https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The synthetic data generation market is experiencing explosive growth, driven by the increasing need for high-quality data in various applications, including AI/ML model training, data privacy compliance, and software testing. The market, currently estimated at $2 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the rising adoption of artificial intelligence and machine learning across industries demands large, high-quality datasets, often unavailable due to privacy concerns or data scarcity. Synthetic data provides a solution by generating realistic, privacy-preserving datasets that mirror real-world data without compromising sensitive information. Secondly, stringent data privacy regulations like GDPR and CCPA are compelling organizations to explore alternative data solutions, making synthetic data a crucial tool for compliance. Finally, the advancements in generative AI models and algorithms are improving the quality and realism of synthetic data, expanding its applicability in various domains. Major players like Microsoft, Google, and AWS are actively investing in this space, driving further market expansion. The market segmentation reveals a diverse landscape with numerous specialized solutions. While large technology firms dominate the broader market, smaller, more agile companies are making significant inroads with specialized offerings focused on specific industry needs or data types. The geographical distribution is expected to be skewed towards North America and Europe initially, given the high concentration of technology companies and early adoption of advanced data technologies. However, growing awareness and increasing data needs in other regions are expected to drive substantial market growth in Asia-Pacific and other emerging markets in the coming years. The competitive landscape is characterized by a mix of established players and innovative startups, leading to continuous innovation and expansion of market applications. This dynamic environment indicates sustained growth in the foreseeable future, driven by an increasing recognition of synthetic data's potential to address critical data challenges across industries.
Overview
This is the data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators". It contains the paper’s data archive with model outputs (see results
folder) and the Singularity image for (optionally) re-running experiments.
For the Python tool used to generate synthetic data, please refer to Synthia.
Requirements
*Although PBS in not a strict requirement, it is required to run all helper scripts as included in this repository. Please note that depending on your specific system settings and resource availability, you may need to modify PBS parameters at the top of submit scripts stored in the hpc
directory (e.g. #PBS -lwalltime=72:00:00
).
Usage
To reproduce the results from the experiments described in the paper, first fit all copula models to the reduced NWP-SAF dataset with:
qsub hpc/fit.sh
then, to generate synthetic data, run all machine learning model configurations, and compute the relevant statistics use:
qsub hpc/stats.sh
qsub hpc/ml_control.sh
qsub hpc/ml_synth.sh
Finally, to plot all artifacts included in the paper use:
qsub hpc/plot.sh
Licence
Code released under MIT license. Data from the reduced NWP-SAF dataset released under CC BY 4.0.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This image dataset contains synthetic structure images used for training the deep-learning based nanowire segmentation model presented in our work "A deep learned nanowire segmentation model using synthetic data augmentation" to be published in npj Computational materials. Detailed information can be found in the corresponding article.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Artificial Intelligence (AI) Synthetic Data Service market is experiencing rapid growth, driven by the increasing need for high-quality data to train and validate AI models, especially in sectors with data scarcity or privacy concerns. The market, estimated at $2 billion in 2025, is projected to expand significantly over the next decade, achieving a Compound Annual Growth Rate (CAGR) of approximately 30% from 2025 to 2033. This robust growth is fueled by several key factors: the escalating adoption of AI across various industries, the rising demand for robust and unbiased AI models, and the growing awareness of data privacy regulations like GDPR, which restrict the use of real-world data. Furthermore, advancements in synthetic data generation techniques, enabling the creation of more realistic and diverse datasets, are accelerating market expansion. Major players like Synthesis, Datagen, Rendered, Parallel Domain, Anyverse, and Cognata are actively shaping the market landscape through innovative solutions and strategic partnerships. The market is segmented by data type (image, text, time-series, etc.), application (autonomous driving, healthcare, finance, etc.), and deployment model (cloud, on-premise). Despite the significant growth potential, certain restraints exist. The high cost of developing and deploying synthetic data generation solutions can be a barrier to entry for smaller companies. Additionally, ensuring the quality and realism of synthetic data remains a crucial challenge, requiring continuous improvement in algorithms and validation techniques. Overcoming these limitations and fostering wider adoption will be key to unlocking the full potential of the AI Synthetic Data Service market. The historical period (2019-2024) likely saw a lower CAGR due to initial market development and technology maturation, before experiencing the accelerated growth projected for the forecast period (2025-2033). Future growth will heavily depend on further technological advancements, decreasing costs, and increasing industry awareness of the benefits of synthetic data.
