41 datasets found
  1. c

    FID move Research Data Repository

    • catalog.civicdataecosystem.org
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). FID move Research Data Repository [Dataset]. https://catalog.civicdataecosystem.org/dataset/fid-move-research-data-repository
    Explore at:
    Dataset updated
    Apr 22, 2025
    Description

    Since 2018, the Specialised Information Service for Mobility and Transport Research (FID move) has been established by the Saxon State and University Library Dresden (SLUB) and the TIB – Leibniz Information Centre for Science and Technology as part of the DFG funding program "Specialised Information Services for Science". The FID move aims to develop and establish services and online tools in close consultation with the transport and mobility science community, that support this community in the entire research cycle. Research data are the fuel of scientific progress, and especially in mobility and transport research, there would be no progress without them. This makes it all the more important to increase the availability, findability, and accessibility of reusable research data. To this end, the FID move has developed a Research Data Repository based on the open-source software CKAN, which provides a simple and low-barrier opportunity for data publication according to the FAIR Data Principles. Do you have any questions about the Research Data Repository, data publication and curation, or research data management in general? Then please feel free to contact us by phone or at the email address below. We will be happy to help you. Provider of the Repository: Technische Informationsbibliothek (TIB) Welfengarten 1 B 30167 Hannover Germany Contact: Mathias Begoin Tel.: 0511 762-14140 E-Mail: forschungsdaten@fid-move.de Translated from German Original Text: Der Fachinformationsdienst Mobilitäts- und Verkehrsforschung (FID move) wird seit 2018 von der Sächsischen Landesbibliothek – Staats und Universitätsbibliothek Dresden (SLUB) und der Technischen Informationsbibliothek Hannover (TIB) im Rahmen des DFG-Förderprogramms "Fachinformationsdienste für die Wissenschaft" aufgebaut. Ziel des FID move ist es, in enger Abstimmung mit der verkehrs- und mobilitätswissenschaftlichen Fachcommunity, Dienstleistungen und Online-Werkzeuge zu entwickeln und aufzubauen, die diese im gesamten Forschungskreislauf unterstützen. Forschungsdaten sind der Treibstoff des wissenschaftlichen Fortschritts und insbesondere in der Mobilitäts- und Verkehrsforschung würde es ohne sie nicht vorwärts gehen. Umso wichtiger ist es, die Verfügbarkeit, Auffindbarkeit und Zugänglichkeit nachnutzbarer Forschungsdaten zu erhöhen. Hierzu wurde im FID move ein Forschungsdatenrepositorium auf Basis der Open-Source-Software CKAN entwickelt, welches eine einfache und niederschwellige Möglichkeit zur Datenpublikation nach FAIR-Data-Prinzipien ermöglicht. Haben Sie Fragen zum Forschungsdatenrepositorium, zu Datenpublikation und -kuratierung oder zum Forschungsdatenmanagement allgemein? Dann kontaktieren Sie uns gerne telefonisch oder unter der unten angegebenen E-Mail-Adresse. Wir helfen Ihnen gerne weiter. Anbieter des Repositoriums: Technische Informationsbibliothek (TIB) Welfengarten 1 B 30167 Hannover Deutschland Ansprechpartner und Kontakt: Mathias Begoin Tel.: 0511 762-14140 E-Mail: forschungsdaten@fid-move.de

  2. Data Repository

    • figshare.com
    hdf
    Updated Sep 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gregory Quetin (2024). Data Repository [Dataset]. http://doi.org/10.6084/m9.figshare.24415966.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Gregory Quetin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Processed data connected with A moving target: trade-offs between maximizing carbon and minimizing hydraulic stress for plants in a changing climate

  3. D

    Data repository for "Simulating Quantum State Transfer between Distributed...

