The mortality rate from influenza in the United States is by far highest among those aged 65 years and older. During the 2022-2023 flu season the mortality rate from influenza for this age group was around 26.6 per 100,000 population.
The burden of influenza The impact of influenza in the U.S. varies from season to season, but in the 2022-2023 flu season there were an estimated 31 million cases. These cases resulted in around 360,000 hospitalizations. Although most people recover from influenza without requiring medical treatment, the disease can be deadly for young children, the elderly, and those with weakened immune systems or chronic illnesses. During the 2022-2023 flu season, around 21,000 people in the U.S. lost their lives due to influenza.
Impact of vaccinations The most effective way to prevent influenza is to receive a yearly vaccination at the beginning of flu season. Flu vaccines are safe and can greatly reduce the burden of the disease. During the 2022-2023 flu season vaccinations prevented around 2,479 deaths among those aged 65 years and older. Although flu vaccines are usually cheap and easily accessible, every year a large share of the population in the U.S. still does not get vaccinated. For example, during the 2021-2022 flu season only about 37 percent of those aged 18 to 49 years received a flu vaccination.
During the 2022-2023 flu season in the United States, around 21,401 people died from influenza. The vast majority of deaths due to influenza occur among the elderly, with those aged 65 years and older accounting for 15,399 deaths during the 2022-2023 flu season. During this time, the mortality rate from influenza among those aged 65 years and older was around 26.6 per 100,000 population, compared to a mortality rate of .7 per 100,000 population among those aged 18 to 49 years. Influenza deaths Although most people recover from influenza without the need of medical care, influenza and pneumonia are still major causes of death in the United States. Influenza is a common cause of pneumonia and cases in which influenza develops into pneumonia tend to be more severe and more deadly. However, the impact of influenza varies from year to year depending on which viruses are circulating. For example, during the 2017-2018 flu season around 51,000 people died due to influenza, whereas in 2022-2023 total deaths amounted to 21,000. Preventing death The most effective way to prevent influenza is to receive a yearly influenza vaccination. These vaccines have proven to be safe and are usually cheap and easily accessible. Each year, flu vaccinations prevent thousands of influenza cases, hospitalizations and deaths. It was estimated that during the 2022-2023 flu season, vaccinations prevented the deaths of around 2,479 people aged 65 years and older.
In 2021, there were four death cases caused by the influenza virus in China. The death rate of the virus amounted to approximately 0.0003 out of ten million people. Influenza, commonly known as "flu", is a highly contagious respiratory disease caused by influenza A or B viruses and can be prevented by vaccines. It should be noted that the Chinese health authorities calculate death cases for infectious diseases differently, counting only patients who died directly from the infectious disease.
Following the outbreak of the H1N1 influenza pandemic of 1918, which came to be known as the Spanish Flu, the number of deaths due to influenza and pneumonia soared. Pneumonia was caused either by the influenza or by a bacterial superinfection that took hold due to the patient's weakened state as a result of the influenza, for this reason, influenza deaths and pneumonia deaths were recorded together as one. Pennsylvania had the highest mortality rate due to the pandemic, where there were over 880 fatalities per 100,000 people; meaning that approximately 0.9 percent of the state's population died from the Spanish Flu pandemic in 1918.
When compared with the 1915 mortality rates, many states, such as California and Pennsylvania, saw their mortality rate due to influenza and pneumonia increase five-fold by 1818, which was the worst year of the pandemic. While the mortality rate decreased significantly in the year 1919, there was no US state where it fell to it's pre-pandemic level, and the 1919 mortality rate was still double the pre-pandemic rate in some states such as California, South Carolina and Washington.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Australia Influenza Mortality jumped by 8% in 2019, from a year earlier.
The burden of influenza in the United States can vary from year to year depending on which viruses are circulating, how many people receive an influenza vaccination, and how effective the vaccination is in that particular year. During the 2019-2020 flu season, around 25,000 people lost their lives to the disease. Although most people recover from influenza without needing medical care, the disease can be deadly among young children, the elderly, and those with weakened immune systems or chronic illnesses.
Deaths due to influenza Even though most people recover from influenza without medical care, influenza and pneumonia can be deadly, especially for older people and those with certain preexisting conditions. Influenza is a common cause of pneumonia and although most cases of influenza do not develop into pneumonia, those that do are often more severe and more deadly. Deaths due to influenza are most common among the elderly, with a mortality rate of around 7.4 per 100,000 population during the 2021-2022 flu season. In comparison, the mortality rate for those aged 50 to 64 years was just 1.2 per 100,000 population.
