https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)
Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)
Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.
Pursuant to Local Laws 126, 127, and 128 of 2016, certain demographic data is collected voluntarily and anonymously by persons voluntarily seeking social services. This data can be used by agencies and the public to better understand the demographic makeup of client populations and to better understand and serve residents of all backgrounds and identities. The data presented here has been collected through either electronic form or paper surveys offered at the point of application for services. These surveys are anonymous. Each record represents an anonymized demographic profile of an individual applicant for social services, disaggregated by response option, agency, and program. Response options include information regarding ancestry, race, primary and secondary languages, English proficiency, gender identity, and sexual orientation. Idiosyncrasies or Limitations: Note that while the dataset contains the total number of individuals who have identified their ancestry or languages spoke, because such data is collected anonymously, there may be instances of a single individual completing multiple voluntary surveys. Additionally, the survey being both voluntary and anonymous has advantages as well as disadvantages: it increases the likelihood of full and honest answers, but since it is not connected to the individual case, it does not directly inform delivery of services to the applicant. The paper and online versions of the survey ask the same questions but free-form text is handled differently. Free-form text fields are expected to be entered in English although the form is available in several languages. Surveys are presented in 11 languages. Paper Surveys 1. Are optional 2. Survey taker is expected to specify agency that provides service 2. Survey taker can skip or elect not to answer questions 3. Invalid/unreadable data may be entered for survey date or date may be skipped 4. OCRing of free-form tet fields may fail. 5. Analytical value of free-form text answers is unclear Online Survey 1. Are optional 2. Agency is defaulted based on the URL 3. Some questions must be answered 4. Date of survey is automated
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The questions list for questionnaire – Demographics and basic work characteristics of survey respondents
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Science in (Higher) Education – data of the February 2017 survey
This data set contains:
Survey structure
The survey includes 24 questions and its structure can be separated in five major themes: material used in courses (5), OER awareness, usage and development (6), collaborative tools used in courses (2), assessment and participation options (5), demographics (4). The last two questions include an open text questions about general issues on the topics and singular open education experiences, and a request on forwarding the respondent’s e-mail address for further questionings. The online survey was created with Limesurvey[1]. Several questions include filters, i.e. these questions were only shown if a participants did choose a specific answer beforehand ([n/a] in Excel file, [.] In SPSS).
Demographic questions
Demographic questions asked about the current position, the discipline, birth year and gender. The classification of research disciplines was adapted to general disciplines at German higher education institutions. As we wanted to have a broad classification, we summarised several disciplines and came up with the following list, including the option “other” for respondents who do not feel confident with the proposed classification:
The current job position classification was also chosen according to common positions in Germany, including positions with a teaching responsibility at higher education institutions. Here, we also included the option “other” for respondents who do not feel confident with the proposed classification:
We chose to have a free text (numerical) for asking about a respondent’s year of birth because we did not want to pre-classify respondents’ age intervals. It leaves us options to have different analysis on answers and possible correlations to the respondents’ age. Asking about the country was left out as the survey was designed for academics in Germany.
Remark on OER question
Data from earlier surveys revealed that academics suffer confusion about the proper definition of OER[2]. Some seem to understand OER as free resources, or only refer to open source software (Allen & Seaman, 2016, p. 11). Allen and Seaman (2016) decided to give a broad explanation of OER, avoiding details to not tempt the participant to claim “aware”. Thus, there is a danger of having a bias when giving an explanation. We decided not to give an explanation, but keep this question simple. We assume that either someone knows about OER or not. If they had not heard of the term before, they do not probably use OER (at least not consciously) or create them.
Data collection
The target group of the survey was academics at German institutions of higher education, mainly universities and universities of applied sciences. To reach them we sent the survey to diverse institutional-intern and extern mailing lists and via personal contacts. Included lists were discipline-based lists, lists deriving from higher education and higher education didactic communities as well as lists from open science and OER communities. Additionally, personal e-mails were sent to presidents and contact persons from those communities, and Twitter was used to spread the survey.
The survey was online from Feb 6th to March 3rd 2017, e-mails were mainly sent at the beginning and around mid-term.
Data clearance
We got 360 responses, whereof Limesurvey counted 208 completes and 152 incompletes. Two responses were marked as incomplete, but after checking them turned out to be complete, and we added them to the complete responses dataset. Thus, this data set includes 210 complete responses. From those 150 incomplete responses, 58 respondents did not answer 1st question, 40 respondents discontinued after 1st question. Data shows a constant decline in response answers, we did not detect any striking survey question with a high dropout rate. We deleted incomplete responses and they are not in this data set.
Due to data privacy reasons, we deleted seven variables automatically assigned by Limesurvey: submitdate, lastpage, startlanguage, startdate, datestamp, ipaddr, refurl. We also deleted answers to question No 24 (email address).
References
Allen, E., & Seaman, J. (2016). Opening the Textbook: Educational Resources in U.S. Higher Education, 2015-16.
First results of the survey are presented in the poster:
Heck, Tamara, Blümel, Ina, Heller, Lambert, Mazarakis, Athanasios, Peters, Isabella, Scherp, Ansgar, & Weisel, Luzian. (2017). Survey: Open Science in Higher Education. Zenodo. http://doi.org/10.5281/zenodo.400561
Contact:
Open Science in (Higher) Education working group, see http://www.leibniz-science20.de/forschung/projekte/laufende-projekte/open-science-in-higher-education/.
[1] https://www.limesurvey.org
[2] The survey question about the awareness of OER gave a broad explanation, avoiding details to not tempt the participant to claim “aware”.