    • darus.uni-stuttgart.de
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marvin Bechtold; Johanna Barzen; Frank Leymann; Alexander Mandl (2025). Data repository for "Simulating Quantum State Transfer between Distributed Devices using Noisy Interconnects" [Dataset]. http://doi.org/10.18419/DARUS-5034
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    DaRUS
    Authors
    Marvin Bechtold; Johanna Barzen; Frank Leymann; Alexander Mandl
    License

    https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-5034https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-5034

    Dataset funded by
    BMWK
    Description

    This dataset provides reproduction code and experimental data for the publication "Simulating Quantum State Transfer between Distributed Devices using Noisy Interconnects". The repository contains an exact snapshot of the code version used to generate all results in the paper, ensuring full reproducibility. The repository is organized into three zip archives: code.zip: Contains the code used to generate and evaluate the data. This archive includes a README with instructions on how to use the code and integrate the two data archives. data_quantum_devices.zip:Contains the raw and partially preprocessed experimental data obtained from quantum devices, as well as calibration data for the devices. data_simulations.zip: Contains experimental data generated from simulations. For reference, this dataset includes a separate PDF file for each figure presented in the publication. These files were generated directly from the enclosed code and data, and they serve as benchmarks for visually verifying reproduced results.

  4. o

    CoreTrustSeal Revision Working Group Change Log and Associated Materials

    • explore.openaire.eu
    Updated Aug 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoreTrustSeal Standards and Certification Board (2022). CoreTrustSeal Revision Working Group Change Log and Associated Materials [Dataset]. http://doi.org/10.5281/zenodo.7051230
    Explore at:
    Dataset updated
    Aug 30, 2022
    Authors
    CoreTrustSeal Standards and Certification Board
    Description

    These are the outputs of the CoreTrustSeal Revision Working Group and describe the CoreTrustSeal Requirements 2023-2025 and a change log of the revisions made with respect to the CoreTrustSeal Requirements 2020-2022. The CoreTrustSeal Requirements describe the characteristics required to be a trustworthy repository for digital data and metadata. Each Requirement is accompanied by Guidance text describing the response statements and evidence that applicants must provide to enable an objective review. Applicants must respond to all of the Requirements.

  5. Providing researchers with online access to NHLBI biospecimen collections:...

    • plos.figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll (2023). Providing researchers with online access to NHLBI biospecimen collections: The results of the first six years of the NHLBI BioLINCC program [Dataset]. http://doi.org/10.1371/journal.pone.0178141
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The National Heart, Lung, and Blood Institute (NHLBI), within the United States’ National Institutes of Health (NIH), established the Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) in 2008 to develop the infrastructure needed to link the contents of the NHLBI Biorepository and the NHLBI Data Repository, and to promote the utilization of these scientific resources by the broader research community. Program utilization metrics were developed to measure the impact of BioLINCC on Biorepository access by researchers, including visibility, program efficiency, user characteristics, scientific impact, and research types. Input data elements were defined and are continually populated as requests move through the process of initiation through fulfillment and publication. This paper reviews the elements of the tracking metrics which were developed for BioLINCC and reports the results for the first six on-line years of the program.

  6. u

    Data from: SDR-based IoT Communication Systems: An Application for the DASH7...

    • repository.uantwerpen.be
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joosens, Dennis; BniLam, Noori; Weyn, Maarten; Berkvens, Rafael (2024). SDR-based IoT Communication Systems: An Application for the DASH7 Alliance Protocol [Dataset]. http://doi.org/10.5281/ZENODO.10961311
    Explore at:
    Dataset updated
    2024
    Dataset provided by
    University of Antwerp
    Faculty of Sciences. Mathematics and Computer Science
    Faculty of Applied Engineering Sciences
    Zenodo
    Authors
    Joosens, Dennis; BniLam, Noori; Weyn, Maarten; Berkvens, Rafael
    Description

    This repository contains a cabled, indoor (office environment) and an outdoor (suburban) DASH7 data set. All data sets are formatted as sigmf-data and sigmf-meta files which can be investigated with IQEngine, GNU Radio or MATLAB. The original samples were recorded as complex float 32-bit samples and have been converted to complex signed int 16-bit samples. Below you can find a more extended description of the data sets.

