100+ datasets found
  1. COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by...

    • statista.com
    Updated Mar 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race [Dataset]. https://www.statista.com/statistics/1133269/coronavirus-covid19-death-rate-by-race-date-us/
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, the cumulative mortality rate of COVID-19 on March 2, 2021 was approximately 180 deaths per 100,000 population for Black Americans, compared to 150 per 100,000 population among Whites. This statistic shows the COVID-19 death rate per 100,000 population in the United States from December 8, 2020 to March 2, 2021, by race and ethnicity.

  2. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +4more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

  4. f

    Data_Sheet_1_The mortality burden related to COVID-19 in 2020 and 2021 -...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Terzic, Natasa; Wengler, Annelene; Djamangulova, Tolkun; Kandelaki, Levan; Sadikkhodjayeva, Diloram; Tecirli, Gülcan; Glushkova, Natalya; Kalaveshi, Arijana; Rommel, Alexander; Cawley, Caoimhe; Fedorchenko, Vladyslav; Erdenebat, Batmanduul; Gabrani, Jonila; Skočibušić, Siniša; Stojisavljevic, Stela; Group, for the BoCO-19-Study; Barsbay, Mehtap Çakmak; Milicevic, Milena Santric; Lkhagvasuren, Khorolsuren; Kazanjan, Konstantine; Cilović-Lagarija, Šeila (2024). Data_Sheet_1_The mortality burden related to COVID-19 in 2020 and 2021 - years of life lost and excess mortality in 13 countries and sub-national regions in Southern and Eastern Europe, and Central Asia.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001373582
    Explore at:
    Dataset updated
    Jun 6, 2024
    Authors
    Terzic, Natasa; Wengler, Annelene; Djamangulova, Tolkun; Kandelaki, Levan; Sadikkhodjayeva, Diloram; Tecirli, Gülcan; Glushkova, Natalya; Kalaveshi, Arijana; Rommel, Alexander; Cawley, Caoimhe; Fedorchenko, Vladyslav; Erdenebat, Batmanduul; Gabrani, Jonila; Skočibušić, Siniša; Stojisavljevic, Stela; Group, for the BoCO-19-Study; Barsbay, Mehtap Çakmak; Milicevic, Milena Santric; Lkhagvasuren, Khorolsuren; Kazanjan, Konstantine; Cilović-Lagarija, Šeila
    Area covered
    Eastern Europe, Central Asia
    Description

    IntroductionBetween 2021 and 2023, a project was funded in order to explore the mortality burden (YLL–Years of Life Lost, excess mortality) of COVID-19 in Southern and Eastern Europe, and Central Asia.MethodsFor each national or sub-national region, data on COVID-19 deaths and population data were collected for the period March 2020 to December 2021. Unstandardized and age-standardised YLL rates were calculated according to standard burden of disease methodology. In addition, all-cause mortality data for the period 2015–2019 were collected and used as a baseline to estimate excess mortality in each national or sub-national region in the years 2020 and 2021.ResultsOn average, 15–30 years of life were lost per death in the various countries and regions. Generally, YLL rates per 100,000 were higher in countries and regions in Southern and Eastern Europe compared to Central Asia. However, there were differences in how countries and regions defined and counted COVID-19 deaths. In most countries and sub-national regions, YLL rates per 100,000 (both age-standardised and unstandardized) were higher in 2021 compared to 2020, and higher amongst men compared to women. Some countries showed high excess mortality rates, suggesting under-diagnosis or under-reporting of COVID-19 deaths, and/or relatively large numbers of deaths due to indirect effects of the pandemic.ConclusionOur results suggest that the COVID-19 mortality burden was greater in many countries and regions in Southern and Eastern Europe compared to Central Asia. However, heterogeneity in the data (differences in the definitions and counting of COVID-19 deaths) may have influenced our results. Understanding possible reasons for the differences was difficult, as many factors are likely to play a role (e.g., differences in the extent of public health and social measures to control the spread of COVID-19, differences in testing strategies and/or vaccination rates). Future cross-country analyses should try to develop structured approaches in an attempt to understand the relative importance of such factors. Furthermore, in order to improve the robustness and comparability of burden of disease indicators, efforts should be made to harmonise case definitions and reporting for COVID-19 deaths across countries.