Flu vaccinations The most effective way to prevent influenza is to receive a yearly influenza vaccination. These vaccines have proven to be safe and are usually cheap and easily accessible. Nevertheless, every year a large share of the population in the United States still fails to get vaccinated against influenza. For example, in the 2021-2022 flu season only 37 percent of those aged 18 to 49 years received a flu vaccination. Unsurprisingly, children and the elderly are the most likely to get vaccinated. It is estimated that during the 2021-2022 flu season vaccinations prevented over 618 thousand influenza cases among children aged 6 months to 4 years.
Official statistics are produced impartially and free from political influence.
In 2023, the number of deaths from influenza in Japan decreased to 1383 cases, which marked an increase compared to just 24 cases in the previous year. The death rate from influenza amounted to 1.1 death cases per 100,000 inhabitants in 2023.
These reports summarise the surveillance of influenza, COVID-19 and other seasonal respiratory illnesses in England.
Weekly findings from community, primary care, secondary care and mortality surveillance systems are included in the reports.
This page includes reports published from 18 July 2024 to the present.
Please note that after the week 21 report (covering data up to week 20), this surveillance report will move to a condensed summer report and will be released every 2 weeks.
Previous reports on influenza surveillance are also available for:
View previous COVID-19 surveillance reports.
View the pre-release access list for these reports.
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
These reports summarise the surveillance of influenza, COVID-19 and other seasonal respiratory illnesses.
Weekly findings from community, primary care, secondary care and mortality surveillance systems are included in the reports.
This page includes reports published from 14 July 2022 to 6 July 2023.
Previous reports on influenza surveillance are also available for:
View previous COVID-19 surveillance reports.
In 2022, the highest death rate from influenza and pneumonia in Canada per 100,000 population was reported among those aged 90 years and older, with around 588 deaths. Individuals between 85 and 89 years followed, with a mortality rate from influenza and pneumonia of almost 210 deaths per 100,000 people. This statistic displays the death rate from influenza and pneumonia per 100,000 population in Canada during 2022, by age.
1918 Pandemic Influenza Mortality, Chicago USAPoint location and week of epidemic of 8,031 influenza and pneumonia deaths recorded during the 1918 Spanish flu pandemic within the city of Chicago. Data was digitized from 1920 City of Chicago Department of Health annual report Date last modified: 25-10-2016. Fields include: ID (FID), indicator of pneumonia (0 or 1, 0 indicates an influenza death, 1 an influenza and pneumonia death), x and y coordinates (with units in meters), and week (sequential week of epidemic). See paper for more details.points.csvFine-scale sociodemographics of Chicago, USA, 1920Socio-demographic data (including population size, illiteracy, unemployment) of 496 census tracts within the City of Chicago. Data was collected from the 1920 national census.tracts.csvShapefile of census tract boundaries in Chicago in 1920Shapefile of census tract boundaries in Chicago in 1920. File included in zip file include IL_tract_a.dbf, IL_tract_a.prj, IL_tract_a.sbn, IL_tract_a.sb...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundEstimating the global influenza burden in terms of hospitalization and death is important for optimizing prevention policies. Identifying risk factors for mortality allows for the design of strategies tailored to groups at the highest risk. This study aims to (a) describe the clinical characteristics of hospitalizations with a diagnosis of influenza over five flu seasons (2016–2017 to 2020–2021), (b) assess the associated morbidity (hospitalization rates and ICU admissions rate), mortality and cost of influenza hospitalizations in different age groups and (c) analyze the risk factors for mortality.MethodsThis retrospective study included all hospital admissions with a diagnosis of influenza in Spain for five influenza seasons. Data were extracted from the Spanish National Surveillance System for Hospital Data from 1 July 2016 to 30 June 2021. We identified cases coded as having influenza as a primary or secondary diagnosis (International Classification of Diseases, 10th revision, J09-J11). The hospitalization rate was calculated relative to the general population. Independent predictors of mortality were identified using multivariable logistic regression.ResultsOver the five seasons, there were 127,160 hospitalizations with a diagnosis of influenza. The mean influenza hospitalization rate varied from 5/100,000 in 2020–2021 (COVID-19 pandemic) to 92.9/100,000 in 2017–2018. The proportion of influenza hospitalizations with ICU admission was 7.4% and was highest in people aged 40–59 years (13.9%). The case fatality rate was 5.8% overall and 9.4% in those aged 80 years or older. Median length of stay was 5 days (and 6 days in the oldest age group). In the multivariable analysis, independent risk factors for mortality were male sex (odds ratio [OR] 1.14, 95% confidence interval [95% CI] 1.08–1.20), age (
Influenza and pneumonia caused around 12.3 deaths in the U.S. per 100,000 population in 2019. Influenza and pneumonia are among the leading causes of death in the United States, accounting for around 1.6 percent of all deaths in 2020. Influenza, or the flu, is a viral infection that is highly contagious and especially common in the winter season. Influenza is a common cause of pneumonia, although most cases of the flu do not develop into pneumonia. Pneumonia is an infection or inflammation of the lungs and is particularly deadly among young children and the elderly.