The Turkey Demographic and Health Survey (DHS) 2008 has been conducted by the Haccettepe University Institute of Population Studies in collaboration with the Ministry of health General Directorate of Mother and Child Health and Family Planning and Undersecretary of State Planning Organization. The Turkey Demographic and Health Survey 2008 has been financed the scientific and Technological research Council of Turkey (TUBITAK) under the support program for Research Projects of Public Institutions.
The primary objective of the Turkey DHS 2008 is to provide data on fertility, contraceptive methods, maternal and child health. Detailed information on these issues is obtained through questionnaires, filled by face-to face interviews with ever-married women in reproductive ages (15-49).
Another important objective of the survey, with aims to contribute to the knowledge on population and health as well, is to maintain the flow of information for the related organizations in Turkey on the Turkish demographic structure and change in the absence of reliable vital registration system and ascertain the continuity of data on demographic and health necessary for sustainable development in the absence of a reliable vital registration system. In terms of survey methodology and content, the Turkey DHS 2008 is comparable with the previous demographic surveys in Turkey (MEASURE DHS+).
National
Sample survey data
Face-to-face
Two main types of questionnaires were used to collect the TDHS-2008 data: a) The Household Questionnaire; b) The Individual Questionnaire for Ever-Married Women of Reproductive Ages.
The contents of these questionnaires were based on the DHS Model "A" Questionnaire, which was designed for the DHS program for use in countries with high contraceptive prevalence. Additions, deletions and modifications were made to the DHS model questionnaire in order to collect information particularly relevant to Turkey. Attention also was paid to ensuring the comparability of the DHS-2008 findings with previous demographic surveys carried out by the Hacettepe Institute of Population Studies. In the process of designing the TDHS-2003 questionnaires, national and international population and health agencies were consulted for their comments.
a) The Household Questionnaire was used to enumerate all usual members of and visitors to the selected households and to collect information relating to the socioeconomic position of the households. In the first part of the Household Questionnaire, basic information was collected on the age, sex, educational attainment, recent migration and residential mobility, employment, marital status, and relationship to the head of household of each person listed as a household member or visitor. The objective of the first part of the Household Questionnaire was to obtain the information needed to identify women who were eligible for the individual interview as well as to provide basic demographic data for Turkish households. The second part of the Household Questionnaire included questions on never married women age 15-49, with the objective of collecting information on basic background characteristics of women in this age group. The third section was used to collect information on the welfare of the elderly people. The final section of the Household Questionnaire was used to collect information on housing characteristics, such as the number of rooms, the flooring material, the source of water, and the type of toilet facilities, and on the household's ownership of a variety of consumer goods. This section also incorporated a module that was only administered in Istanbul metropolitan households, on house ownership, use of municipal facilities and the like, as well as a module that was used to collect information, from one-half of households, on salt iodization. In households where salt was present, test kits were used to test whether the salt used in the household was fortified with potassium iodine or potassium iodate, i.e. whether salt was iodized.
b) The Individual Questionnaire for ever-married women obtained information on the following subjects:
- Background characteristics
- Reproduction
- Marriage
- Knowledge and use of family planning
- Maternal care and breastfeeding
- Immunization and health
- Fertility preferences
- Husband's background
- Women's work and status
- Sexually transmitted diseases and AIDS
- Maternal and child anthropometry.
The questionnaires were returned to the Hacettepe Institute of Population Studies by the fieldwork teams for data processing as soon as interviews were completed in a province. The office editing staff checked that the questionnaires for all the selected households and eligible respondents were returned from the field.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The STAMINA study examined the nutritional risks of low-income peri-urban mothers, infants and young children, and households in Peru during the COVID-19 pandemic. The study was designed to capture information through three, repeated cross-sectional surveys at approximately 6 month intervals over an 18 month period, starting in December 2020. The surveys were carried out by telephone in November-December 2020, July-August 2021 and in February-April 2022. The third survey took place over a longer period to allow for a household visit after the telephone interview.The study areas were Manchay (Lima) and Huánuco district in the Andean highlands (~ 1900m above sea level).In each study area, we purposively selected the principal health centre and one subsidiary health centre. Peri-urban communities under the jurisdiction of these health centres were then selected to participate. Systematic random sampling was employed with quotas for IYC age (6-11, 12-17 and 18-23 months) to recruit a target sample size of 250 mother-infant pairs for each survey. .Data collected included: household socio-demographic characteristics; infant and young child feeding practices (IYCF), child and maternal qualitative 24-hour dietary recalls/7 day food frequency questionnaires, household food insecurity experience measured using the validated Food Insecurity Experience Scale (FIES) survey module (Cafiero, Viviani, & Nord, 2018), and maternal mental health.In addition, questions that assessed the impact of COVID-19 on households including changes in employment status, adaptations to finance, sources of financial support, household food insecurity experience as well as access to, and uptake of, well-child clinics and vaccination health services were included.This folder includes the dataset and dictionary of variables for survey 1 (English only).The survey questionnaire for survey 1 is available at 10.17028/rd.lboro.16825507.
The City of Norfolk is committed to using data to inform decisions and allocate resources. An important source of data is input from residents about their priorities and satisfaction with the services we provide. Norfolk last conducted a citywide survey of residents in 2022.
To provide up-to-date information regarding resident priorities and satisfaction, Norfolk contracted with ETC Institute to conduct a survey of residents. This survey was conducted in May and June 2024; surveys were sent via the U.S. Postal Service, and respondents were given the choice of responding by mail or online. This survey represents a random and statistically valid sample of residents from across the city, including each Ward. ETC Institute monitored responses and followed up to ensure all sections of the city were represented. Additionally, an opportunity was provided for residents not included in the random sample to take the survey and express their views. This dataset includes all random sample survey data including demographic information; it excludes free-form comments to protect privacy. It is grouped by Question Category, Question, Response, Demographic Question, and Demographic Question Response. This dataset will be updated every two years.
