This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). The National Wetlands Inventory - Version 2, Surface Waters and Wetlands Inventory was derived by retaining the wetland and deepwater polygons that compose the NWI digital wetlands spatial data layer and reintroducing any linear wetland or surface water features that were orphaned from the original NWI hard copy maps by converting them to narrow polygonal features. Additionally, the data are supplemented with hydrography data, buffered to become polygonal features, as a secondary source for any single-line stream features not mapped by the NWI and to complete segmented connections. Wetland mapping conducted in WA, OR, CA, NV and ID after 2012 and most other projects mapped after 2015 were mapped to include all surface water features and are not derived data. The linear hydrography dataset used to derive Version 2 was the U.S. Geological Survey's National Hydrography Dataset (NHD). Specific information on the NHD version used to derive Version 2 and where Version 2 was mapped can be found in the 'comments' field of the Wetlands_Project_Metadata feature class. Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery. By policy, the Service also excludes certain types of "farmed wetlands" as may be defined by the Food Security Act or that do not coincide with the Cowardin et al. definition. Contact the Service's Regional Wetland Coordinator for additional information on what types of farmed wetlands are included on wetland maps. This dataset should be used in conjunction with the Wetlands_Project_Metadata layer, which contains project specific wetlands mapping procedures and information on dates, scales and emulsion of imagery used to map the wetlands within specific project boundaries. Please reference the metadata for contact information.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset (2012-2020) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- North West Florida Water Management District (NWFWMD) 2019, Suwannee River Water Management District (SRWMD) 2019-2020, St. John's River Water Management District (SJRWMD) 2013-2016, 2013 (Dec 2012 – Mar 2013) - Duval, Bradford, 2014 (Dec 2013 – Mar 2014) - Alachua, Baker, Clay, Flagler, Lake, Marion, Nassau, Osceola, Polk, Putnam, St. John’s, 2015 (Dec 2014 – Mar 2015) - Brevard, Indian River, Okeechobee, Seminole, Volusia, 2016 (Dec 2015 – Mar 2016) - Orange, South West Florida Water Management District (SWFWMD) 2020 and South Florida Water Management District (SFWMD) 2017-2019. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences.
Geospatial data about Pasco County, Florida Wetlands. Export to CAD, GIS, PDF, CSV and access via API.
The AHF system has been deployed in a series of survey campaigns to collect over 60,000 points covering Everglades National Park, Loxahatchee National Wildlife Refuge, Water Conservation Areas 2 and 3, portions of Big Cypress National Preserve, as well as areas along the Lake Okeechobee littoral zone. Since the AHF System is able to penetrate Everglades vegetation and water cover, it has provided an unprecedented regional view of Everglades topographic gradients and sub-water surface structure. These data are now being used to simulate Everglades water flow with higher resolution and greater accuracy, to estimate water depths in real-time for field study planning, and as input for habitat models used to forecast the effects of water level changes on various important species. The elevation data collected through this project also formed the basic input to generate a regional topographic surface that is the basis for the Everglades Depth Estimation Network (EDEN). These high accuracy elevation data are made available to anyone through the South Florida Information Access website (http://sofia.usgs.gov) data exchange pages.
MAP Activity Accomplishment The USGS Airborne Height Finder (AHF) System was used to perform topographic surveys in Water Conservation Area 3A within the extents of the Lone Palm Head and North of Lone Palm Head 7.5-minute topographic map quadrangles as specified in the MAP/COE Interagency Agreement. The AHF system has been used throughout South Florida for elevation data collection because traditional surveying methods are too difficult, too costly, or simply impossible to use in the harsh wetland environment and broadly inaccessible terrain of the Florida Everglades. This is especially true considering the shear size of the hydrodynamic and biological modeling domains. The AHF is a helicopter-based instrument that uses a GPS receiver, a computer, and a mechanized plumb bob to make measurements. These data were post processed to the reference stations that are part of the AHF geodetic control network. For reasons of accuracy, these reference stations are located no more then 15 kilometers from the helicopter during AHF operations. The GPS data were post processed using Ashtech’s PNAV On The Fly (OTF) software to obtain the trajectory of the AHF platform. These results are then processed through an in-house software package that separates the actual survey points and results from the trajectory. The points are manually checked to ensure data accuracy and completeness. Digital elevation models (DEMs) were then generated from the elevation point data. Existing elevation data derived from LiDAR data for this area were replaced with AHF derived DEMs for reasons of vertical accuracy. The DEMs have been posted on the South Florida Information Access (SOFIA) website: http://sofia.usgs.gov/exchange/desmond/desmondelev.html.