Influenza cases
Influenza is very common in the United States, with an estimated 35 million cases reported in 2019-2020. Common symptoms of the flu include cough, fever, runny or stuffy nose, sore throat and headache. Symptoms can be mild but can also be severe enough to require medical attention. In 2019-2020, there were around 16 million influenza-related medical visits in the United States.
Prevention
To prevent contracting the flu people can take everyday precautions such as regularly washing their hands and avoiding those who are sick, but the best way to prevent the flu is by receiving the flu vaccination every year. Receiving a flu vaccination is especially important for young children and the elderly as they are most susceptible to flu complications and associated death. In 2021, around 75 percent of those aged 65 years and older received a flu vaccine, while only 38 percent of those aged 18 to 49 years had done so.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the Global H1N1 (swine flu) Vaccination Market Size will be USD XX Billion in 2023 and is set to achieve a market size of USD XX Billion by the end of 2031 growing at a CAGR of XX% from 2024 to 2031.
Based on Vaccine Type, the intramuscular segment will dominate the global H1N1 (swine flu) Vaccination market in the year 2023. Based on vaccine type, the market is divided into intramuscular, intranasal, and intradermal
Based on Market Type, the public segment dominated the global H1N1 (swine flu) Vaccination market. Based on Market Type, the global H1N1 (swine flu) Vaccination market is segmented into public and private
The North American region accounted for the highest market share in the Global H1N1 (swine flu) Vaccination Market.
Over the course of the projection period, Asia pacific is expected to increase at the fastest rate.
CURRENT SCENARIO OF THE H1N1 (SWINE FLU) VACCINATION MARKET
Key factors driving the growth of the H1N1 (swine flu) Vaccination Market
Increased incidence of disease and episodes of pandemic worldwide from H1N1 infection to drive the market growth over the forecast period
The H1N1 virus is contagious and can spread widely through small droplets of saliva from coughs or sneezes of the infected person. H1N1 virus causes damage to the respiratory system including the nose, lungs, and throat. The H1N1 virus is a Ribonucleic acid (RNA) virus belonging to the Orthomyxoviridae family. In the year 2009, a strain of swine flu called "H1N1" infected many people around the world.
According to the World Health Organization (WHO), annually about 3 to 5 million cases of severe illness and about 2,90,000 to 6,50,000 respiratory deaths are due to seasonal influenza. (Source; https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)#:~:text=There%20are%20around%20a%20billion,infections%20are%20in%20developing%20countries.)
In industrialised nations, those over 65 account for the majority of influenza-related mortality. Illnesses caused by seasonal influenza can vary in severity and sometimes result in death. Therefore, during the projected period, these elements are propelling market growth. Due to waning immunisations, the transmissible disease's prevalence is increasing daily. The main causes of impaired digesting power are the prevalence of smoking and bad eating habits.
As a result of the body's diminished ability to fight off illnesses, a number of communicable diseases are becoming more prevalent. The World Health Organisation proclaimed the H1N1 pandemic in 2009–10 after it killed over 284,000 people. Moreover, in a recent survey of 41% of households in the capital city of India more than 2-3% of cases were found positive.