The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.
The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.
The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.
National
Sample survey data
The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.
The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.
The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).
The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.
The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.
The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.
A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sexual, romantic, and related orientations across all institutions, based on the queered survey (n = 1932).
The Bangladesh Demographic and Health Survey (BDHS) is the first of this kind of study conducted in Bangladesh. It provides rapid feedback on key demographic and programmatic indicators to monitor the strength and weaknesses of the national family planning/MCH program. The wealth of information collected through the 1993-94 BDHS will be of immense value to the policymakers and program managers in order to strengthen future program policies and strategies.
The BDHS is intended to serve as a source of population and health data for policymakers and the research community. In general, the objectives of the BDHS are to: - asses the overall demographic situation in Bangladesh, - assist in the evaluation of the population and health programs in Bangladesh, and - advance survey methodology.
More specifically, the BDHS was designed to: - provide data on the family planning and fertility behavior of the Bangladesh population to evaluate the national family planning programs, - measure changes in fertility and contraceptive prevalence and, at the same time, study the factors which affect these changes, such as marriage patterns, urban/rural residence, availability of contraception, breastfeeding patterns, and other socioeconomic factors, and - examine the basic indicators of maternal and child health in Bangladesh.
National
Sample survey data
Bangladesh is divided into five administrative divisions, 64 districts (zillas), and 489 thanas. In rural areas, thanas are divided into unions and then mauzas, an administrative land unit. Urban areas are divided into wards and then mahallas. The 1993-94 BDHS employed a nationally-representative, two-stage sample. It was selected from the Integrated Multi-Purpose Master Sample (IMPS), newly created by the Bangladesh Bureau of Statistics. The IMPS is based on 1991 census data. Each of the five divisions was stratified into three groups: 1) statistical metropolitan areas (SMAs) 2) municipalities (other urban areas), and 3) rural areas. In rural areas, the primary sampling unit was the mauza, while in urban areas, it was the mahalla. Because the primary sampling units in the IMPS were selected with probability proportional to size from the 1991 census frame, the units for the BDHS were sub-selected from the IMPS with equal probability to make the BDHS selection equivalent to selection with probability proportional to size. A total of 304 primary sampling units were selected for the BDHS (30 in SMAs, 40 in municipalities, and 234 in rural areas), out of the 372 in the IMPS. Fieldwork in three sample points was not possible, so a total of 301 points were covered in the survey.
Since one objective of the BDHS is to provide separate survey estimates for each division as well as for urban and rural areas separately, it was necessary to increase the sampling rate for Barisal Division und for municipalities relative to the other divisions, SMAs, and rural areas. Thus, the BDHS sample is not self-weighting and weighting factors have been applied to the data in this report.
After the selection of the BDHS sample points, field staffs were trained by Mitra and Associates and conducted a household listing operation in September and October 1993. A systematic sample of households was then selected from these lists, with an average "take" of 25 households in the urban clusters and 37 households in rural clusters. Every second household was identified as selected for the husband's survey, meaning that, in addition to interviewing all ever-married women age 10-49, interviewers also interviewed the husband of any woman who was successfully interviewed. It was expected that the sample would yield interviews with approximately 10,000 ever-married women age 10-49 and 4,200 of their husbands.
Note: See detailed in APPENDIX A of the survey final report.
Data collected for women 10-49, indicators calculated for women 15-49. A total of 304 primary sampling units were selected, but fieldwork in 3 sample points was not possible.
Face-to-face
Four types of questionnaires were used for the BDHS: a Household Questionnaire, a Women's Questionnaire, a Husbands' Questionnaire, and a Service Availability Questionnaire. The contents of these questionnaires were based on the DHS Model A Questionnaire, which is designed for use in countries with relatively high levels of contraceptive use. Additions and modifications to the model questionnaires were made during a series of meetings with representatives of various organizations, including the Asia Foundation, the Bangladesh Bureau of Statistics, the Cambridge Consulting Corporation, the Family Planning Association of Bangladesh, GTZ, the International Centre for Diarrhoeal Disease Research (ICDDR,B), Pathfinder International, Population Communications Services, the Population Council, the Social Marketing Company, UNFPA, UNICEF, University Research Corporation/Bangladesh, and the World Bank. The questionnaires were developed in English and then translated into and printed in Bangla.
The Household Questionnaire was used to list all the usual members and visitors of selected households. Some basic information was collected on the characteristics of each person listed, including his/her age, sex, education, and relationship to the head of the household. The main purpose of the Household Questionnaire was to identify women and men who were eligible for individual interview. In addition, information was collected about the dwelling itself, such as the source of water, type of toilet facilities, materials used to construct the house, and ownership of various consumer goods.
The Women's Questionnaire was used to collect information from ever-married women age 10-49. These women were asked questions on the following topics: - Background characteristics (age, education, religion, etc.), - Reproductive history, - Knowledge and use of family planning methods, - Antenatal and delivery care, - Breastfeeding and weaning practices, - Vaccinations and health of children under age three, - Marriage, - Fertility preferences, and - Husband's background and respondent's work.
The Husbands' Questionnaire was used to interview the husbands of a subsample of women who were interviewed. The questionnaire included many of the same questions as the Women's Questionnaire, except that it omitted the detailed birth history, as well as the sections on maternal care, breastfeeding and child health.
The Service Availability Questionnaire was used to collect information on the family planning and health services available in and near the sampled areas. It consisted of a set of three questionnaires: one to collect data on characteristics of the community, one for interviewing family welfare visitors and one for interviewing family planning field workers, whether government or non-governent supported. One set of service availability questionnaires was to be completed in each cluster (sample point).