Geospatial data about St Lucie County, Florida National Wetlands Inventory. Export to CAD, GIS, PDF, CSV and access via API.
A hierarchical vegetation classification model (10 m resolution) was developed for southwest Florida wetlands using a fusion of multispectral and synthetic aperture radar (SAR) remotely sensed imagery. Sentinel-1 and 2 imagery were obtained from Dec 2015-Sept 2017, split into wet and dry seasons, and processed for a range of vegetation and multi-temporal indices for a total of 26 predictor layers. Training datasets included polygons developed from field surveys and high resolution imagery collected from 2010 - 2018. The domain was first split into estuarine and interior wetlands, then an open water, forest, or grassland model (high level) was developed for each wetland type. Finally, classification model that included species and community-level classes (fine level) was created. Mean overall accuracy was 0.90 and 0.80 for the high and low level models, respectively.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Domestic wastewater facilities that are permitted for wastewater to wetland discharge in Florida. These facilities are regulated by the Florida Department of Environmental Protection Domestic Wastewater Program. This data is intended to be used for general informational and planning purposes. For questions pertaining to this map, please contact Diana Turner at diana.m.turner@dep.state.fl.us.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data release includes geospatial data for irregularly flooded wetlands and high marsh and salt pannes/flats along the northern Gulf of Mexico coast from Texas to Florida. Specifically, this release includes seven products: (1) a map highlighting the continuous probability that an area is an irregularly flooded wetland; (2) a map of irregularly flooded wetland probability reclassified into four bins; (3) a map delineating high marsh and salt pannes/flats; (4) a map from Lake Pontchartrain, Louisiana to the Florida Big Bend delineating the coverage of irregularly flooded wetlands that have Juncus roemerianus (Black needlerush) as the dominant vegetation species; (5) a spatial metadata file showing what elevation data were used for specific locations; (6) a supplemental version of the high marsh and salt pannes/flats map that has a second class for high marsh for parts of Texas where succulents and Distichlis spicata were dominant species; and (7) a dataset of supplemental proje ...
The AHF system has been deployed in a series of survey campaigns to collect over 60,000 points covering Everglades National Park, Loxahatchee National Wildlife Refuge, Water Conservation Areas 2 and 3, portions of Big Cypress National Preserve, as well as areas along the Lake Okeechobee littoral zone. Since the AHF System is able to penetrate Everglades vegetation and water cover, it has provided an unprecedented regional view of Everglades topographic gradients and sub-water surface structure. These data are now being used to simulate Everglades water flow with higher resolution and greater accuracy, to estimate water depths in real-time for field study planning, and as input for habitat models used to forecast the effects of water level changes on various important species. The elevation data collected through this project also formed the basic input to generate a regional topographic surface that is the basis for the Everglades Depth Estimation Network (EDEN). These high accuracy elevation data are made available to anyone through the South Florida Information Access website (http://sofia.usgs.gov) data exchange pages.