  7. f

    Requestor characteristics by website year.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll (2023). Requestor characteristics by website year. [Dataset]. http://doi.org/10.1371/journal.pone.0178141.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Requestor characteristics by website year.

  8. Z

    Data repository for "Climate change increases the severity and duration of...

    • data.niaid.nih.gov
    Updated Feb 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOULE Daniel (2022). Data repository for "Climate change increases the severity and duration of soil water stress in the temperate forest of eastern North America" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6059350
    Explore at:
    Dataset updated
    Feb 19, 2022
    Dataset provided by
    CHOLET Cybèle
    MAHEU Audrey
    SYLVAIN Jean-Daniel
    HOULE Daniel
    DOYON Frédérik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North America
    Description

    Dataset provided for publication in Frontiers in Forests and Global Change : "Climate change increases the severity and duration of soil water stress in the temperate forest of eastern North America".

  9. d

    Data from: Combining climate, land use change and dispersal to predict the...

    • datadryad.org
    • data.niaid.nih.gov
    • +2more
    zip
    Updated Jan 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesca Della Rocca; Pietro Milanesi (2021). Combining climate, land use change and dispersal to predict the distribution of endangered species with limited vagility [Dataset]. http://doi.org/10.5061/dryad.9zw3r229v
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 27, 2021
    Dataset provided by
    Dryad
    Authors
    Francesca Della Rocca; Pietro Milanesi
    Time period covered
    2020
    Description

    Aim: Many rare species are dispersal-limited and minimal land use and climate changes can impact their colonization capacity. Most ecological niche models predict the distribution of species under future climate and land use change scenarios without incorporating specie-specific dispersal abilities. Here we investigated the effect of climate and land use change on low vagile species accounting for their dispersal capacity and defined accessible areas in the future.

    Location: Europe.

    Taxon: Saproxylic beetles.

    Methods: We used the current (2007-2012) occurrences of six endangered saproxylics to develop ecological niche models using current climate and land use conditions. We projected species distributions under four future climate and land use change scenarios to estimate their potential occurrences. Finally, accounting for species-specific dispersal, we limited their distributions to accessible areas in 2040-50.

    Results: Without accounting for dispersal abilities we found a strong ...

  10. D

    Figure 02

    • research.repository.duke.edu
    Updated Feb 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick (2019). Figure 02 [Dataset]. http://identifiers.org/ark:/87924/r4wm17m15
    Explore at:
    Dataset updated
    Feb 22, 2019
    Dataset provided by
    Duke Digital Repository
    Authors
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SWAP efficiency tau_alpha^std/tau_alpha^swap as a function of the relaxation time for the standard dynamics (representing the sluggishness) for different polydispersities in d=3, 4, 5, and 6.

  11. d

    Updated Sixth Water/Diamond Fork data repository

    • search.dataone.org
    • hydroshare.org
    Updated Apr 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jabari C Jones; Jacob Stout; Patrick Belmont; Todd L Blythe; Peter Wilcock (2022). Updated Sixth Water/Diamond Fork data repository [Dataset]. http://doi.org/10.4211/hs.f3a2cbfaa5694dadab26ea3e42a21a2f
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jabari C Jones; Jacob Stout; Patrick Belmont; Todd L Blythe; Peter Wilcock
    Area covered
    Description

    Datasets generated during and after Jabari Jones' Master's thesis at Utah State University, focused on channel change of Sixth Water Creek and Diamond Fork River, Utah, USA (Jones, J.C., 2018. Historical channel change caused by a century of flow alteration on Sixth Water Creek and Diamond Fork River, UT. Master's thesis, Utah State University). This resource includes data collected in the field as well as data generated in GIS. Field data include cross-section surveys, RTK GPS surveys, sediment transport measurements, bed grain size analysis, and unmanned aerial vehicle (drone) photography. GIS data include shapefiles generated from aerial imagery, digital elevation models, and data generated to evaluate incision of the Sixth Water valley. Data were collected and generated between July 2016 and November 2021 All data, metadata and related materials meet the quality standards relative to the purpose for which they were collected and generated.