https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The synthetic data solution market is experiencing robust growth, driven by increasing demand for data privacy and security, coupled with the need for large, high-quality datasets for training AI and machine learning models. The market, currently estimated at $2 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated market value of over $10 billion by 2033. This expansion is fueled by several key factors: stringent data privacy regulations like GDPR and CCPA, which restrict the use of real personal data; the rise of synthetic data generation techniques enabling the creation of realistic, yet privacy-preserving datasets; and the increasing adoption of AI and ML across various industries, particularly financial services, retail, and healthcare, creating a high demand for training data. The cloud-based segment is currently dominating the market, owing to its scalability, accessibility, and cost-effectiveness. The geographical distribution shows North America and Europe as leading regions, driven by early adoption of AI and robust data privacy regulations. However, the Asia-Pacific region is expected to witness significant growth in the coming years, propelled by the rapid expansion of the technology sector and increasing digitalization efforts in countries like China and India. Key players like LightWheel AI, Hanyi Innovation Technology, and Baidu are strategically investing in research and development, fostering innovation and expanding their market presence. While challenges such as the complexity of synthetic data generation and potential biases in generated data exist, the overall market outlook remains highly positive, indicating significant opportunities for growth and innovation in the coming decade. The "Others" application segment represents a promising area for future growth, encompassing sectors such as manufacturing, energy, and transportation, where synthetic data can address specific data challenges.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The annotation distribution across all synthetic tweets in the dataset for detecting vaccine positions and vaccine-related stigma on social media.
Synthetic Data Generation Market Size 2025-2029
The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.
The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.
What will be the Size of the Synthetic Data Generation Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security.
Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development.
The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.
How is this Synthetic Data Generation Industry segmented?
The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)
By End-user Insights
The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Synthetic Data Software market is experiencing robust growth, driven by increasing demand for data privacy regulations compliance and the need for large, high-quality datasets for AI/ML model training. The market size in 2025 is estimated at $2.5 billion, demonstrating significant expansion from its 2019 value. This growth is projected to continue at a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated market value of $15 billion by 2033. This expansion is fueled by several key factors. Firstly, the increasing stringency of data privacy regulations, such as GDPR and CCPA, is restricting the use of real-world data in many applications. Synthetic data offers a viable solution by providing realistic yet privacy-preserving alternatives. Secondly, the booming AI and machine learning sectors heavily rely on massive datasets for training effective models. Synthetic data can generate these datasets on demand, reducing the cost and time associated with data collection and preparation. Finally, the growing adoption of synthetic data across various sectors, including healthcare, finance, and retail, further contributes to market expansion. The diverse applications and benefits are accelerating the adoption rate in a multitude of industries needing advanced analytics. The market segmentation reveals strong growth across cloud-based solutions and the key application segments of healthcare, finance (BFSI), and retail/e-commerce. While on-premises solutions still hold a segment of the market, the cloud-based approach's scalability and cost-effectiveness are driving its dominance. Geographically, North America currently holds the largest market share, but significant growth is anticipated in the Asia-Pacific region due to increasing digitalization and the presence of major technology hubs. The market faces certain restraints, including challenges related to data quality and the need for improved algorithms to generate truly representative synthetic data. However, ongoing innovation and investment in this field are mitigating these limitations, paving the way for sustained market growth. The competitive landscape is dynamic, with numerous established players and emerging startups contributing to the market's evolution.