All questionnaires for the BDHS were returned to Dhaka for data processing at Mitra and Associates. The processing operation consisted of office editing, coding of open-ended questions, data entry, and editing inconsistencies found by the computer programs. One senior staff member, 1 data processing supervisor, questionnaire administrator, 2 office editors, and 5 data entry operators were responsible for the data processing operation. The data were processed on five microcomputers. The DHS data entry and editing programs were written in ISSA (Integrated System for Survey Analysis). Data processing commenced in early February and was completed by late April 1994.
A total of 9,681 households were selected for the sample, of which 9,174 were successfully interviewed. The shortfall is primarily due to dwellings that were vacant, or in which the inhabitants had left for an extended period at the time they were visited by the interviewing teams. Of the 9,255 households that were occupied, 99 percent were successfully interviewed. In these households, 9,900 women were identified as eligible for the individual interview and interviews were completed for 9,640 or 97 percent of these. In one-half of the households that were selected for inclusion in the husbands' survey, 3,874 eligible husbands were identified, of which 3,284 or 85 percent were interviewed.
The principal reason for non-response among eligible women and men was failure to find them at home despite repeated visits to the household. The refusal rate was very low (less than one-tenth of one percent among women and husbands). Since the main reason for interviewing husbands was to match the information with that from their wives, survey procedures called for interviewers not to interview husbands of women who were not interviewed. Such cases account for about one-third of the non-response among husbands. Where husbands and wives were both interviewed, they were interviewed simultaneously but separately.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the survey final report.
The estimates from a sample survey are affected by two types of errors: non-sampling errors and sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions
https://www.icpsr.umich.edu/web/ICPSR/studies/29646/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/29646/terms
This data collection is comprised of responses from the March and April installments of the 2008 Current Population Survey (CPS). Both the March and April surveys used two sets of questions, the basic CPS and a separate supplement for each month.The CPS, administered monthly, is a labor force survey providing current estimates of the economic status and activities of the population of the United States. Specifically, the CPS provides estimates of total employment (both farm and nonfarm), nonfarm self-employed persons, domestics, and unpaid helpers in nonfarm family enterprises, wage and salaried employees, and estimates of total unemployment.In addition to the basic CPS questions, respondents were asked questions from the March supplement, known as the Annual Social and Economic (ASEC) supplement. The ASEC provides supplemental data on work experience, income, noncash benefits, and migration. Comprehensive work experience information was given on the employment status, occupation, and industry of persons 15 years old and older. Additional data for persons 15 years old and older are available concerning weeks worked and hours per week worked, reason not working full time, total income and income components, and place of residence on March 1, 2007. The March supplement also contains data covering nine noncash income sources: food stamps, school lunch program, employer-provided group health insurance plan, employer-provided pension plan, personal health insurance, Medicaid, Medicare, CHAMPUS or military health care, and energy assistance. Questions covering training and assistance received under welfare reform programs, such as job readiness training, child care services, or job skill training were also asked in the March supplement.The April supplement, sponsored by the Department of Health and Human Services, queried respondents on the economic situation of persons and families for the previous year. Moreover, all household members 15 years of age and older that are a biological parent of children in the household that have an absent parent were asked detailed questions about child support and alimony. Information regarding child support was collected to determine the size and distribution of the population with children affected by divorce or separation, or other relationship status change. Moreover, the data were collected to better understand the characteristics of persons requiring child support, and to help develop and maintain programs designed to assist in obtaining child support. These data highlight alimony and child support arrangements made at the time of separation or divorce, amount of payments actually received, and value and type of any property settlement.The April supplement data were matched to March supplement data for households that were in the sample in both March and April 2008. In March 2008, there were 4,522 household members eligible, of which 1,431 required imputation of child support data. When matching the March 2008 and April 2008 data sets, there were 170 eligible people on the March file that did not match to people on the April file. Child support data for these 170 people were imputed. The remaining 1,261 imputed cases were due to nonresponse to the child support questions. Demographic variables include age, sex, race, Hispanic origin, marital status, veteran status, educational attainment, occupation, and income. Data on employment and income refer to the preceding year, although other demographic data refer to the time at which the survey was administered.
The Gallup Poll Social Series (GPSS) is a set of public opinion surveys designed to monitor U.S. adults' views on numerous social, economic, and political topics. The topics are arranged thematically across 12 surveys. Gallup administers these surveys during the same month every year and includes the survey's core trend questions in the same order each administration. Using this consistent standard allows for unprecedented analysis of changes in trend data that are not susceptible to question order bias and seasonal effects.
Introduced in 2001, the GPSS is the primary method Gallup uses to update several hundred long-term Gallup trend questions, some dating back to the 1930s. The series also includes many newer questions added to address contemporary issues as they emerge.
The dataset currently includes responses from up to and including 2025.
Gallup conducts one GPSS survey per month, with each devoted to a different topic, as follows:
January: Mood of the Nation
February: World Affairs
March: Environment
April: Economy and Finance
May: Values and Beliefs
June: Minority Rights and Relations (discontinued after 2016)
July: Consumption Habits
August: Work and Education
September: Governance
October: Crime
November: Health
December: Lifestyle (conducted 2001-2008)
The core questions of the surveys differ each month, but several questions assessing the state of the nation are standard on all 12: presidential job approval, congressional job approval, satisfaction with the direction of the U.S., assessment of the U.S. job market, and an open-ended measurement of the nation's "most important problem." Additionally, Gallup includes extensive demographic questions on each survey, allowing for in-depth analysis of trends.