  5. f

    Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Jun 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    He, Xinyuan; Qi, Mingyan; Ji, Fanpu; Li, Xiaofeng; Gao, Ning; Zeng, Qing-Lei; Lv, Fan; Bo, Yajing; Liu, Yishan; Qiu, Sikai; Deng, Huan (2024). Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on mortality among patients living with tuberculosis in the United States.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001429023
    Explore at:
    Dataset updated
    Jun 18, 2024
    Authors
    He, Xinyuan; Qi, Mingyan; Ji, Fanpu; Li, Xiaofeng; Gao, Ning; Zeng, Qing-Lei; Lv, Fan; Bo, Yajing; Liu, Yishan; Qiu, Sikai; Deng, Huan
    Area covered
    United States
    Description

    BackgroundWe aimed to determine the trend of TB-related deaths during the COVID-19 pandemic.MethodsTB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic.ResultsA total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45–64 years old showed a surge in mortality, with an annual percent change (APC) of −2.2% pre-pandemic to 22.8% (95% CI: −1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45–64 years in 2020 (17.53%) and 2021 (33.79%).ConclusionThe steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.

  6. COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and ethnicity [Dataset]. https://www.statista.com/statistics/1401468/death-rates-from-covid-19-and-long-covid-in-the-us-by-race-and-ethnicity/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    From July 2021 to June 2022, American Indians or Alaska Natives were the ethnic group reporting the highest death rate from Long COVID per million population in the United States. Among this ethnic group, the mortality rate from COVID-19 was about 1,795 deaths per million population, while nearly 15 individuals per million died due to Long COVID. This statistic shows the death rates from COVID-19 and Long COVID per million population in the U.S. from July 2021 to June 2022, by race and ethnicity.

  7. Weekly all-cause mortality surveillance: 2021 to 2022

    • gov.uk
    • s3.amazonaws.com
    Updated Jul 7, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UK Health Security Agency (2022). Weekly all-cause mortality surveillance: 2021 to 2022 [Dataset]. https://www.gov.uk/government/statistics/weekly-all-cause-mortality-surveillance-2021-to-2022
    Explore at:
    Dataset updated
    Jul 7, 2022
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    UK Health Security Agency
    Description

    UKHSA weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report doesn’t assess general trends in death rates or link excess death figures to particular factors.

    Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.

    Reports are currently published weekly. In previous years, reports ran from October to September. From 2021 to 2022, reports will run from mid-July to mid-July each year. This change is to align with the reports for the national flu and coronavirus (COVID-19) weekly surveillance report.

    This page includes reports published from 15 July to the present.

    Reports are also available for:

  8. COVID-19 and Long COVID death rates in the United States in 2021-2022, by...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group [Dataset]. https://www.statista.com/statistics/1401404/death-rates-from-covid-19-and-long-covid-in-the-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    As of June 2022, death rates from COVID-19 and Long COVID per million people in the United States were both higher among individuals aged 85 and older. Within the analyzed period, approximately 117 people per million in this age group died due to Long COVID, and around 14,122 individuals per million died from COVID-19. This statistic shows the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by age group.

  9. u

    COVID-19 Mortality among Migrant Health Care Workers, 2021

    • datacatalogue.ukdataservice.ac.uk
    Updated Nov 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yeates, N, The Open University; Tipping, S, The Open University; Murphy, V, The Open University (2022). COVID-19 Mortality among Migrant Health Care Workers, 2021 [Dataset]. http://doi.org/10.5255/UKDA-SN-856071
    Explore at:
    Dataset updated
    Nov 22, 2022
    Authors
    Yeates, N, The Open University; Tipping, S, The Open University; Murphy, V, The Open University
    Time period covered
    Jan 1, 2021 - Dec 31, 2021
    Area covered
    Mexico, United Kingdom, India, Nigeria
    Description