MAP Activity Accomplishment The USGS Airborne Height Finder (AHF) System was used to perform topographic surveys in Water Conservation Area 3A within the extents of the Lone Palm Head and North of Lone Palm Head 7.5-minute topographic map quadrangles as specified in the MAP/COE Interagency Agreement. The AHF system has been used throughout South Florida for elevation data collection because traditional surveying methods are too difficult, too costly, or simply impossible to use in the harsh wetland environment and broadly inaccessible terrain of the Florida Everglades. This is especially true considering the shear size of the hydrodynamic and biological modeling domains. The AHF is a helicopter-based instrument that uses a GPS receiver, a computer, and a mechanized plumb bob to make measurements. These data were post processed to the reference stations that are part of the AHF geodetic control network. For reasons of accuracy, these reference stations are located no more then 15 kilometers from the helicopter during AHF operations. The GPS data were post processed using Ashtech’s PNAV On The Fly (OTF) software to obtain the trajectory of the AHF platform. These results are then processed through an in-house software package that separates the actual survey points and results from the trajectory. The points are manually checked to ensure data accuracy and completeness. Digital elevation models (DEMs) were then generated from the elevation point data. Existing elevation data derived from LiDAR data for this area were replaced with AHF derived DEMs for reasons of vertical accuracy. The DEMs have been posted on the South Florida Information Access (SOFIA) website: http://sofia.usgs.gov/exchange/desmond/desmondelev.html.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This group of layers was developed by the Balmoral Group and contains the natural, cultural, and historical resources critical assets layers for Florida as defined in 380.093(2)(a) Florida Statutes. The layers were sourced from various public State of Florida land use, Florida State Parks, State of Florida inventory of historical structures, and Federal Sources. Natural, cultural, and historical resources critical assets include conservation lands, parks, shorelines, surface waters, wetlands, and historical and cultural assets. Typically, the data are utilized in various vulnerability assessments in evaluating the exposure and sensitivity from combined events of sea level rise, precipitation, major storms, and flooding. The data will also be used in efforts to complete a comprehensive statewide assessment for the State of Florida.
Work conducted in 2008 will continue to establish baseline conditions for fish and macroinvertebrate communities in the mangrove creeks of Everglades National Park (ENP). This monitoring was begun in 2004, with the focus from 2004-2007 on testing methodologies and strategies for sampling fishes and macroinvertebrates in this difficult to-sample mangrove habitat. Findings from the 2004-2007 work showed electrofishing catch per unit effort (CPUE) provided a reliable estimator of large-bodied fish abundance and species richness at salinities below 15 (Loftus and Rehage 2007, Rehage and Loftus 2007). For the smaller species, our data showed that minnow trap CPUE provides an adequate estimate of forage-fish and macroinvertebrate abundance in the mangrove prop-root microhabitat. Results also showed that there is significant biotic connectivity between freshwater marshes and the oligohaline/mesohaline mangrove habitats, particularly along the Shark Slough-Shark River ecotone. These data indicate that mangrove creeks serve as important dry-season habitat for a variety of freshwater taxa. As upstream marshes dry, fishes and decapods move into mangrove creeks. We hypothesize that the timing and spatial extent of this movement into creeks is affected by the pattern and timing of water recession in marshes, and the effects of this recession on salinity levels in the creeks. We suspect that animal movements into creeks results in a shift in energy flow from avian predators in the wetlands to piscine predators in the creeks. Ecotonal creeks are deep (> 1m), and prey that move into creeks become unavailable to many wading birds, instead serving as prey for freshwater, estuarine, and marine fish predators (along with alligators). In 2008, we continue to test these hypotheses. Sampling in FY08 will result in additional sampling events and increase replication, which should enhance our ability to detect changes in the fish and macroinvertebrate community in relation to changes in key ecological drivers, namely freshwater inflow and salinity. In particular, our objectives for 2008 include: (1) Continue data collection begun in 2004 to provide pre-CERP baseline conditions for the fish and macroinvertebrate community inhabiting mangrove creeks; (2) Relate patterns of variation in the fish and macroinvertebrate community of creeks to key hydrological and physiochemical variables; (3) Continue to develop an integrated experimental design that will optimize effort and information utility, incorporating both spatial (across the landscape) and temporal (seasonal and interannual) variability; (4) Continue to work with other PIs to integrate our results with theirs in testing the key hypotheses in MAP II. II. Statement of work (abbreviated) This MAP activity will enhance the ongoing biological monitoring in freshwater and estuarine regions of ENP by providing data from an infrequently sampled habitat that provides both a source and a sink for wetland forage fishes that are prey for wading birds. Relatively little is known about the fish community inhabiting mangrove creeks in ecotonal and estuarine regions of southwest Florida. Small-scale inventory studies in several creek systems showed a mixed assemblage of marine, estuarine, and freshwater fishes (Tabb and Manning 1961, Tabb et al. 1962, McPherson 1970, Odum 1971, Loftus and Kushlan 1987), but those studies are not recent and mostly provided inventory data. Without understanding the factors that control the survival and abundance of those fishes once they are confined to this dry-season habitat, it is impossible to predict the effects of CERP actions on this prey base in the future. Similarly, this activity also provides the only data for freshwater and estuarine fishes that support a valuable sport fishery in south Florida. Without these data on the effects of hydrology and salinity variation on patterns of fish abundance and diversity, the effects of CERP on those key fishery species will not be science-based.
