100+ datasets found
  1. COVID-19 and Long COVID death rates in the United States in 2021-2022, by...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group [Dataset]. https://www.statista.com/statistics/1401404/death-rates-from-covid-19-and-long-covid-in-the-us-by-age-group/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    As of June 2022, death rates from COVID-19 and Long COVID per million people in the United States were both higher among individuals aged 85 and older. Within the analyzed period, approximately 117 people per million in this age group died due to Long COVID, and around 14,122 individuals per million died from COVID-19. This statistic shows the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by age group.

  2. COVID-19 and Long COVID death rates in the United States in 2021-2022, by...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 and Long COVID death rates in the United States in 2021-2022, by gender [Dataset]. https://www.statista.com/statistics/1401429/death-rates-from-covid-19-and-long-covid-in-the-us-by-gender/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    Between July 2021 and June 2022, males in the United States reported higher death rates per million population than females for both COVID-19 and Long COVID. During this period, the death rate from COVID-19 for males was around 1,312 per million population, while roughly 7.3 men per million people died due to Long COVID. This statistic displays the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by gender.

  3. Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-and-rates-by-month-jurisdiction-of-residence-and-demogra
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  4. COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and...

    • statista.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 and Long COVID death rates in the U.S. in 2021-2022, by race and ethnicity [Dataset]. https://www.statista.com/statistics/1401468/death-rates-from-covid-19-and-long-covid-in-the-us-by-race-and-ethnicity/
    Explore at:
    Dataset updated
    Aug 3, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 1, 2021 - Jun 30, 2022
    Area covered
    United States
    Description

    From July 2021 to June 2022, American Indians or Alaska Natives were the ethnic group reporting the highest death rate from Long COVID per million population in the United States. Among this ethnic group, the mortality rate from COVID-19 was about 1,795 deaths per million population, while nearly 15 individuals per million died due to Long COVID. This statistic shows the death rates from COVID-19 and Long COVID per million population in the U.S. from July 2021 to June 2022, by race and ethnicity.

  5. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  6. COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by...

    • statista.com
    Updated Mar 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race [Dataset]. https://www.statista.com/statistics/1133269/coronavirus-covid19-death-rate-by-race-date-us/
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, the cumulative mortality rate of COVID-19 on March 2, 2021 was approximately 180 deaths per 100,000 population for Black Americans, compared to 150 per 100,000 population among Whites. This statistic shows the COVID-19 death rate per 100,000 population in the United States from December 8, 2020 to March 2, 2021, by race and ethnicity.

  7. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  8. f

    Data from: Maternal Deaths from COVID-19 in Brazil: Increase during the...

    • scielo.figshare.com
    tiff
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos André Scheler; Michelle Garcia Discacciati; Diama Bhadra Vale; Giuliane Jesus Lajos; Fernanda Garanhani Surita; Julio Cesar Teixeira (2023). Maternal Deaths from COVID-19 in Brazil: Increase during the Second Wave of the Pandemic [Dataset]. http://doi.org/10.6084/m9.figshare.20495346.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    SciELO journals
    Authors
    Carlos André Scheler; Michelle Garcia Discacciati; Diama Bhadra Vale; Giuliane Jesus Lajos; Fernanda Garanhani Surita; Julio Cesar Teixeira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract Objective To compare death rates by COVID-19 between pregnant or postpartum and nonpregnant women during the first and second waves of the Brazilian pandemic. Methods In the present population-based evaluation data from the Sistema de Informação da Vigilância Epidemiológica da Gripe (SIVEP-Gripe, in the Portuguese acronym), we included women with c (ARDS) by COVID-19: 47,768 in 2020 (4,853 obstetric versus 42,915 nonobstetric) and 66,689 in 2021 (5,208 obstetric versus 61,481 nonobstetric) and estimated the frequency of in-hospital death. Results We identified 377 maternal deaths in 2020 (first wave) and 804 in 2021 (second wave). The death rate increased 2.0-fold for the obstetric (7.7 to 15.4%) and 1.6-fold for the nonobstetric groups (13.9 to 22.9%) from 2020 to 2021 (odds ratio [OR]: 0.52; 95% confidence interval [CI]: 0.47–0.58 in 2020 and OR: 0.61; 95%CI: 0.56– 0.66 in 2021; p < 0.05). In women with comorbidities, the death rate increased 1.7-fold (13.3 to 23.3%) and 1.4-fold (22.8 to 31.4%) in the obstetric and nonobstetric groups, respectively (OR: 0.52; 95%CI: 0.44–0.61 in 2020 to OR: 0.66; 95%CI: 0.59–0.73 in 2021; p