Interviews are conducted with U.S. adults aged 18 and older living in all 50 states and the District of Columbia using a dual-frame design, which includes both landline and cellphone numbers. Gallup samples landline and cellphone numbers using random-digit-dial methods. Gallup purchases samples for this study from Survey Sampling International (SSI). Gallup chooses landline respondents at random within each household based on which member had the next birthday. Each sample of national adults includes a minimum quota of 70% cellphone respondents and 30% landline respondents, with additional minimum quotas by time zone within region. Gallup conducts interviews in Spanish for respondents who are primarily Spanish-speaking.
Gallup interviews a minimum of 1,000 U.S. adults aged 18 and older for each GPSS survey. Samples for the June Minority Rights and Relations survey are significantly larger because Gallup includes oversamples of Blacks and Hispanics to allow for reliable estimates among these key subgroups.
Gallup weights samples to correct for unequal selection probability, nonresponse, and double coverage of landline and cellphone users in the two sampling frames. Gallup also weights its final samples to match the U.S. population according to gender, age, race, Hispanic ethnicity, education, region, population density, and phone status (cellphone only, landline only, both, and cellphone mostly).
Demographic weighting targets are based on the most recent Current Population Survey figures for the aged 18 and older U.S. population. Phone status targets are based on the most recent National Health Interview Survey. Population density targets are based on the most recent U.S. Census.
The year appended to each table name represents when the data was last updated. For example, January: Mood of the Nation - 2025** **has survey data collected up to and including 2025.
For more information about what survey questions were asked over time, see the Supporting Files.
Data access is required to view this section.
The 2017-18 Albania Demographic and Health Survey (2017-18 ADHS) is a nationwide survey with a nationally representative sample of approximately 17,160 households. All women age 15-49 who are usual residents of the selected households or who slept in the households the night before the survey were eligible for the survey. Women 50-59 years old were interviewed with an abbreviated questionnaire that only covered background characteristics and questions related to noncommunicable diseases.
The primary objective of the 2017-2018 ADHS was to provide estimates of basic sociodemographic and health indicators for the country as a whole and the twelve prefectures. Specifically, the survey collected information on basic characteristics of the respondents, fertility, family planning, nutrition, maternal and child health, knowledge of HIV behaviors, health-related lifestyle, and noncommunicable diseases (NCDs). The information collected in the ADHS will assist policymakers and program managers in evaluating and designing programs and in developing strategies for improving the health of the country’s population.
The sample for the 2017-18 ADHS was designed to produce representative results for the country as a whole, for urban and rural areas separately, and for each of the twelve prefectures known as Berat, Diber, Durres, Elbasan, Fier, Gjirokaster, Korce, Kukes, Lezhe, Shkoder, Tirana, and Vlore.
National coverage
The survey covered all de jure household members (usual residents), children age 0-4 years, women age 15-49 years and men age 15-59 years resident in the household.
Sample survey data [ssd]
The ADHS surveys were done on a nationally representative sample that was representative at the prefecture level as well by rural and urban areas. A total of 715 enumeration areas (EAs) were selected as sample clusters, with probability proportional to each prefecture's population size. The sample design called for 24 households to be randomly selected in every sampling cluster, regardless of its size, but some of the EAs contained fewer than 24 households. In these EAs, all households were included in the survey. The EAs are considered the sample's primary sampling unit (PSU). The team of interviewers updated and listed the households in the selected EAs. Upon arriving in the selected clusters, interviewers spent the first day of fieldwork carrying out an exhaustive enumeration of households, recording the name of each head of household and the location of the dwelling. The listing was done with tablet PCs, using a digital listing application. When interviewers completed their respective sections of the EA, they transferred their files into the supervisor's tablet PC, where the information was automatically compiled into a single file in which all households in the EA were entered. The software and field procedures were designed to ensure there were no duplications or omissions during the household listing process. The supervisor used the software in his tablet to randomly select 24 households for the survey from the complete list of households.
All women age 15-49 who were usual residents of the selected households or who slept in the households the night before the survey were eligible for individual interviews with the full Woman's Questionnaire. Women age 50-59 were also interviewed, but with an abbreviated questionnaire that left out all questions related to reproductive health and mother and child health. A 50% subsample was selected for the survey of men. Every man age 15-59 who was a usual resident of or had slept in the household the night before the survey was eligible for an individual interview in these households.
For further details on sample design, see Appendix A of the final report.
Face-to-face [f2f]
Four questionnaires were used in the ADHS, one for the household and others for women age 15-49, for women age 50-59, and for men age 15-59. In addition to these four questionnaires, a form was used to record the vaccination information for children born in the 5 years preceding the survey whose mothers had been successfully interviewed.
Supervisors sent the accumulated fieldwork data to INSTAT’s central office via internet every day, unless for some reason the teams did not have access to the internet at the time. The data received from the various teams were combined into a single file, which was used to produce quality control tables, known as field check tables. These tables reveal systematic errors in the data such as omission of potential respondents, age displacement, inaccurate recording of date of birth and age at death, inaccurate measurement of height and weight, and other key indicators of data quality. These tables were reviewed and evaluated by ADHS senior staff, which in turn provided feedback and advice to the teams in the field.
A total of 16,955 households were selected for the sample, of which 16,634 were occupied. Of the occupied households, 15,823 were successfully interviewed, which represents a response rate of 95%. In the interviewed households, 11,680 women age 15-49 were identified for individual interviews. Interviews were completed for 10,860 of these women, yielding a response rate of 93%. In the same households, 4,289 women age 50-59 were identified, of which 4,140 were successfully interviewed, yielding a 97% response rate. In the 50% subsample of households selected for the male survey, 7,103 eligible men age 15-59 were identified, of which 6,142 were successfully interviewed, yielding a response rate of 87%.