The Functional Wetlands dataset is based on wetlands identified in the Cooperative Land Cover Map v3.3. Functional wetlands are defined as those in a more natural state and the prioritization is based on overlap with a Land Use Intensity index and FNAI Potential Natural Areas. For more information see the Conservation Needs Assessment Technical Report: https://www.fnai.org/conslands/florida-forever. Value 1 = Priority 1 (Highest); Value 2 = Priority 2; Value 3 = Priority 3; Value 4 = Priority 4; Value 5 = Priority 5; Value 6 = Priority 6Data download page
A central prediction of the current Everglades restoration plan is that the return to natural flows and hydropatterns will result in large, sustainable breeding wading bird populations; a return to natural timing of nesting; and restoration of nesting in the coastal zone. The timing, location, size, and productivity of wading bird nesting will be monitored over the geographic range of the Everglades ecosystem. Monitoring methods will allow for comparison of historical and current information. The geographic regions monitored will include Florida Bay; mangrove estuaries and ecotone; freshwater marshes of ENP; WCAs 1, 2, and 3; Rotenberger and Holey Land; and BCNP.
Nesting of six wading bird species will be monitored: wood stork, white ibis, roseate spoonbill, snowy egret, great egret, and great white heron. These are the species for which the best historical comparisons exist for one or more of the parameters of interest: range of trophic levels, prey sizes, and foraging techniques used (Ogden, 1994; Frederick et al., 1996). Nesting will be monitored between January and late June of each year, with the exception of Florida Bay (November through June). However, there is the possibility that monitoring in the mainland areas will need to be expanded if wood storks begin nesting earlier than January. Evidence of early nesting (eggs or young) is likely to be discovered on January surveys, and timing of surveys will be adjusted accordingly.
The timing, location, and size of nesting events will be monitored using systematic aerial surveys followed by ground counts. Established techniques used in the freshwater marsh sections of the study area (Frederick et al., 2001) will be adapted to specific habitats in Big Cypress and the mainland mangrove estuary. Ground counts will focus on the largest colonies of each species based on the analysis of past years, which suggests that 90% of nesting birds are found on average in 3 to 33 colonies depending on the species (Frederick, personal communication). Accuracy in aerial counts of large colonies will be improved through the use of aerial photography followed by later counts of those photos (Frederick et al., in prep.).
Florida Bay. Roseate spoonbill and ibis nests in Florida Bay are generally located in dense red mangrove stands and are not generally visible from outside the colony. All islands that were previously reported to have had nesting colonies (Lorenz et al., 2001) will be surveyed monthly during the nesting season, and the number of nests will be counted. While traversing Florida Bay by boat, locations of roseate spoonbill and white ibis activity will be investigated for new nesting sites. The timing of colony surveys late in the incubation period and during mild climatic conditions and the limitation of time in an individual colony to less than one hour whenever possible will minimize impacts of surveys on colonies (Lorenz et al., 2001).