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Generative adversarial networks (GANs) have recently been successfully used to create realistic synthetic microscopy cell images in 2D and predict intermediate cell stages. In the current paper we highlight that GANs can not only be used for creating synthetic cell images optimized for different fluorescent molecular labels, but that by using GANs for augmentation of training data involving scaling or other transformations the inherent length scale of biological structures is retained. In addition, GANs make it possible to create synthetic cells with specific shape features, which can be used, for example, to validate different methods for feature extraction. Here, we apply GANs to create 2D distributions of fluorescent markers for F-actin in the cell cortex of Dictyostelium cells (ABD), a membrane receptor (cAR1), and a cortex-membrane linker protein (TalA). The recent more widespread use of 3D lightsheet microscopy, where obtaining sufficient training data is considerably more difficult than in 2D, creates significant demand for novel approaches to data augmentation. We show that it is possible to directly generate synthetic 3D cell images using GANs, but limitations are excessive training times, dependence on high-quality segmentations of 3D images, and that the number of z-slices cannot be freely adjusted without retraining the network. We demonstrate that in the case of molecular labels that are highly correlated with cell shape, like F-actin in our example, 2D GANs can be used efficiently to create pseudo-3D synthetic cell data from individually generated 2D slices. Because high quality segmented 2D cell data are more readily available, this is an attractive alternative to using less efficient 3D networks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete prompt that was used as input for the GPT-4o model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Artificial Intelligence-based image generation has recently seen remarkable advancements, largely driven by deep learning techniques, such as Generative Adversarial Networks (GANs). With the influx and development of generative models, so too have biometric re-identification models and presentation attack detection models seen a surge in discriminative performance. However, despite the impressive photo-realism of generated samples and the additive value to the data augmentation pipeline, the role and usage of machine learning models has received intense scrutiny and criticism, especially in the context of biometrics, often being labeled as untrustworthy. Problems that have garnered attention in modern machine learning include: humans' and machines' shared inability to verify the authenticity of (biometric) data, the inadvertent leaking of private biometric data through the image synthesis process, and racial bias in facial recognition algorithms. Given the arrival of these unwanted side effects, public trust has been shaken in the blind use and ubiquity of machine learning.
However, in tandem with the advancement of generative AI, there are research efforts to re-establish trust in generative and discriminative machine learning models. Explainability methods based on aggregate model salience maps can elucidate the inner workings of a detection model, establishing trust in a post hoc manner. The CYBORG training strategy, originally proposed by Boyd, attempts to actively build trust into discriminative models by incorporating human salience into the training process.
In doing so, CYBORG-trained machine learning models behave more similar to human annotators and generalize well to unseen types of synthetic data. Work in this dissertation also attempts to renew trust in generative models by training generative models on synthetic data in order to avoid identity leakage in models trained on authentic data. In this way, the privacy of individuals whose biometric data was seen during training is not compromised through the image synthesis procedure. Future development of privacy-aware image generation techniques will hopefully achieve the same degree of biometric utility in generative models with added guarantees of trustworthiness.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic data generation engine market size reached USD 1.48 billion in 2024. The market is experiencing robust expansion, driven by the increasing demand for privacy-compliant data and advanced analytics solutions. The market is projected to grow at a remarkable CAGR of 35.6% from 2025 to 2033, reaching an estimated USD 18.67 billion by the end of the forecast period. This rapid growth is primarily propelled by the adoption of artificial intelligence (AI) and machine learning (ML) across various industry verticals, along with the escalating need for high-quality, diverse datasets that do not compromise sensitive information.
One of the primary growth factors fueling the synthetic data generation engine market is the heightened focus on data privacy and regulatory compliance. With stringent regulations such as GDPR, CCPA, and HIPAA being enforced globally, organizations are increasingly seeking solutions that enable them to generate and utilize data without exposing real customer information. Synthetic data generation engines provide a powerful means to create realistic, anonymized datasets that retain the statistical properties of original data, thus supporting robust analytics and model development while ensuring compliance with data protection laws. This capability is especially critical for sectors like healthcare, banking, and government, where data sensitivity is paramount.
Another significant driver is the surging adoption of AI and ML models across industries, which require vast volumes of diverse and representative data for training and validation. Traditional data collection methods often fall short due to limitations in data availability, quality, or privacy concerns. Synthetic data generation engines address these challenges by enabling the creation of customized datasets tailored for specific use cases, including rare-event modeling, edge-case scenario testing, and data augmentation. This not only accelerates innovation but also reduces the time and cost associated with data acquisition and labeling, making it a strategic asset for organizations seeking to maintain a competitive edge in AI-driven markets.