    The dataset consists of quantitative data derived mainly from international datasets (ILO, WHO), supplemented by data from national datasets and modelled data to complete missing values. It shows the statistical data we collated and used to calculate estimates of Covid-19 deaths among migrant health care workers and includes details on how missing information was imputed. It includes spreadsheet estimates for India, Nigeria, Mexico, and the UK for excess and reported Covid-19 deaths amongst foreign-born workers and for all workers in the human health and social work sector and in three specific health occupations: doctors, nurses, and midwives. For each group the spreadsheets provide a basic estimate and an age-sex standardised estimate.

    This project aims to give proper attention to the place of migrant workers in health care systems during the Covid-19 pandemic. Migrant workers are of substantial and growing significance in many countries' health and care systems and are key to realising the global goal of universal health care, so it is vital that we understand much better how Covid-19 is impacting on them.

    The project's overarching research questions are, in the relation to Covid-19, what risks do migrant health care workers experience, what are the pressures on resilient and sustainable health care workforces, and how are stakeholders responding to these risks and pressures?

    We develop a research method to estimate Covid-19 migrant health care worker mortality rates and trial the method, undertaking statistical analysis and modelling using quantitative data drawn from WHO and OECD data and other demographic and bio-statistical data as available.

    In addition to strengthening the methodological techniques and empirical evidence base on the risks of Covid-19 infection and death among migrant health care workers our project also tracks, through documentary analysis, collective responses to such risks and challenges to sustainable health workforces for universal health coverage.

    This project is attuned to the urgent need for high quality data and for 'real world' solutions-focused Covid-19 research forged from collaboration. We are focused on the immediate application of proof-of concept findings to a rapidly-evolving global health crisis.

  10. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  11. Covid19 Global Excess Deaths (daily updates)

    • kaggle.com
    zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2025). Covid19 Global Excess Deaths (daily updates) [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/covid19-global-excess-deaths-daily-updates
    Explore at:
    zip(2989004967 bytes)Available download formats
    Dataset updated
    Dec 2, 2025
    Authors
    Joakim Arvidsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model

    Interpreting estimates

    Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.

    New variants

    The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.

    Non-reporting countries

    Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.

    Acknowledgements

    A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.

    Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.

    The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.

    All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.

    Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.

  12. O

    COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE

    • data.ct.gov
    • catalog.data.gov
    csv, xlsx, xml
    Updated Jun 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE [Dataset]. https://data.ct.gov/w/28fr-iqnx/wqz6-rhce?cur=DV72ILIJMDG
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases, tests, and associated deaths from COVID-19 that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update.

    The case rate per 100,000 includes probable and confirmed cases. Probable and confirmed are defined using the CSTE case definition, which is available online: https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-19.pdf

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: Due to an issue with the town-level data dated 1/17/2021, the data was temporarily unavailable; as of 11:19 AM on 1/19/2021 the data has been restored.

    As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

    On 5/16/2022, 8,622 historical cases were included in the data. The date range for these cases were from August 2021 – April 2022.”

  13. Data for Figures and Tables in "Bounce backs amid continued losses: Life...

    • zenodo.org
    • data.niaid.nih.gov
    csv, pdf, zip
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2024). Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6861843
    Explore at:
    csv, pdf, zipAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of data in the figures and tables published in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    50-e0diffT.csv

    Figure 1: Life expectancy changes 2019/20 and 2020/21 across countries. The countries are ordered by increasing cumulative life expectancy losses since 2019. Grey dots indicate the average annual LE changes over the years 2015 through 2019.

    51-arriagaT.csv

    Figure 2: Age contributions to life expectancy changes since 2019 separated for 2020 and 2021. The position of the arrowhead indicates the total contribution of mortality changes in a given age group to the change in life expectancy at birth since 2019. The discontinuity in the arrow indicates those contributions separately for the years 2020 and 2021. Annual contributions can compound or reverse. The total life expectancy change from 2019 to 2021 in a given country is the sum of the arrowhead positions across age.