    Data added to this updated resource include channel width measurements from 2018 aerial photographs, regional width analysis from 2018 aerial photographs, and an analysis of incision in the Sixth Water and Upper Diamond Fork valleys.

  12. Upcoming Reporting Cadence Change - kr7q-a5ak - Archive Repository

    • healthdata.gov
    application/rdfxml +5
    Updated Oct 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Upcoming Reporting Cadence Change - kr7q-a5ak - Archive Repository [Dataset]. https://healthdata.gov/dataset/Upcoming-Reporting-Cadence-Change-kr7q-a5ak-Archiv/hzek-f9aw
    Explore at:
    tsv, json, csv, application/rdfxml, application/rssxml, xmlAvailable download formats
    Dataset updated
    Oct 14, 2023
    Description

    This dataset tracks the updates made on the dataset "Upcoming Reporting Cadence Change" as a repository for previous versions of the data and metadata.

  13. D

    Figure SI06

    • research.repository.duke.edu
    Updated Feb 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick (2019). Figure SI06 [Dataset]. http://identifiers.org/ark:/87924/r4vq2x33s
    Explore at:
    Dataset updated
    Feb 22, 2019
    Dataset provided by
    Duke Digital Repository
    Authors
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SWAP efficiency tau_alpha^std/tau_alpha^swap as a function of the degree of polydispersity at different values of tau_alpha^std.

  14. Skilled Nursing Facility Change of Ownership - 46n6-vw3c - Archive...

    • healthdata.gov
    application/rdfxml +5
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Skilled Nursing Facility Change of Ownership - 46n6-vw3c - Archive Repository [Dataset]. https://healthdata.gov/dataset/Skilled-Nursing-Facility-Change-of-Ownership-46n6-/ieuy-43mu
    Explore at:
    tsv, csv, application/rssxml, application/rdfxml, xml, jsonAvailable download formats
    Dataset updated
    Jun 27, 2025
    Description

    This dataset tracks the updates made on the dataset "Skilled Nursing Facility Change of Ownership" as a repository for previous versions of the data and metadata.

  15. f

    Reasons biospecimen requests were not fulfilled, by website year.

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll (2023). Reasons biospecimen requests were not fulfilled, by website year. [Dataset]. http://doi.org/10.1371/journal.pone.0178141.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Carol A. Giffen; Elizabeth L. Wagner; John T. Adams; Denise M. Hitchcock; Lisbeth A. Welniak; Sean P. Brennan; Leslie E. Carroll
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reasons biospecimen requests were not fulfilled, by website year.

  16. T

    Change in Retail Trade: Miscellaneous Store Retailers Payroll Employment in...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Change in Retail Trade: Miscellaneous Store Retailers Payroll Employment in Texas [Dataset]. https://tradingeconomics.com/united-states/change-in-retail-trade-miscellaneous-store-retailers-payroll-employment-in-texas-fed-data.html
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Apr 18, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Texas
    Description

    Change in Retail Trade: Miscellaneous Store Retailers Payroll Employment in Texas was -0.74982 Thous. of Persons in July of 2022, according to the United States Federal Reserve. Historically, Change in Retail Trade: Miscellaneous Store Retailers Payroll Employment in Texas reached a record high of 5.45718 in May of 2020 and a record low of -18.68742 in April of 2020. Trading Economics provides the current actual value, an historical data chart and related indicators for Change in Retail Trade: Miscellaneous Store Retailers Payroll Employment in Texas - last updated from the United States Federal Reserve on June of 2025.

