Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From 20 October 2023, COVID-19 datasets will no longer be updated.
Detailed information is available in the fortnightly NSW Respiratory Surveillance Report: https://www.health.nsw.gov.au/Infectious/covid-19/Pages/reports.aspx.
Latest national COVID-19 spread, vaccination and treatment metrics are available on the Australian Government Health website: https://www.health.gov.au/topics/covid-19/reporting?language=und
COVID-19 cases by notification date and postcode, local health district, and local government area. The dataset is updated weekly on Fridays.
The data is for confirmed COVID-19 cases only based on location of usual residence, not necessarily where the virus was contracted.
Case counts reported by NSW Health for a particular notification date may vary over time due to ongoing investigations and the outcome of cases under review thus this dataset and any historical data contained within is subject to change on a daily basis.
The underlying dataset was assessed to measure the risk of identifying an individual and the level of sensitivity of the information gained if it was known that an individual was in the dataset. The dataset was then treated to mitigate these risks, including suppressing and aggregating data.
This dataset does not include cases with missing location information.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NSW has been hit by the Omicron variant, with skyrocketing cases. This dataset, updated regularly, details the location of positive cases. A prediction of where the most cases could occur can be derived from this dataset and a potential prediction of how many cases there is likely to be.
notification_date: Text, dates to when the positive case was notified of a positive test result. postcode: Text, lists the postcode of the positive case. lhd_2010_code: Text, the code of the local health district of the positive case. lhd_2010_name: Text, the name of the local health district of the positive case. lga_code19: Text, the code of the local government area of the positive case. lga_name19: Text, the name of the local government area of the positive case.
Thanks to NSW Health for providing and updating the dataset.
The location of cases is highly important in NSW. In mid-2021, Western Sydney had the highest proportion of COVID-19 cases with many deaths ensuing. Western Sydney is one of Sydney's most diverse areas, with many vulnerable peoples. The virus spread to western NSW, imposing a risk to the Indigenous communities. With location data, a prediction service can be made to forecast the areas at risk of transmission.
Facebook
TwitterA preprint paper describing scenarios which generated this dataset can be accessed here: https://arxiv.org/abs/2107.06617. Please cite this work when using the dataset:
S. L. Chang, C. Zachreson, O. M. Cliff, M. Prokopenko, Simulating transmission scenarios of the Delta variant of SARS-CoV-2 in Australia, arXiv: 2107.06617, 2021.
Abstract. An outbreak of the Delta (B.1.617.2) variant of SARS-CoV-2 that began around mid-June 2021 in Sydney, Australia, quickly developed into a nation-wide epidemic. The ongoing epidemic is of major concern as the Delta variant is more infectious than previous variants that circulated in Australia in 2020. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, including case isolation, home quarantine, school closures, and stay-at-home restrictions (i.e., "social distancing"). Our modelling indicated that the levels of reduced interactions in workplaces and across communities attained in Sydney and other parts of the nation were inadequate for controlling the outbreak. A counter-factual analysis suggested that if 70% of the population followed tight stay-at-home restrictions, then at least 45 days would have been needed for new daily cases to fall from their peak to below ten per day. Our model successfully predicted that, under a progressive vaccination rollout, if 40-50% of the Australian population follow stay-at-home restrictions, the incidence will peak by mid-October 2021. We also quantified an expected burden on the healthcare system and potential fatalities across Australia.
The AMTraC-19 source code (v7.7d) is released on Zenodo: https://zenodo.org/record/5778218
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1. Data used to analyse the association between weather variables and reported cases of COVID-19 caused by the B.1.617.2 (delta) variant of SARS-CoV-2 in Sydney, Australia between June and September 2021.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An outbreak of the Delta (B.1.617.2) variant of SARS-CoV-2 that began around mid-June 2021 in Sydney, Australia, quickly developed into a nation-wide epidemic. The ongoing epidemic is of major concern as the Delta variant is more infectious than previous variants that circulated in Australia in 2020. Using a re-calibrated agent-based model, we explored a feasible range of non-pharmaceutical interventions, including case isolation, home quarantine, school closures, and stay-at-home restrictions (i.e., “social distancing.”) Our modelling indicated that the levels of reduced interactions in workplaces and across communities attained in Sydney and other parts of the nation were inadequate for controlling the outbreak. A counter-factual analysis suggested that if 70% of the population followed tight stay-at-home restrictions, then at least 45 days would have been needed for new daily cases to fall from their peak to below ten per day. Our model predicted that, under a progressive vaccination rollout, if 40–50% of the Australian population follow stay-at-home restrictions, the incidence will peak by mid-October 2021: the peak in incidence across the nation was indeed observed in mid-October. We also quantified an expected burden on the healthcare system and potential fatalities across Australia.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From 20 October 2023, COVID-19 datasets will no longer be updated.
Detailed information is available in the fortnightly NSW Respiratory Surveillance Report: https://www.health.nsw.gov.au/Infectious/covid-19/Pages/reports.aspx.
Latest national COVID-19 spread, vaccination and treatment metrics are available on the Australian Government Health website: https://www.health.gov.au/topics/covid-19/reporting?language=und
COVID-19 cases by notification date and postcode, local health district, and local government area. The dataset is updated weekly on Fridays.
The data is for confirmed COVID-19 cases only based on location of usual residence, not necessarily where the virus was contracted.
Case counts reported by NSW Health for a particular notification date may vary over time due to ongoing investigations and the outcome of cases under review thus this dataset and any historical data contained within is subject to change on a daily basis.
The underlying dataset was assessed to measure the risk of identifying an individual and the level of sensitivity of the information gained if it was known that an individual was in the dataset. The dataset was then treated to mitigate these risks, including suppressing and aggregating data.
This dataset does not include cases with missing location information.