Response rates were higher in rural than in urban areas, which is a pattern commonly found in household surveys because in urban areas more people work and carry out activities outside the home.
The estimates from a sample survey are affected by two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2017-18 Albania Demographic and Health Survey (ADHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2017-18 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2017-18 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS, using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in Appendix B of the survey final report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
See details of the data quality tables in Appendix C of the survey final report.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
The Annual Population Survey (APS) is a major survey series, which aims to provide data that can produce reliable estimates at local authority level. Key topics covered in the survey include education, employment, health and ethnicity. The APS comprises key variables from the Labour Force Survey (LFS) (held at the UK Data Archive under GN 33246), all of its associated LFS boosts and the APS boost. Thus, the APS combines results from five different sources: the LFS (waves 1 and 5); the English Local Labour Force Survey (LLFS), the Welsh Labour Force Survey (WLFS), the Scottish Labour Force Survey (SLFS) and the Annual Population Survey Boost Sample (APS(B) - however, this ceased to exist at the end of December 2005, so APS data from January 2006 onwards will contain all the above data apart from APS(B)). Users should note that the LLFS, WLFS, SLFS and APS(B) are not held separately at the UK Data Archive. For further detailed information about methodology, users should consult the Labour Force Survey User Guide, selected volumes of which have been included with the APS documentation for reference purposes (see 'Documentation' table below).
The APS aims to provide enhanced annual data for England, covering a target sample of at least 510 economically active persons for each Unitary Authority (UA)/Local Authority District (LAD) and at least 450 in each Greater London Borough. In combination with local LFS boost samples such as the WLFS and SLFS, the survey provides estimates for a range of indicators down to Local Education Authority (LEA) level across the United Kingdom.
APS Well-Being data
Since April 2011, the APS has included questions about personal and subjective well-being. The responses to these questions have been made available as annual sub-sets to the APS Person level files. It is important to note that the size of the achieved sample of the well-being questions within the dataset is approximately 165,000 people. This reduction is due to the well-being questions being only asked of persons aged 16 and above, who gave a personal interview and proxy answers are not accepted. As a result some caution should be used when using analysis of responses to well-being questions at detailed geography areas and also in relation to any other variables where respondent numbers are relatively small. It is recommended that for lower level geography analysis that the variable UACNTY09 is used.
As well as annual datasets, three-year pooled datasets are available. When combining multiple APS datasets together, it is important to account for the rotational design of the APS and ensure that no person appears more than once in the multiple year dataset. This is because the well-being datasets are not designed to be longitudinal e.g. they are not designed to track individuals over time/be used for longitudinal analysis. They are instead cross-sectional, and are designed to use a cross-section of the population to make inferences about the whole population. For this reason, the three-year dataset has been designed to include only a selection of the cases from the individual year APS datasets, chosen in such a way that no individuals are included more than once, and the cases included are approximately equally spread across the three years. Further information is available in the 'Documentation' section below.
Secure Access APS Well-Being data
Secure Access datasets for the APS Well-Being include additional variables not included in either the standard End User Licence (EUL) versions (see under GN 33357) or the Special Licence (SL) access versions (see under GN 33376). Extra variables that typically can be found in the Secure Access version but not in the EUL or SL versions relate to:
The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
This survey consisted of 4 surveys covering a total of eighteen different services of Wake County. The study attempted to measure resident satisfaction with public services provided by the county. A set of common core questions plus demographics were contain in each survey.
The 2005 Armenia Demographic and Health Survey (2005 ADHS) is the second in a series of nationally representative sample surveys designed to provide information on population and health issues in Armenia. As in the 2000 ADHS, the primary goal of the 2005 survey was to develop a single integrated set of demographic and health data pertaining to the population of the Republic of Armenia. In addition to integrating measures of reproductive, child, and adult health, another feature of the 2005 ADHS survey is that the majority of data are presented at the marz (region) level.
The 2005 ADHS was conducted by the National Statistical Service (NSS) and the MOH of the Republic of Armenia from September through December 2005. ORC Macro provided technical support for the survey through the MEASURE DHS project. MEASURE DHS is a worldwide project, sponsored by the United States Agency for International Development (USAID), with a mandate to assist countries in obtaining information on key population and health indicators. USAID/Armenia provided funding for the survey, while the United Nations Children’s Fund (UNICEF)/Armenia and the United Nations Population Fund (UNFPA)/Armenia supported the survey through in-kind contributions.
The 2005 ADHS collected national- and regional-level data on fertility and contraceptive use, maternal and child health, adult health, and HIV/AIDS and other sexually transmitted diseases. The survey obtained detailed information on these issues from women of reproductive age and, on certain topics, from men as well. Data are presented by marz wherever sample size permits.
The 2005 ADHS results are intended to provide the information needed to evaluate existing social programs and to design new strategies for improving the health of and health services for the people of Armenia. The 2005 ADHS also contributes to the growing international database on demographic and health-related variables.
National
Sample survey data
The sample was designed to permit detailed analysis-including the estimation of rates of fertility, infant/child mortality, and abortion-for the national level, for Yerevan, and for total urban and total rural areas separately. Many indicators can also be estimated at the regional (marz) level.
A representative probability sample of 7,565 households was selected for the 2005 ADHS sample. The sample was selected in two stages. In the first stage, 308 clusters were selected from a list of enumeration areas in a subsample from a master sample that was designed from the 2001 Population Census. In the second stage, a complete listing of households was carried out in each selected cluster. Households were then systematically selected for participation in the survey.