    52-sexdiff.csv

    Figure 3: Change in the female life expectancy advantage from 2019 through 2021. Blue colors indicate an increase and red colors a decrease in the female life expectancy advantage. Muted colors indicate non-significant changes.

    53-e0diffcodT.csv

    Figure 4: Life expectancy deficit in 2021 decomposed into contributions by age and cause of death. LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

    55-vaxe0.csv

    Figure 5: Years of life expectancy deficit during October through December 2021 contributed by ages <60 and 60+ against % of population twice vaccinated by October 1st in the respective age groups. LE deficit is defined as the counterfactual LE from a Lee-Carter mortality forecast based on death rates for the fourth quarter of the years 2015 to 2019 minus observed LE.

    54-tab_arriaga.csv

    Table 1: Months of life expectancy (LE) changes and deficits (labelled ES) since the start of the pandemic attributed to age-specific mortality changes (labelled AT). LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

  14. d

    Percentage of provider spells with COVID-19 coding

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated May 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Percentage of provider spells with COVID-19 coding [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2021-05
    Explore at:
    csv(9.7 kB), xlsx(31.8 kB), xls(76.8 kB), pdf(205.0 kB)Available download formats
    Dataset updated
    May 13, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    England
    Description

    This is an indicator designed to accompany the Summary Hospital-level Mortality Indicator (SHMI). As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. This indicator shows the number of provider spells which are coded as COVID-19, and therefore excluded from the SHMI, as a percentage of all provider spells in the SHMI (prior to the exclusion). This indicator is being published as an experimental statistic. Experimental statistics are official statistics which are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. Notes: 1. Please note that there has been a fall in the number of spells for most trusts between this publication and the previous SHMI publication, ranging from 0 per cent to 5 per cent. This is due to COVID-19 impacting on activity from March 2020 onwards and appears to be an accurate reflection of hospital activity rather than a case of missing data. 2. The data for St Helens and Knowsley Teaching Hospitals NHS Trust (trust code RBN) has incomplete information on secondary conditions that the patients suffers from, and this will have affected the calculation of this indicator. Values for this trust should therefore be interpreted with caution. Please note, this issue was not identified until after this publication was initially released on 13th May 2021. Data quality notices were later added to this publication in July 2021. 3. Day cases and regular day attenders are excluded from the SHMI. However, some day cases for University College London Hospitals NHS Foundation Trust (trust code RRV) have been incorrectly classified as ordinary admissions meaning that they have been included in the SHMI. Maidstone and Tunbridge Wells NHS Trust (trust code RWF) has submitted a number of records with a patient classification of ‘day case’ or ‘regular day attender’ and an intended management value of ‘patient to stay in hospital for at least one night’. This mismatch has resulted in the patient classification being updated to ‘ordinary admission’ by the HES data cleaning rules. This may have resulted in the number of ordinary admissions being overstated. The trust has been contacted to clarify what the correct patient classification is for these records. Values for these trusts should therefore be interpreted with caution. 4. There is a shortfall in the number of records for Mid Cheshire Hospitals NHS Foundation Trust (trust code RBT), meaning that values for this trust are based on incomplete data and should therefore be interpreted with caution. 5. We recommend that values for Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1) are interpreted with caution as there is a possible shortfall in the number of records which is currently under investigation. 6. On 1 April 2021 Western Sussex Hospitals NHS Foundation Trust (trust code RYR) merged with Brighton and Sussex University Hospitals NHS Trust (trust code RXH). The new trust is called University Hospitals Sussex NHS Foundation Trust (trust code RYR). However, as we received notification of this change after data processing for this publication began, separate indicator values have been produced for this publication. The next publication in this series will reflect the updated organisation structure. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of the publication page.

  15. COVID-19 Outcomes by Vaccination Status

    • kaggle.com
    zip
    Updated Jul 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaushik D (2024). COVID-19 Outcomes by Vaccination Status [Dataset]. https://www.kaggle.com/datasets/kirbysasuke/covid-19
    Explore at:
    zip(90174 bytes)Available download formats
    Dataset updated
    Jul 2, 2024
    Authors
    Kaushik D
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    NOTE: This dataset has been retired and marked as historical-only.