Roseate Spoonbill Foraging Location. In order to use nesting effort and nesting success as criteria for ecosystem evaluation, the location of primary foraging grounds must be monitored for each colony group (Lorenz et al., 2001). In order to identify the direction of foraging grounds from nesting colonies, flight line counts similar to those described by Dusi and Dusi (1978) will be made at the two largest colonies in each colony group. Flight line counts will yield an estimate of the proportion of birds using general areas (e.g., eastern, middle, or western mainland sites; mainline keys; etc.). To get more specific foraging locations, individual birds will be followed using a fixed-wing aircraft from their nesting colonies to the first foraging location. Flight line observation and following flights will also greatly aid in identifying new colony sights locations throughout the bay.
Refinement of Nest Survey and Counting Methods. Any periodic surveys are likely to lead to underestimates due to asynchronous nesting and the possibility that nests may start and fail in between survey dates. Comparing typical monthly survey schedules with a large sample of known nesting histories of individual nests shows that the monthly survey schedule that has been followed in the central Everglades since 1986 has been associated with a known correction factor, with annual variation in that correction factor of 26% above and below any annual estimate (Frederick et al., in prep.) Therefore, the resulting nesting population estimates are likely to be associated with this level of error. However, estimation of this error rate is based on only 2 – 4 years of information on marked nests, depending on species. The database of individual nest histories will be expanded in order to refine the estimation of error associated with monthly surveys. This involves close monitoring of individual nests at one or more colonies throughout the nesting season in order to measure both duration and seasonal timing of nesting attempts.
Vegetation mapping will monitor the spatial extent, pattern, and proportion of plant communities within major landscape regions of the Greater Everglades Wetlands. Specific landscape changes to be monitored that pertain to the CERP include the following: · Changes in the extent and orientation of sloughs, tree islands, and sawgrass ridges as flow patterns, flow volumes, hydroperiods, and water quality are modified in the ridge and slough landscape · Changes in the extent and distribution of cattail as flow patterns, flow volumes, hydroperiods, and water quality are modified in the ridge and slough landscape · Changes in the extent and distribution of exotic plant communities · Changes in the distribution and configuration of tidal creeks, salt marshes, and mangrove forests as changing flow patterns and volumes interact with sea level and salinity in the mangrove estuaries of Florida Bay and the Gulf of Mexico · Changes in the distribution of plant communities in calcitic wetlands, including tussock-forming Muhlenbergia and sawgrass communities in the major breeding locations of the Cape Sable seaside sparrow, as hydrologic gradients change · Changes in the distribution of plant communities of eastern Big Cypress with the removal of L-28 and hydroperiod restoration in the Kissimmee Billy Strand Regional landscape patterns will be monitored using a combination of a transect and sentinel site sampling design (Section 3.1.3.1) and a stratified random sampling design (Section 3.1.3.10). Aerial photo-interpretation is currently the best tool available to produce dependable and accurate maps of the Everglades (Welch et al. 1995, Doren et al. 1999, Rutchey and Vilchek 1999, Richardson and Harris 1995). Aerial photography of the greater Everglades wetland system at a scale of 1/24,000 will be purchased at three-year intervals. Photography will be interpreted and ground-truthed to produce vegetation maps at three-year intervals for the randomly selected cells. Additional cells will be mapped to supplement the stratified random cells along the alignments of the coastal, marl prairie -slough, and WCA gradients that are described above. The vegetation classification scheme of Jones et al. (unpublished report) will be used to identify major plant communities that are defined by typical dominant species.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