All women age 15-49 who were either permanent residents of the households in the 2005 ADHS sample or visitors present in the household on the night before the survey were eligible to be interviewed. Interviews were completed with 6,566 women. In addition, in a subsample of one-third of all the households selected for the survey, all men age 15-49 were eligible to be interviewed if they were either permanent residents or visitors present in the household on the night before the survey. Interviews were completed with 1,447 men.
Note: See detailed summarized sample implementation tables in APPENDIX A of the report which is presented in this documentation.
Face-to-face [f2f]
Three questionnaires were used in the 2005 ADHS: a Household Questionnaire, a Women’s Questionnaire, and a Men’s questionnaire. The Household and Individual Questionnaires were based on model survey instruments developed in the MEASURE DHS program and on questionnaires used in the 2000 ADHS. The model questionnaires were adapted for use by experts from the NSS and MOH. Input was also sought from a number of non-governmental organizations. The questionnaires were developed in English and translated into Armenian. The Household and Individual Questionnaires were pretested in June 2005.
The Household Questionnaire was used to list all usual members of and visitors to the selected households and to collect information on the socioeconomic status of the household. The first part of the Household Questionnaire collected information on the age, sex, educational attainment, and relationship to the household head of each household member or visitor. This information provides basic demographic data for Armenian households. It also was used to identify the women and men who were eligible for the individual interview (i.e., women and men age 15-49). In the second part of the Household Questionnaire, there were questions on housing characteristics (e.g., flooring material, source of water, type of toilet facilities), on ownership of a variety of consumer goods, and other questions relating to the socioeconomic status of the household. In addition, the Household Questionnaire was used to record height and weight measurements of women, men, and children under age five; hemoglobin measurement of women and children under age five; and blood pressure measurement of women and men.
The Women’s Questionnaire obtained data from women age 15-49 on the following topics: • Background characteristics • Pregnancy history • Antenatal, delivery, and postnatal care • Knowledge, attitudes, and use of contraception • Reproductive and adult health • Health care utilization • Vaccinations, birth registration, and health of children under age five • Episodes of diarrhea and respiratory illness of children under age five • Breastfeeding and weaning practices • Marriage and recent sexual activity • Fertility preferences • Knowledge of and attitude toward HIV/AIDS and other sexually transmitted infections
The Men’s Questionnaire, administered to men age 15-49, focused on the following topics: • Background characteristics • Health and health care utilization • Marriage and recent sexual activity • Attitudes toward and use of condoms • Knowledge of and attitude toward HIV/AIDS and other sexually transmitted infections • Attitudes toward women’s status
A total of 7,565 households were selected for the sample, of which 7,003 were occupied at the time of fieldwork. The main reason for the difference is that some of the dwelling units that were occupied during the household listing operation were either vacant or the household was away for an extended period at the time of interviewing. Of the occupied households, 96 percent were successfully interviewed.
In these households, 6,773 women were identified as eligible for the individual interview, and interviews were completed with 97 percent of them. Of the 1,630 eligible men identified, 89 percent were successfully interviewed. Response rates are almost identical in urban and rural areas.
Note: See summarized response rates by residence (urban/rural) in Table 1.1 of the report which is presented this documentation.
Estimates derived from a sample survey are affected by two types of errors: 1) non-sampling errors, and 2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2005 Armenia DHS (2005 ADHS) to minimize this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2005 ADHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2005 ADHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use a more complex formula. The computer software used to calculate sampling errors for the 2005 ADHS is the sampling error module in ISSA (Integrated System for Survey Analysis). This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. Another approach, the Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
Note: See detailed
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Given that an estimated 0.6% of the U.S. population is transgender (trans) and that large health disparities for this population have been documented, government and research organizations are increasingly expanding measures of sex/gender to be trans inclusive. Options suggested for trans community surveys, such as expansive check-all-that-apply gender identity lists and write-in options that offer maximum flexibility, are generally not appropriate for broad population surveys. These require limited questions and a small number of categories for analysis. Limited evaluation has been undertaken of trans-inclusive population survey measures for sex/gender, including those currently in use. Using an internet survey and follow-up of 311 participants, and cognitive interviews from a maximum-diversity sub-sample (n = 79), we conducted a mixed-methods evaluation of two existing measures: a two-step question developed in the United States and a multidimensional measure developed in Canada. We found very low levels of item missingness, and no indicators of confusion on the part of cisgender (non-trans) participants for both measures. However, a majority of interview participants indicated problems with each question item set. Agreement between the two measures in assessment of gender identity was very high (K = 0.9081), but gender identity was a poor proxy for other dimensions of sex or gender among trans participants. Issues to inform measure development or adaptation that emerged from analysis included dimensions of sex/gender measured, whether non-binary identities were trans, Indigenous and cultural identities, proxy reporting, temporality concerns, and the inability of a single item to provide a valid measure of sex/gender. Based on this evaluation, we recommend that population surveys meant for multi-purpose analysis consider a new Multidimensional Sex/Gender Measure for testing that includes three simple items (one asked only of a small sub-group) to assess gender identity and lived gender, with optional additions. We provide considerations for adaptation of this measure to different contexts.
The National Health and Nutrition Examination Surveys (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The NHANES combines personal interviews and physical examinations, which focus on different population groups or health topics. These surveys have been conducted by the National Center for Health Statistics (NCHS) on a periodic basis from 1971 to 1994. In 1999, the NHANES became a continuous program with a changing focus on a variety of health and nutrition measurements designed to meet current and emerging concerns. The sample for the survey is selected to represent the U.S. population of all ages. Many of the NHANES 2001-2002 questions also were asked in NHANES II 1976-1980, Hispanic HANES 1982-1984, NHANES III 1988-1994. New questions were added to the survey based on recommendations from survey collaborators, NCHS staff, and other interagency work groups.