    Weekly rates of COVID-19 cases, hospitalizations, and deaths among people living in Chicago by vaccination status and age.

    Rates for fully vaccinated and unvaccinated begin the week ending April 3, 2021 when COVID-19 vaccines became widely available in Chicago. Rates for boosted begin the week ending October 23, 2021 after booster shots were recommended by the Centers for Disease Control and Prevention (CDC) for adults 65+ years old and adults in certain populations and high risk occupational and institutional settings who received Pfizer or Moderna for their primary series or anyone who received the Johnson & Johnson vaccine.

    Chicago residency is based on home address, as reported in the Illinois Comprehensive Automated Immunization Registry Exchange (I-CARE) and Illinois National Electronic Disease Surveillance System (I-NEDSS).

    Outcomes: • Cases: People with a positive molecular (PCR) or antigen COVID-19 test result from an FDA-authorized COVID-19 test that was reported into I-NEDSS. A person can become re-infected with SARS-CoV-2 over time and so may be counted more than once in this dataset. Cases are counted by week the test specimen was collected. • Hospitalizations: COVID-19 cases who are hospitalized due to a documented COVID-19 related illness or who are admitted for any reason within 14 days of a positive SARS-CoV-2 test. Hospitalizations are counted by week of hospital admission. • Deaths: COVID-19 cases who died from COVID-19-related health complications as determined by vital records or a public health investigation. Deaths are counted by week of death.

    Vaccination status: • Fully vaccinated: Completion of primary series of a U.S. Food and Drug Administration (FDA)-authorized or approved COVID-19 vaccine at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Boosted: Fully vaccinated with an additional or booster dose of any FDA-authorized or approved COVID-19 vaccine received at least 14 days prior to a positive test (with no other positive tests in the previous 45 days). • Unvaccinated: No evidence of having received a dose of an FDA-authorized or approved vaccine prior to a positive test.

    CLARIFYING NOTE: Those who started but did not complete all recommended doses of an FDA-authorized or approved vaccine prior to a positive test (i.e., partially vaccinated) are excluded from this dataset.

    Incidence rates for fully vaccinated but not boosted people (Vaccinated columns) are calculated as total fully vaccinated but not boosted with outcome divided by cumulative fully vaccinated but not boosted at the end of each week. Incidence rates for boosted (Boosted columns) are calculated as total boosted with outcome divided by cumulative boosted at the end of each week. Incidence rates for unvaccinated (Unvaccinated columns) are calculated as total unvaccinated with outcome divided by total population minus cumulative boosted, fully, and partially vaccinated at the end of each week. All rates are multiplied by 100,000.

    Incidence rate ratios (IRRs) are calculated by dividing the weekly incidence rates among unvaccinated people by those among fully vaccinated but not boosted and boosted people.

    Overall age-adjusted incidence rates and IRRs are standardized using the 2000 U.S. Census standard population.

    Population totals are from U.S. Census Bureau American Community Survey 1-year estimates for 2019.

    All data are provisional and subject to change. Information is updated as additional details are received and it is, in fact, very common for recent dates to be incomplete and to be updated as time goes on. This dataset reflects data known to CDPH at the time when the dataset is updated each week.

    Numbers in this dataset may differ from other public sources due to when data are reported and how City of Chicago boundaries are defined.

    For all datasets related to COVID-19, see https://data.cityofchic

  16. o

    COVID-19 shifts mortality salience, activities, and values in the United...

    • openicpsr.org
    Updated Jan 15, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noah F.G. Evers; Patricia M. Greenfield; Gabriel W. Evers (2021). COVID-19 shifts mortality salience, activities, and values in the United States [Dataset]. http://doi.org/10.3886/E130646V1
    Explore at:
    Dataset updated
    Jan 15, 2021
    Dataset provided by
    Mulgrave School
    Harvard College
    University of California-Los Angeles
    Authors
    Noah F.G. Evers; Patricia M. Greenfield; Gabriel W. Evers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Evers, N. F. G., Greenfield, P. M., & Evers, G. W. (2021). COVID-19 Shifts Mortality Salience, Activities, and Values in the United States: Big Data Analysis of Online Adaptation. Human Behavior and Emerging Technologies.

