100+ datasets found
  1. Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, Global
    Description

    Snapshot img

    Synthetic Data Generation Market Size 2025-2029

    The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.

    The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.

    What will be the Size of the Synthetic Data Generation Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security. Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development. The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.

    How is this Synthetic Data Generation Industry segmented?

    The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)

    By End-user Insights

    The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research

  2. Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035...

    • rootsanalysis.com
    Updated Sep 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/synthetic-data-generation-market
    Explore at:
    Dataset updated
    Sep 28, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The global synthetic data market size is projected to grow from USD 0.4 billion in the current year to USD 19.22 billion by 2035, representing a CAGR of 42.14%, during the forecast period till 2035

  3. Synthetic Data Market Size & Share Analysis - Industry Research Report -...

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2024). Synthetic Data Market Size & Share Analysis - Industry Research Report - Growth Trends [Dataset]. https://www.mordorintelligence.com/industry-reports/synthetic-data-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 30, 2024
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Synthetic Data is Segmented by Data Type (Tabular, Text/NLP, Image and Video, and More), Offering (Fully Synthetic, Partially Synthetic/Hybrid), Technology (GANs, Diffusion Models, and More), Deployment Mode (Cloud, On-Premise), Application (AI/ML Training and Development, and More), End User Industry (BFSI, Healthcare and Life-Sciences, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).

  4. Data from: Synthetic time series data generation for edge analytics

    • zenodo.org
    bin
    Updated Nov 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subarmaniam Kannan; Subarmaniam Kannan (2021). Synthetic time series data generation for edge analytics [Dataset]. http://doi.org/10.5281/zenodo.5673806
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 25, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Subarmaniam Kannan; Subarmaniam Kannan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this research, we create synthetic data with features that are like data from IoT devices. We use an existing air quality dataset that includes temperature and gas sensor measurements. This real-time dataset includes component values for the Air Quality Index (AQI) and ppm concentrations for various polluting gas concentrations. We build a JavaScript Object Notation (JSON) model to capture the distribution of variables and structure of this real dataset to generate the synthetic data. Based on the synthetic dataset and original dataset, we create a comparative predictive model. Analysis of synthetic dataset predictive model shows that it can be successfully used for edge analytics purposes, replacing real-world datasets. There is no significant difference between the real-world dataset compared the synthetic dataset. The generated synthetic data requires no modification to suit the edge computing requirements. The framework can generate correct synthetic datasets based on JSON schema attributes. The accuracy, precision, and recall values for the real and synthetic datasets indicate that the logistic regression model is capable of successfully classifying data

  5. S

    Synthetic Data Generation Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Synthetic Data Generation Market Report [Dataset]. https://www.archivemarketresearch.com/reports/synthetic-data-generation-market-5998
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The size of the Synthetic Data Generation Market market was valued at USD 45.9 billion in 2023 and is projected to reach USD 65.9 billion by 2032, with an expected CAGR of 13.6 % during the forecast period. The Synthetic Data Generation Market involves creating artificial data that mimics real-world data while preserving privacy and security. This technique is increasingly used in various industries, including finance, healthcare, and autonomous vehicles, to train machine learning models without compromising sensitive information. Synthetic data is utilized for testing algorithms, improving AI models, and enhancing data analysis processes. Key trends in this market include the growing demand for privacy-compliant data solutions, advancements in generative modeling techniques, and increased investment in AI technologies. As organizations seek to leverage data-driven insights while mitigating risks associated with data privacy, the synthetic data generation market is poised for significant growth in the coming years.

  6. S

    Synthetic Data Generation Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Synthetic Data Generation Market Report [Dataset]. https://www.marketresearchforecast.com/reports/synthetic-data-generation-market-1834
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Dec 8, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Generation Marketsize was valued at USD 288.5 USD Million in 2023 and is projected to reach USD 1920.28 USD Million by 2032, exhibiting a CAGR of 31.1 % during the forecast period.Synthetic data generation stands for the generation of fake datasets that resemble real datasets with reference to their data distribution and patterns. It refers to the process of creating synthetic data points utilizing algorithms or models instead of conducting observations or surveys. There is one of its core advantages: it can maintain the statistical characteristics of the original data and remove the privacy risk of using real data. Further, with synthetic data, there is no limitation to how much data can be created, and hence, it can be used for extensive testing and training of machine learning models, unlike the case with conventional data, which may be highly regulated or limited in availability. It also helps in the generation of datasets that are comprehensive and include many examples of specific situations or contexts that may occur in practice for improving the AI system’s performance. The use of SDG significantly shortens the process of the development cycle, requiring less time and effort for data collection as well as annotation. It basically allows researchers and developers to be highly efficient in their discovery and development in specific domains like healthcare, finance, etc. Key drivers for this market are: Growing Demand for Data Privacy and Security to Fuel Market Growth. Potential restraints include: Lack of Data Accuracy and Realism Hinders Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