  9. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  10. Coronavirus (COVID-19) death rates in New York as of April 19, 2021, by...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Coronavirus (COVID-19) death rates in New York as of April 19, 2021, by county [Dataset]. https://www.statista.com/statistics/1109417/coronavirus-covid19-death-rates-new-york-by-county/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    New York
    Description

    As of April 19, 2021, there had been around 27 deaths due to COVID-19 in New York City per 10,000 population. New York has been one of the U.S. states most impacted by the COVID-19 pandemic, with New York accounting for the most deaths of any state in the U.S. This statistic shows the death rates for coronavirus (COVID-19) in New York State as of April 19, 2021, by county.

  11. d

    COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-tests-cases-and-deaths-by-town
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, tests, and associated deaths from COVID-19 that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. The case rate per 100,000 includes probable and confirmed cases. Probable and confirmed are defined using the CSTE case definition, which is available online: https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-19.pdf The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 CO

  12. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  13. Data for Figures and Tables in "Bounce backs amid continued losses: Life...

    • zenodo.org
    • data.niaid.nih.gov
    csv, pdf, zip
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap (2024). Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. http://doi.org/10.5281/zenodo.6861843
    Explore at:
    csv, pdf, zipAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jonas Schöley; Jonas Schöley; José Manuel Aburto; José Manuel Aburto; Ilya Kashnitsky; Ilya Kashnitsky; Maxi S. Kniffka; Maxi S. Kniffka; Luyin Zhang; Luyin Zhang; Hannaliis Jaadla; Hannaliis Jaadla; Jennifer B. Dowd; Jennifer B. Dowd; Ridhi Kashyap; Ridhi Kashyap
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data for Figures and Tables in "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of data in the figures and tables published in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    50-e0diffT.csv

    Figure 1: Life expectancy changes 2019/20 and 2020/21 across countries. The countries are ordered by increasing cumulative life expectancy losses since 2019. Grey dots indicate the average annual LE changes over the years 2015 through 2019.

    51-arriagaT.csv

    Figure 2: Age contributions to life expectancy changes since 2019 separated for 2020 and 2021. The position of the arrowhead indicates the total contribution of mortality changes in a given age group to the change in life expectancy at birth since 2019. The discontinuity in the arrow indicates those contributions separately for the years 2020 and 2021. Annual contributions can compound or reverse. The total life expectancy change from 2019 to 2021 in a given country is the sum of the arrowhead positions across age.

    52-sexdiff.csv

    Figure 3: Change in the female life expectancy advantage from 2019 through 2021. Blue colors indicate an increase and red colors a decrease in the female life expectancy advantage. Muted colors indicate non-significant changes.

    53-e0diffcodT.csv

    Figure 4: Life expectancy deficit in 2021 decomposed into contributions by age and cause of death. LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

    55-vaxe0.csv

    Figure 5: Years of life expectancy deficit during October through December 2021 contributed by ages <60 and 60+ against % of population twice vaccinated by October 1st in the respective age groups. LE deficit is defined as the counterfactual LE from a Lee-Carter mortality forecast based on death rates for the fourth quarter of the years 2015 to 2019 minus observed LE.

    54-tab_arriaga.csv

    Table 1: Months of life expectancy (LE) changes and deficits (labelled ES) since the start of the pandemic attributed to age-specific mortality changes (labelled AT). LE deficit is defined as observed minus expected life expectancy had pre-pandemic mortality trends continued.

  14. Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huan Deng; Yishan Liu; Fan Lv; Xiaofeng Li; Mingyan Qi; Yajing Bo; Sikai Qiu; Xinyuan He; Fanpu Ji; Qing-Lei Zeng; Ning Gao (2024). Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on mortality among patients living with tuberculosis in the United States.docx [Dataset]. http://doi.org/10.3389/fpubh.2024.1413604.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 18, 2024
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Huan Deng; Yishan Liu; Fan Lv; Xiaofeng Li; Mingyan Qi; Yajing Bo; Sikai Qiu; Xinyuan He; Fanpu Ji; Qing-Lei Zeng; Ning Gao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundWe aimed to determine the trend of TB-related deaths during the COVID-19 pandemic.MethodsTB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic.ResultsA total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45–64 years old showed a surge in mortality, with an annual percent change (APC) of −2.2% pre-pandemic to 22.8% (95% CI: −1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45–64 years in 2020 (17.53%) and 2021 (33.79%).ConclusionThe steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.