[DOWNLOAD ONLY] The South Florida Water Management District (District or SFWMD) and the U.S. Army Corps of Engineers have built six large treatment wetlands, referred to as Stormwater Treatment Wetlands (STAs), in the Everglades Agricultural Area (EAA) as part of a State and Federal initiative to protect the Everglades (Chimney and Goforth, 2001; Sklar et al., 2005). These treatment wetlands are intended to reduce high phosphorus concentrations in surface runoff coming from the EAA before this water reaches the northern portion of the present-day Everglades, i.e., the Water Conservations Areas. Each STA is subdivided into a number of treatment cells by interior levees.Treatment wetlands reduce the concentration of water-borne pollutants through natural bio-geochemical processes (Kadlec and Wallace, 2009). Wetland biogeochemistry, in turn, is intimately associated with the extent and condition of the wetland’s vegetation community (Reddy and DeLaune, 2009). Because of the important relationship between wetland treatment performance and vegetation, the vegetation communities in the STAs have been monitored throughout their operational histories. This effort was mandated as a condition of STA operating permits and by the Process Development and Engineering section of the District’s Long Term Plan (Burns & McDonnell, 2003).The vegetation communities in the STAs have been monitored using two different approaches: (1) vegetation maps were prepared for each STA based on the spatial distribution of different vegetation types interpreted from aerial photographs and (2) field surveys were conducted at a network of sites within each wetland to catalog plant taxa and assess vegetation areal coverage of the dominant taxa. The field-survey program was initiated as a cost-effective alternative to mapping for characterizing the plant community.For information about the imagery collection access this file: 2016 Imagery Collection in STAsFor details how the data was processed see the Lineage section.
Ten monitoring stations will be operated and maintained along the southwest coast of ENP, the Everglades wetlands, and along the coastlines of northeastern Florida Bay and northwest Barnes Sound. Data collected at these 10 stations will include water level, velocity, salinity, and temperature. Three stations (Upstream North River, North River, and West Highway Creek) will also include automatic samplers for the collection of water samples and determination of Total Nutrients (TN and TP). These 10 stations will complement information currently being generated through an existing network of 20 hydrologic monitoring stations of on-going USGS projects. By combining data collected from the ten monitoring stations and the existing monitoring network, information will be available across 9 generalized coastal gradients or transects. Data collected at all flow sites will be transmitted in near real time (every 1 or 4 hours) by way of satellite telemetry to the automated data processing system (ADAPS) database in the USGS Center for Water and Restoration Studies (CWRS) in Miami and available for CERP purposes. In addition to data from monitoring stations described above, salinity surveys will be performed along these 9 generalized transects, and these will include salinity, temperature, and GPS data from boat-mounted systems. Surveys will be performed regularly on a quarterly basis and twice following hydrologic events, totaling a maximum of 6 surveys per year.
The Water Resources Development Act (WRDA) of 2000 authorized the Comprehensive Everglades Restoration Plan (CERP) as a framework for modifications and operational changes to the Central and Southern Florida Project needed to restore the south Florida ecosystem. Provisions within WRDA 2000 provide for specific authorization for an adaptive assessment and monitoring program. A Monitoring and Assessment Plan (MAP) has been developed as the primary tool to assess the system-wide performance of the CERP by the REstoration, COordination and VERification (RECOVER) program. The MAP presents the monitoring and supporting enhancement of scientific information and technology needed to measure the responses of the South Florida ecosystem. The MAP also presents the system-wide performance measures representative of the natural and human systems found in South Florida that will be evaluated to help determine the success of CERP. These system-wide performance measures address the responses of the South Florida ecosystem that the CERP is explicitly designed to improve, correct, or otherwise directly affect. A separate Performance Measure Documentation Report being prepared by RECOVER provides the scientific, technical, and legal basis for the performance measures. This project is intended to support the Greater Everglades (GE) Wetlands module of the MAP and is directly linked to the monitoring or supporting enhancement component In 2003, CERP MAP funding through the South Florida Water Management District established 10 monitoring stations as part of the Coastal Gradients Network. The purpose of this MAP project with the USACE is to continue operation of these 10 stations for the MAP activities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project