  7. f

    Aggregated economic and management sciences synthetic dataset for the UFS

    • ufs.figshare.com
    Updated Feb 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Herkulaas Combrink (2023). Aggregated economic and management sciences synthetic dataset for the UFS [Dataset]. http://doi.org/10.38140/ufs.22128449.v1
    Explore at:
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    University of the Free State
    Authors
    Herkulaas Combrink
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was the aggregation of the synthetic data created from an Economic and Management Sciences Dataset and Synthetic Data was created from this for analytics

  8. e

    Synthetic Data Generation Market Size, Share, Trend Analysis by 2033

    • emergenresearch.com
    pdf,excel,csv,ppt
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emergen Research (2024). Synthetic Data Generation Market Size, Share, Trend Analysis by 2033 [Dataset]. https://www.emergenresearch.com/industry-report/synthetic-data-generation-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Emergen Research
    License

    https://www.emergenresearch.com/privacy-policyhttps://www.emergenresearch.com/privacy-policy

    Area covered
    Global
    Variables measured
    Base Year, No. of Pages, Growth Drivers, Forecast Period, Segments covered, Historical Data for, Pitfalls Challenges, 2033 Value Projection, Tables, Charts, and Figures, Forecast Period 2024 - 2033 CAGR, and 1 more
    Description

    The Synthetic Data Generation Market size is expected to reach a valuation of USD 36.09 Billion in 2033 growing at a CAGR of 39.45%. The research report classifies market by share, trend, demand and based on segmentation by Data Type, Modeling Type, Offering, Application, End Use and Regional Outloo...

  9. t

    Synthetic Data Generation Market Demand, Size and Competitive Analysis |...

    • techsciresearch.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TechSci Research (2024). Synthetic Data Generation Market Demand, Size and Competitive Analysis | TechSci Research [Dataset]. https://www.techsciresearch.com/report/synthetic-data-generation-market/18984.html
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset authored and provided by
    TechSci Research
    License

    https://www.techsciresearch.com/privacy-policy.aspxhttps://www.techsciresearch.com/privacy-policy.aspx

    Description

    Global Synthetic Data Generation Market was valued at USD 310 Million in 2023 and is anticipated to project robust growth in the forecast period with a CAGR of 30.4% through 2029F.

    Pages180
    Market Size2023: USD 310 Million
    Forecast Market Size2029: USD 1537.87 Million
    CAGR2024-2029: 30.4%
    Fastest Growing SegmentHybrid Synthetic Data
    Largest MarketNorth America
    Key Players1. Datagen Inc. 2. MOSTLY AI Solutions MP GmbH 3. Tonic AI, Inc. 4. Synthesis AI , Inc. 5. GenRocket, Inc. 6. Gretel Labs, Inc. 7. K2view Ltd. 8. Hazy Limited. 9. Replica Analytics Ltd. 10. YData Labs Inc.

  10. w

    Synthetic Data for an Imaginary Country, Sample, 2023 - World

    • microdata.worldbank.org
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Development Data Group, Data Analytics Unit (2023). Synthetic Data for an Imaginary Country, Sample, 2023 - World [Dataset]. https://microdata.worldbank.org/index.php/catalog/5906
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Development Data Group, Data Analytics Unit
    Time period covered
    2023
    Area covered
    World, World
    Description

    Abstract

    The dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.

    The full-population dataset (with about 10 million individuals) is also distributed as open data.

    Geographic coverage

    The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.

    Analysis unit

    Household, Individual

    Universe

    The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.

    Kind of data

    ssd

    Sampling procedure

    The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.