Moreover, the increasing integration of synthetic data generation engines into enterprise IT ecosystems is being catalyzed by advancements in cloud computing and scalable software architectures. Cloud-based deployment models are making these solutions more accessible and cost-effective for organizations of all sizes, from startups to large enterprises. The flexibility to generate, store, and manage synthetic datasets in the cloud enhances collaboration, speeds up development cycles, and supports global operations. As a result, cloud adoption is expected to further accelerate market growth, particularly among businesses undergoing digital transformation and seeking to leverage synthetic data for innovation and compliance.
Regionally, North America currently dominates the synthetic data generation engine market, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. North America's leadership is attributed to the presence of major technology providers, robust regulatory frameworks, and a high level of AI adoption across industries. Europe is experiencing rapid growth due to strong data privacy regulations and a thriving technology ecosystem, while Asia Pacific is emerging as a lucrative market, driven by digitalization initiatives and increasing investments in AI and analytics. The regional outlook suggests that market expansion will be broad-based, with significant opportunities for vendors and stakeholders across all major geographies.
The component segment of the synthetic data generation engine market is bifurcated into software and services, each playing a vital role in the overall ecosystem. Software solutions form the backbone of this market, providing the core algorithms and platforms that enable the generation, management, and deployment of synthetic datasets. These platforms are continually evolving, integrating advanced techniques such as generative adversarial networks (GANs), variational autoencoders, and other deep learning models to produce highly realistic and diverse synthetic data. The software segment is anticipated to maintain its dominance throughout the forecast period, as organizations increasingly invest in proprietary and commercial tools to address their un
According to our latest research, the global Synthetic Data Generation Engine market size reached USD 1.42 billion in 2024, reflecting a rapidly expanding sector driven by the escalating demand for advanced data solutions. The market is expected to achieve a robust CAGR of 37.8% from 2025 to 2033, propelling it to an estimated value of USD 21.8 billion by 2033. This exceptional growth is primarily fueled by the increasing need for high-quality, privacy-compliant datasets to train artificial intelligence and machine learning models in sectors such as healthcare, BFSI, and IT & telecommunications. As per our latest research, the proliferation of data-centric applications and stringent data privacy regulations are acting as significant catalysts for the adoption of synthetic data generation engines globally.
One of the key growth factors for the synthetic data generation engine market is the mounting emphasis on data privacy and compliance with regulations such as GDPR and CCPA. Organizations are under immense pressure to protect sensitive customer information while still deriving actionable insights from data. Synthetic data generation engines offer a compelling solution by creating artificial datasets that mimic real-world data without exposing personally identifiable information. This not only ensures compliance but also enables organizations to accelerate their AI and analytics initiatives without the constraints of data access or privacy risks. The rising awareness among enterprises about the benefits of synthetic data in mitigating data breaches and regulatory penalties is further propelling market expansion.
Another significant driver is the exponential growth in artificial intelligence and machine learning adoption across industries. Training robust and unbiased models requires vast and diverse datasets, which are often difficult to obtain due to privacy concerns, labeling costs, or data scarcity. Synthetic data generation engines address this challenge by providing scalable and customizable datasets for various applications, including machine learning model training, data augmentation, and fraud detection. The ability to generate balanced and representative data has become a critical enabler for organizations seeking to improve model accuracy, reduce bias, and accelerate time-to-market for AI solutions. This trend is particularly pronounced in sectors such as healthcare, automotive, and finance, where data diversity and privacy are paramount.
Furthermore, the increasing complexity of data types and the need for multi-modal data synthesis are shaping the evolution of the synthetic data generation engine market. With the proliferation of unstructured data in the form of images, videos, audio, and text, organizations are seeking advanced engines capable of generating synthetic data across multiple modalities. This capability enhances the versatility of synthetic data solutions, enabling their application in emerging use cases such as autonomous vehicle simulation, natural language processing, and biometric authentication. The integration of generative AI techniques, such as GANs and diffusion models, is further enhancing the realism and utility of synthetic datasets, expanding the addressable market for synthetic data generation engines.