  15. Deaths due to COVID-19 by local area and deprivation

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated May 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Deaths due to COVID-19 by local area and deprivation [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsduetocovid19bylocalareaanddeprivation
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 20, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, local authority and deprivation indices, and numbers of deaths by middle-layer super output area.

  16. d

    Percentage of provider spells with COVID-19 coding

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated May 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Percentage of provider spells with COVID-19 coding [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2021-05
    Explore at:
    csv(9.7 kB), xlsx(31.8 kB), xls(76.8 kB), pdf(205.0 kB)Available download formats
    Dataset updated
    May 13, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    England
    Description

    This is an indicator designed to accompany the Summary Hospital-level Mortality Indicator (SHMI). As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. This indicator shows the number of provider spells which are coded as COVID-19, and therefore excluded from the SHMI, as a percentage of all provider spells in the SHMI (prior to the exclusion). This indicator is being published as an experimental statistic. Experimental statistics are official statistics which are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. Notes: 1. Please note that there has been a fall in the number of spells for most trusts between this publication and the previous SHMI publication, ranging from 0 per cent to 5 per cent. This is due to COVID-19 impacting on activity from March 2020 onwards and appears to be an accurate reflection of hospital activity rather than a case of missing data. 2. The data for St Helens and Knowsley Teaching Hospitals NHS Trust (trust code RBN) has incomplete information on secondary conditions that the patients suffers from, and this will have affected the calculation of this indicator. Values for this trust should therefore be interpreted with caution. Please note, this issue was not identified until after this publication was initially released on 13th May 2021. Data quality notices were later added to this publication in July 2021. 3. Day cases and regular day attenders are excluded from the SHMI. However, some day cases for University College London Hospitals NHS Foundation Trust (trust code RRV) have been incorrectly classified as ordinary admissions meaning that they have been included in the SHMI. Maidstone and Tunbridge Wells NHS Trust (trust code RWF) has submitted a number of records with a patient classification of ‘day case’ or ‘regular day attender’ and an intended management value of ‘patient to stay in hospital for at least one night’. This mismatch has resulted in the patient classification being updated to ‘ordinary admission’ by the HES data cleaning rules. This may have resulted in the number of ordinary admissions being overstated. The trust has been contacted to clarify what the correct patient classification is for these records. Values for these trusts should therefore be interpreted with caution. 4. There is a shortfall in the number of records for Mid Cheshire Hospitals NHS Foundation Trust (trust code RBT), meaning that values for this trust are based on incomplete data and should therefore be interpreted with caution. 5. We recommend that values for Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1) are interpreted with caution as there is a possible shortfall in the number of records which is currently under investigation. 6. On 1 April 2021 Western Sussex Hospitals NHS Foundation Trust (trust code RYR) merged with Brighton and Sussex University Hospitals NHS Trust (trust code RXH). The new trust is called University Hospitals Sussex NHS Foundation Trust (trust code RYR). However, as we received notification of this change after data processing for this publication began, separate indicator values have been produced for this publication. The next publication in this series will reflect the updated organisation structure. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of the publication page.