    Mode of data collection

    other

    Research instrument

    The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.

    Cleaning operations

    The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.

    Response rate

    This is a synthetic dataset; the "response rate" is 100%.

  11. D

    UnrealGaussianStat: Synthetic dataset for statistical analysis on Novel View...

    • dataverse.no
    • search.dataone.org
    txt, zip
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anurag Dalal; Anurag Dalal (2025). UnrealGaussianStat: Synthetic dataset for statistical analysis on Novel View Synthesis [Dataset]. http://doi.org/10.18710/WSU7I6
    Explore at:
    txt(7447), zip(960339536)Available download formats
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DataverseNO
    Authors
    Anurag Dalal; Anurag Dalal
    License

    https://dataverse.no/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.18710/WSU7I6https://dataverse.no/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.18710/WSU7I6

    Description

    The dataset comprises three dynamic scenes characterized by both simple and complex lighting conditions. The quantity of cameras ranges from 4 to 512, including 4, 6, 8, 10, 12, 14, 16, 32, 64, 128, 256, and 512. The point clouds are randomly generated.

  12. S

    Synthetic Data Tool Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Synthetic Data Tool Report [Dataset]. https://www.archivemarketresearch.com/reports/synthetic-data-tool-38973
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global synthetic data tool market is projected to reach USD 10,394.0 million by 2033, exhibiting a CAGR of 34.8% during the forecast period. The growing adoption of AI and ML technologies, increasing demand for data privacy and security, and the rising need for data for training and testing machine learning models are the key factors driving market growth. Additionally, the availability of open-source synthetic data generation tools and the increasing adoption of cloud-based synthetic data platforms are further contributing to market growth. North America is expected to hold the largest market share during the forecast period due to the early adoption of AI and ML technologies and the presence of key vendors in the region. Europe is anticipated to witness significant growth due to increasing government initiatives to promote AI adoption and the growing data privacy concerns. The Asia Pacific region is projected to experience rapid growth due to government initiatives to develop AI capabilities and the increasing adoption of AI and ML technologies in various industries, namely healthcare, retail, and manufacturing.

  13. S

    Synthetic Data Generation Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Synthetic Data Generation Market Report [Dataset]. https://www.marketreportanalytics.com/reports/synthetic-data-generation-market-10758
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Generation market is experiencing explosive growth, projected to reach a value of $0.30 billion in 2025 and exhibiting a remarkable Compound Annual Growth Rate (CAGR) of 60.02%. This surge is driven by the increasing need for data privacy regulations compliance, the rising demand for data-driven decision-making across various sectors, and the limitations of real-world data availability. Key application areas like healthcare and life sciences leverage synthetic data for training machine learning models on sensitive patient information without compromising privacy. Similarly, retail and e-commerce utilize it for personalized recommendations and fraud detection, while the finance, banking, and insurance sectors benefit from its application in risk assessment and fraud prevention. The adoption of agent-based and direct modeling techniques fuels this growth, with agent-based modelling gaining traction due to its ability to simulate complex systems and interactions. Major players like Alphabet, Amazon, and IBM are actively investing in this space, driving innovation and market competition. The market is segmented by end-user and type of synthetic data generation, highlighting the diverse applications and technological approaches within the industry. Geographic growth is expected across North America (particularly the US), Europe (Germany and the UK), APAC (China and Japan), and other regions, fueled by increasing digitalization and data-driven strategies. The market's future growth trajectory is promising, fueled by continuous technological advancements in synthetic data generation techniques. The increasing sophistication of these methods leads to improved data quality and realism, further expanding applicability across diverse domains. While challenges remain, such as addressing potential biases in synthetic datasets and ensuring data fidelity, ongoing research and development efforts are focused on mitigating these concerns. The rising adoption of cloud-based solutions and the increasing accessibility of synthetic data generation tools are key factors expected to propel market expansion throughout the forecast period (2025-2033). This makes the Synthetic Data Generation market a highly lucrative and dynamic sector poised for significant growth in the coming years.

  14. S

    Synthetic Data Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-platform-1939818
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.