  17. D

    Figure 01

    • research.repository.duke.edu
    Updated Feb 22, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick (2019). Figure 01 [Dataset]. http://identifiers.org/ark:/87924/r41c1z746
    Explore at:
    Dataset updated
    Feb 22, 2019
    Dataset provided by
    Duke Digital Repository
    Authors
    Kundu, Joyjit; Berthier, Ludovic; Charbonneau, Patrick
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Structural relaxation time tau_alpha for the standard and the SWAP dynamics for various particle size distributions P(sigma) with delta = 10% in d = 4.

  18. CGM Scoping Review Data Repository

    • zenodo.org
    bin
    Updated Sep 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PhD Michelle R Jospe; PhD Michelle R Jospe; RDN Kelli M Richardson; RDN Kelli M Richardson; Ahlam A Saleh, MD, MLS; Ahlam A Saleh, MD, MLS; Yue Liao, MPH, PhD, CPH; Yue Liao, MPH, PhD, CPH; Susan M Schembre; Susan M Schembre (2023). CGM Scoping Review Data Repository [Dataset]. http://doi.org/10.5281/zenodo.8357554
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    PhD Michelle R Jospe; PhD Michelle R Jospe; RDN Kelli M Richardson; RDN Kelli M Richardson; Ahlam A Saleh, MD, MLS; Ahlam A Saleh, MD, MLS; Yue Liao, MPH, PhD, CPH; Yue Liao, MPH, PhD, CPH; Susan M Schembre; Susan M Schembre
    Description

    This dataset represents the data extracted as part of a CGM-based biological feedback scoping review.

  19. Z

    Reproducibility data for a study of regulatory statements in EU legislation

    • data.niaid.nih.gov
    Updated Jul 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christiaan Meijer (2024). Reproducibility data for a study of regulatory statements in EU legislation [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_8200000
    Explore at:
    Dataset updated
    Jul 17, 2024
    Dataset provided by
    Jens Blom-Hansen
    Kody Moodley
    Christiaan Meijer
    Gijs Jan Brandsma
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    European Union
    Description

    Reproducibility data for a quantitative study on EU legislation

    The files in this repository were generated or used in a pipeline of analysis operations on EU legislation published between 1971 and 2022. The project is called the Nature of EU Rules which seeks to analyse the "strictness" and density of EU regulations over time and by legal policy area. The data has been made available to help make the results of our study reproducible by other researchers. The underlying data used in the study has also been published in this repository.

    File descriptions

    complete_training_data.csv

    This file is training data for binary classification of specific sentences in EU legislation as either regulatory in nature (constituting a legal obligation for some agent) or not (called a constitutive statement). The sentences have been labelled by EU law professors from Aarhus University in Denmark and Radboud University in the Netherlands

    Note: The file also contains columns for identifying the specific agent being regulated (to which the legal obligation applies) in each sentence. However, this information has not been used in the study

    extracted_sentences_classified_1971_2022.csv

    List of sentences extracted from EU legislation documents

    Classification results for individual sentences whether each is regulatory or not. There are two columns recording the classification results, one for a rule-based approach (using grammatical dependency parsing) and one for a LegalBERT classification approach.

    inlegal_bert_xgboost_classifier.json

    Trained binary classification model for classifying sentences as regulatory or not (based on InlegalBERT).

    Note: this model is trained on the file 'complete_training_data.csv' in this Zenodo repo

    Model was trained using this script and used by these scripts: one, two

    metadata_enriched.csv

    Metadata file from this repository but enriched with additional columns one of which is the count of regulatory sentences in each individual document

    File is generated by this script

    File is used by this script

    classification_results_all_algorithms_test_set.csv

    classification results of each sentence in the test set containing 1451 sentences (20% of training set)

    according to both the fine-tuned Legal-BERT model and the dependency parsing (rule-based) algorithm

    also contains the ground truth labels

    Github repositories relevant to this analysis

    The Python scripts in the following Github repositories were responsible for generating the data files in this Zenodo repository. The first repository listed is the core one for running the pipeline to classify and quantitatively analyse legal obligations in EU legislation. The other listed Github repositories represent components or steps of the pipeline.