consists of 5 files, a ReadMe (text) and four geospatial shapefiles generated in ArcPro 3.0.4. (ESRI). Two shapefiles depict the distribution and spatial extent of artificial water features (AWFs, e.g., reservoirs, stormwater retention ponds) in the 1950s and in 2007 in the Tampa Bay Watershed. The other two depict the distribution and spatial extent of wetlands in the 1950s and in 2007 in the Tampa Bay Watershed. We used a combination of heads-up digitizing (while observing 1950s aerial black and white aerial imagery) and reference to ancillary datasets to map wetlands and AWFs in the 1950s. We based the wetlands 2007 map off the land use land cover dataset published by SWFWMD (2008). We similarly based the 2007 AWF dataset on the SWFWMD LULC dataset but additionally digitized AWF features while referencing aerial imagery and products supplied by the Mosaic Company.Additional method descriptions can be found in Rains et al. 2013 (wetland datasets, https://link.springer.com/article/10.1007/s13157-013-0455-4) and in Rains et al. (2023) titled Reorganizing the waterscape: asymmetric loss of wetlands and gain of artificial water features in a mixed-use watershed (AWF and change datasets). We initially developed the two wetland datasets, in collaboration with the Balmoral Group, to support a wetland area change analysis in the Tampa Bay Watershed. We subsequently used these datasets in our present work (Rains et al. 2023) to analyze change in wetland distribution, configuration, and geometry (e.g., perimeter length). The wetland datasets are not meant as a map of jurisdictional wetlands.
This map/layer/application highlights marsh productivity/vegetation with sea level rise in the panhandle of Florida, including the following counties: Gulf, Franklin, Wakulla, Jefferson, Taylor. This uses the Hydro-MEM (Hydrodynamic-Marsh Equilibrium Model) (Alizad and others, 2016a; 2016b), the wetlands system within the Apalachicola-Big-Bend (ABB) region of Florida (FL) was assessed using initial and three sea-level rise (SLR) scenarios from the National Oceanic and Atmospheric Administration (NOAA) (Sweet and others, 2017). These scenarios are the intermediate-low (int-low) scenario projects 50 centimeters (cm) of SLR by 2100, the intermediate (int) scenario projects 1 meter (m) of SLR by 2100, and the intermediate-high (int-high) scenario projects 1.5 m of SLR by 2100. The Hydro-MEM output includes vegetation, productivity, and migration outputs for 2020, 2040, 2060, 2080, and 2100.These data are associated with the N2E2 project. They are intended for geographic representation and analysis of potential ecosystem service losses due to sea-level rise related stresses under present-day and future scenarios. Data is intended to inform state, regional, and local governments planning coastal habitat conservation, restoration, and assessment.
FEMA Flood ZonesFlorida Wetlands
This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the United States and its Territories. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). The National Wetlands Inventory - Version 2, Surface Waters and Wetlands Inventory was derived by retaining the wetland and deepwater polygons that compose the NWI digital wetlands spatial data layer and reintroducing any linear wetland or surface water features that were orphaned from the original NWI hard copy maps by converting them to narrow polygonal features. Additionally, the data are supplemented with hydrography data, buffered to become polygonal features, as a secondary source for any single-line stream features not mapped by the NWI and to complete segmented connections. Wetland mapping conducted in WA, OR, CA, NV and ID after 2012 and most other projects mapped after 2015 were mapped to include all surface water features and are not derived data. The linear hydrography dataset used to derive Version 2 was the U.S. Geological Survey's National Hydrography Dataset (NHD). Specific information on the NHD version used to derive Version 2 and where Version 2 was mapped can be found in the 'comments' field of the Wetlands_Project_Metadata feature class. Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery. By policy, the Service also excludes certain types of "farmed wetlands" as may be defined by the Food Security Act or that do not coincide with the Cowardin et al. definition. Contact the Service's Regional Wetland Coordinator for additional information on what types of farmed wetlands are included on wetland maps. This dataset should be used in conjunction with the Wetlands_Project_Metadata layer, which contains project specific wetlands mapping procedures and information on dates, scales and emulsion of imagery used to map the wetlands within specific project boundaries. Please reference the metadata for contact information.