Rising public health initiatives to Accelerate the Market Growth
Globally, public health campaigns to encourage vaccination and increase knowledge of the advantages of H1N1 vaccinations are being launched by governments and health authorities more often, which is driving the market's expansion. To provide universal protection against the virus, these activities center on public education, debunking myths, and promoting proactive immunization. Improved community immunity and increased vaccination rates are two benefits of these efforts. Governments around the world are also working to upgrade public health facilities so that even the most distant areas and marginalized groups may use them. This is helping to increase vaccination uptake.
Government efforts to combat the H1N1 pandemic, both domestically and globally, would be advantageous to the market's expansion. Health organizations like the World Health Organisation (WHO) have played a crucial role in the development of vaccinations and in facilitating their effective dissemination. Following the 2009 H1N1 influenza pandemic, the US government launched a US$ 3 billion H1N1 vaccine project, hiring five significant corporations to create an H1N1 vaccine.
The National Influenza Centres and WHO Collaborating Centres are in charge of continuously monitoring the influenza viruses that are circulating in humans as part of the WHO's Global Influenza Surveillance and Response System. The composition of influenza vaccines is updated twice a year.
Key factors hampering the Market growth
Lack of skilled professionals along with low interest in flu Likely to hampe...
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of death occurrences in England and Wales due to coronavirus (COVID-19) and influenza and pneumonia, by age, sex and place of death.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Results data for the thesis on estimating the age-, sex-, cause-specific excess mortality during the COVID-19 pandemic in Hong Kong and South Korea.Thesis abstractBackgroundFew studies used a consistent methodology and adjusted for the risk of influenza-like illness (ILI) in historical mortality trends when estimating and comparing the cause-specific excess mortality (EM) during the COVID-19 pandemic. Previous studies demonstrated that excess mortality was widely reported from CVD and among the elderly. This study aims to estimate and compare the overall, age-, sex-, and cause-specific excess mortality during the COVID-19 pandemic in Hong Kong (HK) and South Korea (SK) with consideration of the impact of ILI.MethodsIn this population-based study, we first fitted a generalized additive model to the monthly mortality data from Jan 2010 to Dec 2019 in HK and SK before the COVID-19 pandemic. Then we applied the fitted model to estimate the EM from Jan 2020 to Dec 2022. The month index was modelled with a natural cubic spline. Akaike information criterion (AIC) was used to select the number of knots for the spline and inclusion of covariates such as monthly mean temperature, absolute humidity, ILI consultation rate, and the proxy for flu activity.FindingsFrom 2020 to 2022, the EM in HK was 239.8 (95% CrI: 184.6 to 293.9) per 100,000 population. Excess mortality from respiratory diseases (RD) (ICD-10 code: J00-J99), including COVID-19 deaths coded as J98.8, was 181.3 (95% CrI: 149.9 to 210.4) per 100,000. Except for RD, the majority of the EM in HK was estimated from cardiovascular diseases (CVD) (22.4% of the overall EM), influenza and pneumonia (16.2%), ischemic heart disease (8.9%), ill-defined causes (8.6%) and senility (6.7%). No statistically significant reduced deaths were estimated among other studied causes.From 2020 to 2022, the EM in SK was 204.7 (95% CrI: 161.6 to 247.2) per 100,000 population. Of note, COVID-19 deaths in SK were not included in deaths from RD but were recorded with the codes for emergency use as U07.1 or U07.2. The majority of the EM was estimated from ill-defined causes (32.0% of the overall EM), senility (16.6%), cerebrovascular disease (6.8%) and cardiovascular diseases (6.1%). Statistically significant reduction in mortality with 95 CrI lower than zero was estimated from vascular, other and unspecified dementia (-26.9% of expected deaths), influenza and pneumonia (-20.7%), mental and behavioural disorders (-18.8%) and respiratory diseases (-7.7%).InterpretationExcluding RD in HK which includes COVID-19 deaths, the majority of the EM in HK and SK was from CVD and senility. Mortality from influenza and pneumonia was estimated to have a statistically significant increase in HK but a decrease in SK probability due to different coding practices. HK had a heavier burden of excess mortality in the elderly age group 70-79 years and 80 years or above, while SK had a heavier burden in the age group of 60-69 years. Both HK and SK have a heavier burden of excess mortality from males than females. Better triage systems for identifying high-risk people of the direct or indirect impact of the epidemic are needed to minimize preventable mortality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveTo investigate the active