In the 2001-2002 wave, the NHANES includes more than 100 datasets. Most have been combined into three datasets for convenience. Each starts with the demographic dataset and includes datasets of a specific type.
1. National Health and Nutrition Examination Survey (NHANES), Demographic & Examination Data, 2001-2002 (the base of the Demographic dataset + all data from medical examinations).
2. National Health and Nutrition Examination Survey (NHANES), Demographic & Laboratory Data, 2001-2002 (the base of the Demographic dataset + all data from medical laboratories).
3. National Health and Nutrition Examination Survey (NHANES), Demographic & Questionnaire Data, 2001-2002 (the base of the Demographic dataset + all data from questionnaires).
Not all files from the 2001-2002 wave are included. This is for two reasons, both of which related to the merging variable (SEQN). For a subset of the files, SEQN is not a unique identifier for cases (i.e. some respondents have multiple cases) or SEQN is not in the file at all. The following datasets from this wave of the NHANES are not included in these three files and can be found individually from the "https://www.cdc.gov/nchs/nhanes/index.htm" Target="_blank">NHANES website at the CDC:
Examination: Dietary Interview (Individual Foods File)
Examination: Dual Energy X-ray Absorptiometry (DXX)
Examination: Dual Energy X-ray Absorptiometry (DXX)
Questionnaire: Analgesics Pain Relievers
Questionnaire: Dietary Supplement Use -- Ingredient Information
Questionnaire: Dietary Supplement Use -- Supplement Blend
Questionnaire: Dietary Supplement Use -- Supplement Information
Questionnaire: Drug Information
Questionnaire: Dietary Supplement Use -- Participants Use of Supplement
Questionnaire: Physical Activity Individual Activity File
Questionnaire: Prescription Medications
Variable SEQN is included for merging files within the waves. All data files should be sorted by SEQN.
Additional details of the design and content of each survey are available at the "https://www.cdc.gov/nchs/nhanes/index.htm" Target="_blank">NHANES website.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Professional organizations in STEM (science, technology, engineering, and mathematics) can use demographic data to quantify recruitment and retention (R&R) of underrepresented groups within their memberships. However, variation in the types of demographic data collected can influence the targeting and perceived impacts of R&R efforts - e.g., giving false signals of R&R for some groups. We obtained demographic surveys from 73 U.S.-affiliated STEM organizations, collectively representing 712,000 members and conference-attendees. We found large differences in the demographic categories surveyed (e.g., disability status, sexual orientation) and the available response options. These discrepancies indicate a lack of consensus regarding the demographic groups that should be recognized and, for groups that are omitted from surveys, an inability of organizations to prioritize and evaluate R&R initiatives. Aligning inclusive demographic surveys across organizations will provide baseline data that can be used to target and evaluate R&R initiatives to better serve underrepresented groups throughout STEM. Methods We surveyed 164 STEM organizations (73 responses, rate = 44.5%) between December 2020 and July 2021 with the goal of understanding what demographic data each organization collects from its constituents (i.e., members and conference-attendees) and how the data are used. Organizations were sourced from a list of professional societies affiliated with the American Association for the Advancement of Science, AAAS, (n = 156) or from social media (n = 8). The survey was sent to the elected leadership and management firms for each organization, and follow-up reminders were sent after one month. The responding organizations represented a wide range of fields: 31 life science organizations (157,000 constituents), 5 mathematics organizations (93,000 constituents), 16 physical science organizations (207,000 constituents), 7 technology organizations (124,000 constituents), and 14 multi-disciplinary organizations spanning multiple branches of STEM (131,000 constituents). A list of the responding organizations is available in the Supplementary Materials. Based on the AAAS-affiliated recruitment of the organizations and the similar distribution of constituencies across STEM fields, we conclude that the responding organizations are a representative cross-section of the most prominent STEM organizations in the U.S. Each organization was asked about the demographic information they collect from their constituents, the response rates to their surveys, and how the data were used. Survey description The following questions are written as presented to the participating organizations. Question 1: What is the name of your STEM organization? Question 2: Does your organization collect demographic data from your membership and/or meeting attendees? Question 3: When was your organization’s most recent demographic survey (approximate year)? Question 4: We would like to know the categories of demographic information collected by your organization. You may answer this question by either uploading a blank copy of your organization’s survey (linked provided in online version of this survey) OR by completing a short series of questions. Question 5: On the most recent demographic survey or questionnaire, what categories of information were collected? (Please select all that apply)
Disability status Gender identity (e.g., male, female, non-binary) Marital/Family status Racial and ethnic group Religion Sex Sexual orientation Veteran status Other (please provide)
Question 6: For each of the categories selected in Question 5, what options were provided for survey participants to select? Question 7: Did the most recent demographic survey provide a statement about data privacy and confidentiality? If yes, please provide the statement. Question 8: Did the most recent demographic survey provide a statement about intended data use? If yes, please provide the statement. Question 9: Who maintains the demographic data collected by your organization? (e.g., contracted third party, organization executives) Question 10: How has your organization used members’ demographic data in the last five years? Examples: monitoring temporal changes in demographic diversity, publishing diversity data products, planning conferences, contributing to third-party researchers. Question 11: What is the size of your organization (number of members or number of attendees at recent meetings)? Question 12: What was the response rate (%) for your organization’s most recent demographic survey? *Organizations were also able to upload a copy of their demographics survey instead of responding to Questions 5-8. If so, the uploaded survey was used (by the study authors) to evaluate Questions 5-8.