    http://github.com/nature-of-eu-rules/eu-legislation-strictness-analysis

    http://github.com/nature-of-eu-rules/data-extraction

    http://github.com/nature-of-eu-rules/data-preprocessing

    http://github.com/nature-of-eu-rules/regulatory-statement-classification

  20. m

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • bridges.monash.edu
    • researchdata.edu.au
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg (2023). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    PublicationPrimahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387Description of R codes and data files in the repositoryThis repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt. Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). FID move Research Data Repository [Dataset]. https://catalog.civicdataecosystem.org/dataset/fid-move-research-data-repository

FID move Research Data Repository

Explore at:
Dataset updated
Apr 22, 2025
Description

Since 2018, the Specialised Information Service for Mobility and Transport Research (FID move) has been established by the Saxon State and University Library Dresden (SLUB) and the TIB – Leibniz Information Centre for Science and Technology as part of the DFG funding program "Specialised Information Services for Science". The FID move aims to develop and establish services and online tools in close consultation with the transport and mobility science community, that support this community in the entire research cycle. Research data are the fuel of scientific progress, and especially in mobility and transport research, there would be no progress without them. This makes it all the more important to increase the availability, findability, and accessibility of reusable research data. To this end, the FID move has developed a Research Data Repository based on the open-source software CKAN, which provides a simple and low-barrier opportunity for data publication according to the FAIR Data Principles. Do you have any questions about the Research Data Repository, data publication and curation, or research data management in general? Then please feel free to contact us by phone or at the email address below. We will be happy to help you. Provider of the Repository: Technische Informationsbibliothek (TIB) Welfengarten 1 B 30167 Hannover Germany Contact: Mathias Begoin Tel.: 0511 762-14140 E-Mail: forschungsdaten@fid-move.de Translated from German Original Text: Der Fachinformationsdienst Mobilitäts- und Verkehrsforschung (FID move) wird seit 2018 von der Sächsischen Landesbibliothek – Staats und Universitätsbibliothek Dresden (SLUB) und der Technischen Informationsbibliothek Hannover (TIB) im Rahmen des DFG-Förderprogramms "Fachinformationsdienste für die Wissenschaft" aufgebaut. Ziel des FID move ist es, in enger Abstimmung mit der verkehrs- und mobilitätswissenschaftlichen Fachcommunity, Dienstleistungen und Online-Werkzeuge zu entwickeln und aufzubauen, die diese im gesamten Forschungskreislauf unterstützen. Forschungsdaten sind der Treibstoff des wissenschaftlichen Fortschritts und insbesondere in der Mobilitäts- und Verkehrsforschung würde es ohne sie nicht vorwärts gehen. Umso wichtiger ist es, die Verfügbarkeit, Auffindbarkeit und Zugänglichkeit nachnutzbarer Forschungsdaten zu erhöhen. Hierzu wurde im FID move ein Forschungsdatenrepositorium auf Basis der Open-Source-Software CKAN entwickelt, welches eine einfache und niederschwellige Möglichkeit zur Datenpublikation nach FAIR-Data-Prinzipien ermöglicht. Haben Sie Fragen zum Forschungsdatenrepositorium, zu Datenpublikation und -kuratierung oder zum Forschungsdatenmanagement allgemein? Dann kontaktieren Sie uns gerne telefonisch oder unter der unten angegebenen E-Mail-Adresse. Wir helfen Ihnen gerne weiter. Anbieter des Repositoriums: Technische Informationsbibliothek (TIB) Welfengarten 1 B 30167 Hannover Deutschland Ansprechpartner und Kontakt: Mathias Begoin Tel.: 0511 762-14140 E-Mail: forschungsdaten@fid-move.de

Search
Clear search
Close search
Google apps
Main menu