internet, broadband, and mobile use at the subnational level from 1997-2014. While the U.S. Bureau of the Census has collected data on Internet use over the years, estimates below the state level did not exist until the introduction of the new American Community Survey in 2013. The datasets here fill these gaps with estimates over time for cities, counties, metropolitan areas and states. They also provide demographic breakdowns for the 2013 and 2014 American Community Survey data, beyond what is available on the census website. The datasets can be used to draw comparisons across geographic locations and across time, to track inequality, change, and the impact of Internet use. Collectively, they show major differences across cities, as well as between urban and rural counties. Time series data indicate the flattening of growth in recent years, leading to the persistence of inequalities across places and demographic groups. Multilevel models are used to estimate the percentage of Internet use across counties, principal cities, and metropolitan areas with the CPS and ACs data. A group of random intercept logistic regressions (a type of multilevel model) are constructed for each of the Internet-related variables, namely, home Internet access, home broadband, mobile Internet, and fully-connected household (with broadband and mobile). Estimates are based on the U.S. Bureau of the Census Current Population Survey data for 1997, 2998, 200, 2001, 2003, 2007, 2009, 2010, 2011, and 2012 and the U.S. Bureau of the Census American Community Survey 2013 and 2014, with estimates for missing years imputed via linear interpolation. Estimates for home Internet access are available for 1997-2014, home broadband use for 2000-2014, and mobile use and fully-connected Internet use for 2011-2014. Data available for different geographies is described below. Current Population Survey Data, 1997-2012: Internet use time series, three-year averages, time series for rate of change in Internet use, three-year averages for the rate of change, and yearly summary statistics are available for approximately 330 counties (with some variation over years), the 50 largest Metropolitan Statistical Areas (MSAs), principal cities in the 50 largest MSAs, and the 50 states. American Community Survey Data, 2013-2014: Using Summary Tables of the American Community Survey available in FactFinder, estimates for home Internet access and home broadband are provided by race, ethnicity, education, age, and employment status for 50 states, 817 counties, 381 MSAs, 383 principal cities in 2013 and 387 principal cities in 2014. Using microdata, estimates are developed for home Internet access, home broadband, mobile Internet, and fully connected households broken down by race, ethnicity, education, age, family income, and language skill. The microdata estimates are available for 50 states, 417 counties, 260 MSAs and 102 principal cities in 2013. See Codebook for a more complete description of the datasets, data sources, survey questions, and methods. See the Center for Policy Informatics at Arizona State University website at policyinformatics.asu.edu/broadband-data-portal/home for visualization (maps and graphs) and for further information about this project.
https://www.icpsr.umich.edu/web/ICPSR/studies/3045/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3045/terms
Data are provided in this collection on labor force activity for the week prior to the survey. Comprehensive data are available on the employment status, occupation, and industry of persons 15 years old and older. Also shown are personal characteristics such as age, sex, race, marital status, veteran status, household relationship, educational background, and Hispanic origin. This file also contains information on computer and Internet usage for persons 3 years old and older, including whether there was a computer in the household, if anyone in the household used the Internet, and whether anyone in the household used the Internet for e-mail.
The 2022 CIUS aims to measure the impact of digital technologies on the lives of Canadians. Information gathered will help to better understand how individuals use the Internet, including intensity of use, demand for online activities and online interactions. The CIUS examines, use of online government services, use of social networking websites or apps, smartphone use, digital skills, e-commerce, online work, and security, privacy and trust as it relates to the Internet. The 2022 iteration has been updated to collect data on information sharing online, harmful content online, digital credentials, cryptocurrencies, Artificial Intelligence and working in the Gig Economy. The survey is built off the previous iterations of the CIUS conducted in 2018 and 2020.