  15. a

    Math Index by Model

    • artificialanalysis.ai
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Artificial Analysis (2025). Math Index by Model [Dataset]. https://artificialanalysis.ai/
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Artificial Analysis
    Description

    Comparison of Represents the average of math benchmarks in the Artificial Analysis Intelligence Index (AIME 2024 & Math-500) by Model

  16. f

    CK4Gen, High Utility Synthetic Survival Datasets

    • figshare.com
    zip
    Updated Nov 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicholas Kuo (2024). CK4Gen, High Utility Synthetic Survival Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.27611388.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 5, 2024
    Dataset provided by
    figshare
    Authors
    Nicholas Kuo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ===###Overview:This repository provides high-utility synthetic survival datasets generated using the CK4Gen framework, optimised to retain critical clinical characteristics for use in research and educational settings. Each dataset is based on a carefully curated ground truth dataset, processed with standardised variable definitions and analytical approaches, ensuring a consistent baseline for survival analysis.###===###Description:The repository includes synthetic versions of four widely utilised and publicly accessible survival analysis datasets, each anchored in foundational studies and aligned with established ground truth variations to support robust clinical research and training.#---GBSG2: Based on Schumacher et al. [1]. The study evaluated the effects of hormonal treatment and chemotherapy duration in node-positive breast cancer patients, tracking recurrence-free and overall survival among 686 women over a median of 5 years. Our synthetic version is derived from a variation of the GBSG2 dataset available in the lifelines package [2], formatted to match the descriptions in Sauerbrei et al. [3], which we treat as the ground truth.ACTG320: Based on Hammer et al. [4]. The study investigates the impact of adding the protease inhibitor indinavir to a standard two-drug regimen for HIV-1 treatment. The original clinical trial involved 1,151 patients with prior zidovudine exposure and low CD4 cell counts, tracking outcomes over a median follow-up of 38 weeks. Our synthetic dataset is derived from a variation of the ACTG320 dataset available in the sksurv package [5], which we treat as the ground truth dataset.WHAS500: Based on Goldberg et al. [6]. The study follows 500 patients to investigate survival rates following acute myocardial infarction (MI), capturing a range of factors influencing MI incidence and outcomes. Our synthetic data replicates a ground truth variation from the sksurv package, which we treat as the ground truth dataset.FLChain: Based on Dispenzieri et al. [7]. The study assesses the prognostic relevance of serum immunoglobulin free light chains (FLCs) for overall survival in a large cohort of 15,859 participants. Our synthetic version is based on a variation available in the sksurv package, which we treat as the ground truth dataset.###===###Notes:Please find an in-depth discussion on these datasets, as well as their generation process, in the link below, to our paper:https://arxiv.org/abs/2410.16872Kuo, et al. "CK4Gen: A Knowledge Distillation Framework for Generating High-Utility Synthetic Survival Datasets in Healthcare." arXiv preprint arXiv:2410.16872 (2024).###===###References:[1]: Schumacher, et al. “Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German breast cancer study group.”, Journal of Clinical Oncology, 1994.[2]: Davidson-Pilon “lifelines: Survival Analysis in Python”, Journal of Open Source Software, 2019.[3]: Sauerbrei, et al. “Modelling the effects of standard prognostic factors in node-positive breast cancer”, British Journal of Cancer, 1999.[4]: Hammer, et al. “A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and cd4 cell counts of 200 per cubic millimeter or less”, New England Journal of Medicine, 1997.[5]: Pölsterl “scikit-survival: A library for time-to-event analysis built on top of scikit-learn”, Journal of Machine Learning Research, 2020.[6]: Goldberg, et al. “Incidence and case fatality rates of acute myocardial infarction (1975–1984): the Worcester heart attack study”, American Heart Journal, 1988.[7]: Dispenzieri, et al. “Use of nonclonal serum immunoglobulin free light chains to predict overall survival in the general population”, in Mayo Clinic Proceedings, 2012.

  17. Synthetic Foods Market - By Type (Synthetic Color, Enzymes, Antioxidants,...

    • zionmarketresearch.com
    pdf
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Synthetic Foods Market - By Type (Synthetic Color, Enzymes, Antioxidants, and Hydrocolloids), By Application (Bakery & Confectionery, Beverages, Flavor & Fragrances, and Fats & Oils), And By Region - Global Industry Perspective, Comprehensive Analysis, and Forecast, 2024-2032 [Dataset]. https://www.zionmarketresearch.com/report/synthetic-foods-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 18, 2025
    Dataset provided by
    Authors
    Zion Market Research
    Time period covered
    2022 - 2030
    Description

    Global Synthetic Foods Market size is set to expand from $ 16.29 Billion in 2023 to $ 32.44 Billion by 2032, with an anticipated CAGR of around 7.1% from 2024 to 2032.