  17. Data Sheet 1_Using machine learning methods to investigate the impact of...

    • frontiersin.figshare.com
    docx
    Updated Sep 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yueh-Chen Hsieh; Sin Chen; Shu-Yu Tsao; Jiun-Ruey Hu; Wan-Ting Hsu; Chien-Chang Lee (2025). Data Sheet 1_Using machine learning methods to investigate the impact of comorbidities and clinical indicators on the mortality rate of COVID-19.docx [Dataset]. http://doi.org/10.3389/fmedt.2025.1621158.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Sep 22, 2025
    Dataset provided by
    Frontiers Mediahttp://www.frontiersin.org/
    Authors
    Yueh-Chen Hsieh; Sin Chen; Shu-Yu Tsao; Jiun-Ruey Hu; Wan-Ting Hsu; Chien-Chang Lee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThis study aims to develop a machine learning model to predict the 30-day mortality risk of hospitalized COVID-19 patients while leveraging federated learning to enhance data privacy and expand the model's applicability. Additionally, SHapley Additive exPlanations (SHAP) values were utilized to assess the impact of comorbidities on mortality.MethodsA retrospective analysis was conducted on 6,321 clinical records of hospitalized COVID-19 patients between January 2021 and October 2022. After excluding cases involving patients under 18 years of age and non-Omicron infections, a total of 4,081 records were analyzed. Key features included three demographic data, six vital signs at admission, and 79 underlying comorbidities. Four machine learning models were compared, including Lasso, Random Forest, XGBoost, and TabNet, with XGBoost demonstrating superior performance. Federated learning was implemented to enable collaborative model training across multiple medical institutions while maintaining data security. SHAP values were applied to interpret the contribution of each comorbidity to the model's predictions.ResultsA subset of 2,156 records from the Taipei branch was used to evaluate model performance. XGBoost achieved the highest AUC of 0.96 and a sensitivity of 0.94. Two versions of the XGBoost model were trained: one incorporating vital signs, suitable for emergency room applications where patients come in with unstable vital signs, and another excluding vital signs, optimized for outpatient settings where we encounter patients with multiple comorbidities. After implementing federated learning, the AUC of the Taipei cohort decreased to 0.90, while the performance of other cohorts improved to meet the required standards. SHAP analysis identified comorbidities including diabetes mellitus, cerebrovascular disease, and chronic lung disease to have a neutral or even protective association with 30-day mortality.ConclusionXGBoost outperformed other models making it a viable tool for both emergency and outpatient settings. The study underscores the importance of chronic disease assessment in predicting COVID-19 mortality, revealing some comorbidities such as diabetes mellitus, cerebrovascular disease and chronic lung disease to have protective association with 30-day mortality. These findings suggest potential refinements in current treatment guidelines, particularly concerning high-risk conditions. The integration of federated learning further enhances the model's clinical applicability while preserving patient privacy.

  18. f

    Death rate and survival probability of COVID-19 patients hospitalized at...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated May 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaso, Abdene Weya; Agero, Gebi; Hailu, Alemayehu; Hurissa, Zewdu; Hareru, Habtamu Endashaw; Ewune, Helen Ali; Kaso, Taha (2022). Death rate and survival probability of COVID-19 patients hospitalized at Bokoji Hospital treatment centre, Ethiopia, 2021. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000322547
    Explore at:
    Dataset updated
    May 9, 2022
    Authors
    Kaso, Abdene Weya; Agero, Gebi; Hailu, Alemayehu; Hurissa, Zewdu; Hareru, Habtamu Endashaw; Ewune, Helen Ali; Kaso, Taha
    Area covered
    Bekoji, Ethiopia
    Description

    Death rate and survival probability of COVID-19 patients hospitalized at Bokoji Hospital treatment centre, Ethiopia, 2021.

  19. Coronavirus (COVID-19) related deaths by occupation, England and Wales

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jan 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Coronavirus (COVID-19) related deaths by occupation, England and Wales [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/datasets/coronaviruscovid19relateddeathsbyoccupationenglandandwales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 25, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.

  20. COVID-19 death rates in the United States as of March 10, 2023, by state

    • statista.com
    Updated May 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 death rates in the United States as of March 10, 2023, by state [Dataset]. https://www.statista.com/statistics/1109011/coronavirus-covid19-death-rates-us-by-state/
    Explore at:
    Dataset updated
    May 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group [Dataset]. https://www.statista.com/statistics/1401404/death-rates-from-covid-19-and-long-covid-in-the-us-by-age-group/
Organization logo

COVID-19 and Long COVID death rates in the United States in 2021-2022, by age group

Explore at:
Dataset updated
Aug 3, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jul 1, 2021 - Jun 30, 2022
Area covered
United States
Description

As of June 2022, death rates from COVID-19 and Long COVID per million people in the United States were both higher among individuals aged 85 and older. Within the analyzed period, approximately 117 people per million in this age group died due to Long COVID, and around 14,122 individuals per million died from COVID-19. This statistic shows the death rates from COVID-19 and Long COVID per million population in the United States from July 2021 to June 2022, by age group.

Search
Clear search
Close search
Google apps
Main menu