ingredients, underlying anti-influenza virus effects, and mechanisms of Huoxiang Suling Shuanghua Decoction (HSSD).Materials and methodsThe therapeutic effect of HSSD were confirmed through the survival rate experiment of H1N1-infected mice. Then, the HSSD solution and the ingredients absorbed into the blood after treatment with HSSD in rats were identified by UPLC/Q-TOF MS, while the main contents of ingredients were detected by high performance liquid chromatography (HPLC). Next, a systems pharmacology approach incorporating target prediction, gene ontology (GO) enrichment, kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and molecular docking were performed to screen out the active compounds and critical pathways of HSSD in treating influenza. According to prediction results, real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry assay were used to detect the mRNA and protein expression levels of critical targets in H1N1-infected mice lungs.ResultsHuoxiang Suling Shuanghua Decoction improved the survival rate of H1N1-infected mice and prolonged the mice’s lifespan. Besides, HSSD exerts an antivirus effect by decreasing the levels of hemagglutinin (HA) and nucleoprotein (NP) to inhibit the replication and proliferation of H1N1, reducing the lung pathological state, inhibiting the cell apoptosis in the lung, and regulating the abnormal responses of peripheral blood, including GRA, LYM, white blood cell (WBC), PLT, and hemoglobin (HGB). Then, 87 compounds in the HSSD solution and 20 ingredients absorbed into the blood after treatment with HSSD were identified. Based on this, combined with the network analysis and previous research on antivirus, 16 compounds were screened out as the active components. Moreover, 16 potential targets were predicted by network pharmacology analysis. Next, molecular docking results showed stable binding modes between compounds and targets. Furthermore, experimental validation results indicated that HSSD regulates the contents of Immunoglobulin A (IgA), Immunoglobulin M (IgM), and Immunoglobulin G (IgG) in serum, modulating the levels of IFN-γ, IL-6, IL-10, MCP-1, MIP-1α, and IP-10 in the lung tissue, and significantly decreasing the mRNA and protein expressions of TLR4, CD14, MyD88, NF-κB p65, HIF1 α, VEGF, IL17A, and IL6 in the lung tissue.ConclusionHuoxiang Suling Shuanghua Decoction exerts an anti-influenza effect by affecting the expressions of mRNA and protein including TLR4, CD14, MyD88, NF-kB p65, HIF-1α, VEGF, IL17A, IL6, and inhibiting the accumulation of inflammation. Our study provided experimental pieces of evidence about the practical application of HSSD in treating influenza.
This file contains the complete set of data reported to 122 Cities Mortality Reposting System. The system was retired as of 10/6/2016. While the system was running each week, the vital statistics offices of 122 cities across the United States reported the total number of death certificates processed and the number of those for which pneumonia or influenza was listed as the underlying or contributing cause of death by age group (Under 28 days, 28 days - 1 year, 1-14 years, 15-24 years, 25-44 years, 45-64 years, 65-74 years, 75-84 years, and - 85 years). U:Unavailable. - : No reported cases.* Mortality data in this table were voluntarily reported from 122 cities in the United States, most of which have populations of >100,000. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included. Total includes unknown ages.
More information on Flu Activity & Surveillance is available at http://www.cdc.gov/flu/weekly/fluactivitysurv.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The previous history concerning hospitalization due to flu infection, receiving a flu vaccination, and frequency of vaccination (total number = 611, ever vaccinated = 267).
The mortality rate from influenza in the United States is by far highest among those aged 65 years and older. During the 2022-2023 flu season the mortality rate from influenza for this age group was around 26.6 per 100,000 population.
The burden of influenza The impact of influenza in the U.S. varies from season to season, but in the 2022-2023 flu season there were an estimated 31 million cases. These cases resulted in around 360,000 hospitalizations. Although most people recover from influenza without requiring medical treatment, the disease can be deadly for young children, the elderly, and those with weakened immune systems or chronic illnesses. During the 2022-2023 flu season, around 21,000 people in the U.S. lost their lives due to influenza.
Impact of vaccinations The most effective way to prevent influenza is to receive a yearly vaccination at the beginning of flu season. Flu vaccines are safe and can greatly reduce the burden of the disease. During the 2022-2023 flu season vaccinations prevented around 2,479 deaths among those aged 65 years and older. Although flu vaccines are usually cheap and easily accessible, every year a large share of the population in the U.S. still does not get vaccinated. For example, during the 2021-2022 flu season only about 37 percent of those aged 18 to 49 years received a flu vaccination.