  18. P

    Data from: Synthetic Product Desirability Datasets for Sentiment Analysis...

    • paperswithcode.com
    • researchworks.creighton.edu
    • +2more
    Updated Nov 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John D. Hastings; Sherri Weitl-Harms; Joseph Doty; Zachary J. Myers; Warren Thompson (2024). Synthetic Product Desirability Datasets for Sentiment Analysis Testing Dataset [Dataset]. https://paperswithcode.com/dataset/synthetic-product-desirability-datasets-for
    Explore at:
    Dataset updated
    Nov 19, 2024
    Authors
    John D. Hastings; Sherri Weitl-Harms; Joseph Doty; Zachary J. Myers; Warren Thompson
    Description

    Overview: This collection contains three synthetic datasets produced by gpt-4o-mini for sentiment analysis and PDT (Product Desirability Toolkit) testing. Each dataset contains 1000 hypothetical software product reviews with the aim to produce a diversity of sentiment and text. The datasets were created as part of the research described in:

    J. D. Hastings, S. Weitl-Harms, J. Doty, Z. L. Myers, and W. Thompson, “Utilizing Large Language Models to Synthesize Product Desirability Datasets,” in Proceedings of the 2024 IEEE International Conference on Big Data (BigData-24), Workshop on Large Language and Foundation Models (WLLFM-24), Dec. 2024. arXiv: 2411.13485 [cs.CL].

    Briefly, each row in the datasets was produced as follows: 1) Word+Review: The LLM selected a word and synthesized a review that would align with a random target sentiment. 2) Review+Word: The LLM produced a review to align with the target sentiment score, and then selected a word appropriate for the review. 3) Supply-Word: A word was supplied to the LLM which was then scored, and a review was produced to align with that score.

    For sentiment analysis and PDT testing, the two columns of main interest across the datasets are likely 'Selected Word' and 'Hypothetical Review'.

    License: This data is licensed under the CC Attribution 4.0 international license, and may be taken and used freely with credit given. Cite as:

    Hastings, J., Weitl-Harms, S., Doty, J., Myers, Z., & Thompson, W. (2024). Synthetic Product Desirability Datasets for Sentiment Analysis Testing (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.14188456

  19. Synthetic Foods Market - By Type (Synthetic Color, Enzymes, Antioxidants,...

    • zionmarketresearch.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zion Market Research (2025). Synthetic Foods Market - By Type (Synthetic Color, Enzymes, Antioxidants, and Hydrocolloids), By Application (Bakery & Confectionery, Beverages, Flavor & Fragrances, and Fats & Oils), And By Region - Global Industry Perspective, Comprehensive Analysis, and Forecast, 2024-2032 [Dataset]. https://www.zionmarketresearch.com/report/synthetic-foods-market
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset provided by
    Authors
    Zion Market Research
    Time period covered
    2022 - 2030
    Description

    Global Synthetic Foods Market size is set to expand from $ 16.29 Billion in 2023 to $ 32.44 Billion by 2032, with an anticipated CAGR of around 7.1% from 2024 to 2032.

  20. a

    Intelligence vs. Output Speed by Model

    • artificialanalysis.ai
    Updated May 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Artificial Analysis (2025). Intelligence vs. Output Speed by Model [Dataset]. https://artificialanalysis.ai/
    Explore at:
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Artificial Analysis
    Description

    Comprehensive comparison of Artificial Analysis Intelligence Index vs. Output Speed (Output Tokens per Second) by Model

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2025). Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
Organization logo

Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW)

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 6, 2025
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
United States, Global
Description

Snapshot img

Synthetic Data Generation Market Size 2025-2029

The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.

The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.

What will be the Size of the Synthetic Data Generation Market during the forecast period?

Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security. Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development. The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.

How is this Synthetic Data Generation Industry segmented?

The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)

By End-user Insights

The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research

Search
Clear search
Close search
Google apps
Main menu