  17. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  18. Deaths due to COVID-19 by local area and deprivation

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Deaths due to COVID-19 by local area and deprivation [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19bylocalareaanddeprivation
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 20, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, local authority and deprivation indices, and numbers of deaths by middle-layer super output area.

  19. Weekly all-cause mortality surveillance: 2025 to 2026

    • gov.uk
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UK Health Security Agency (2025). Weekly all-cause mortality surveillance: 2025 to 2026 [Dataset]. https://www.gov.uk/government/statistics/weekly-all-cause-mortality-surveillance-2025-to-2026
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    UK Health Security Agency
    Description

    The UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.

    Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.

    Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the National flu and COVID-19 weekly surveillance report.

    This page includes reports published from 17 July 2025 to the present.

    Reports are also available for:

    Please direct any enquiries to enquiries@ukhsa.gov.uk

    Our statistical practice is regulated by the https://osr.statisticsauthority.gov.uk/">Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk">Code of Practice for Statistics that all producers of Official Statistics should adhere to.

  20. d

    Mortality net, Mortality rate, Excess deaths and Variation of Excess deaths...

    • dataone.org
    • dataverse.harvard.edu
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grossi Morato, Eric (2023). Mortality net, Mortality rate, Excess deaths and Variation of Excess deaths in Brazil per state Jan 2014 to Aug 2021 [Dataset]. http://doi.org/10.7910/DVN/NFL2YW
    Explore at:
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Grossi Morato, Eric
    Time period covered
    Jan 1, 2014 - Jun 30, 2021
    Area covered
    Brazil
    Description

    The excess of monthly deaths by state in Brazil, mainly in 2021, point to an unprecedented mortuary catastrophe in Brazil How has the government of Brazil acted and has acted to protect its citizens from the most important, intense and deadly event of all time, in these 521 years of Brazilian history? How great is the risk of death that its inhabitants are facing, is it possible to measure and compare with other similar human beings, but who have different governments? Can we really measure, based on scientific, safe and verified data, the performance, willingness and result of actions and even the examples that the federal government of Brazil promoted in 18 months of the years 2020 and 2021? YES, we can ! Fortunately, in this era of free and unquestionable virtual environments, it is possible to develop reliable and fast ways to search, classify, verify, index, compare and publish known health epidemiological indices of human health! The internet and the Dataverse of the Harvard School allowed, not only scientists and physicians, as any being on Earth, to consult, understand and compare results that will remain available for generations, between the past and the present, but also between countries, as in this set we deal with the safest and most important health index, we show absolute numbers of deaths and births... All the most used epidemiological variables of birth and mortality per month in Brazil, from January 2014 to June 2021, by state, country and 2 large groups of states (based on a single criterion - votes Bolsonaro 1st round 2018 > 50%) All most used epidemiological variables from mortality per month in Brazil , Jan-2015 to Jun-2021, per state and country We show the death rate, number of net deaths, excess deaths, births, birth rate, annual growth rate, growth rate variation, P-score, excess mortality rate by months by state (UF), percentage of seniors over 70 years old from January 2014 to June 2021

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2021). COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race [Dataset]. https://www.statista.com/statistics/1133269/coronavirus-covid19-death-rate-by-race-date-us/
Organization logo

COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race

Explore at:
Dataset updated
Mar 8, 2021
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In the United States, the cumulative mortality rate of COVID-19 on March 2, 2021 was approximately 180 deaths per 100,000 population for Black Americans, compared to 150 per 100,000 population among Whites. This statistic shows the COVID-19 death rate per 100,000 population in the United States from December 8, 2020 to March 2, 2021, by race and ethnicity.

Search
Clear search
Close search
Google apps
Main menu