From a regional perspective, North America continues to dominate the synthetic data generation engine market, accounting for the largest revenue share in 2024. The region's leadership is attributed to the strong presence of technology giants, early adoption of AI and machine learning, and stringent regulatory frameworks. Europe follows closely, driven by robust data privacy regulations and increasing investments in digital transformation. Meanwhile, the Asia Pacific region is emerging as the fastest-growing market, supported by expanding IT infrastructure, government-led AI initiatives, and a burgeoning startup ecosystem. Latin America and the Middle East & Africa are also witnessing gradual adoption, fueled by the growing recognition of synthetic data's potential to overcome data access and privacy challenges.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is a meticulously crafted synthetic compilation designed to emulate the intricacies of South African Sign Language (SASL). Devised through advanced computational techniques, this synthetic dataset is not derived from real-world interactions but instead intricately generated to represent the diverse array of signs within SASL. Every gesture, movement, and nuance has been algorithmically designed to mimic the authentic expressions used in the communication system. It serves as a valuable resource for researchers, developers, and educators seeking to explore and develop technologies related to sign language recognition and interpretation. Through the fusion of linguistic expertise and cutting-edge artificial intelligence, this synthetic dataset provides a controlled environment for testing and refining models without relying on potentially sensitive or limited real-world data. Its construction involves the synthesis of a myriad of signs, capturing the richness and complexity of South African Sign Language, thereby facilitating advancements in the development of inclusive technologies and fostering a deeper understanding of sign language communication within the context of the South African Deaf community.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All synthetic data and annotations for vaccine position and stigma within the dataset for detecting vaccine positions and vaccine-related stigma on social media. The data is structured as follows:Data ID: A unique identifier assigned to each record in the dataset. Identifiers beginning with ‘1-‘ are applied to authentic tweets; those beginning with ‘2-‘ refer to synthetic tweets.Authentic Tweet ID: A unique identifier assigned to each tweet by Twitter. As the paraphrases do not have unique Twitter IDs, this column instead presents the ID of the authentic tweet from which the paraphrase was generated.Tweet Paraphrase: The text presented in each paraphrase. In keeping with big data ethics, the text of the authentic tweets is not presented. Authentic tweets listed in the blended dataset present ‘N/A’ in this column as they are not paraphrases.Vaccine Position Class: Lists the annotation codes 0 (‘Pro-Vaxx’), 1 (‘Anti-Vaxx’), and 2 (‘Vaccine Hesitant’).Stigma Class: Lists the annotation codes 3 (‘Stigma’) and 4 (‘No Stigma’).Using the Twitter API and the tweet IDs, researchers can obtain access to the authentic tweets' text data provided that these have not been deleted or otherwise made unavailable.
According to our latest research, the global synthetic training data market size in 2024 is valued at USD 1.45 billion, demonstrating robust momentum as organizations increasingly adopt artificial intelligence and machine learning solutions. The market is projected to grow at a remarkable CAGR of 38.7% from 2025 to 2033, reaching an estimated USD 22.46 billion by 2033. This exponential growth is primarily driven by the rising demand for high-quality, diverse, and privacy-compliant datasets that fuel advanced AI models, as well as the escalating need for scalable data solutions across various industries.
One of the primary growth factors propelling the synthetic training data market is the escalating complexity and diversity of AI and machine learning applications. As organizations strive to develop more accurate and robust AI models, the need for vast amounts of annotated and high-quality training data has surged. Traditional data collection methods are often hampered by privacy concerns, high costs, and time-consuming processes. Synthetic training data, generated through advanced algorithms and simulation tools, offers a compelling alternative by providing scalable, customizable, and bias-mitigated datasets. This enables organizations to accelerate model development, improve performance, and comply with evolving data privacy regulations such as GDPR and CCPA, thus driving widespread adoption across sectors like healthcare, finance, autonomous vehicles, and robotics.
Another significant driver is the increasing adoption of synthetic data for data augmentation and rare event simulation. In sectors such as autonomous vehicles, manufacturing, and robotics, real-world data for edge-case scenarios or rare events is often scarce or difficult to capture. Synthetic training data allows for the generation of these critical scenarios at scale, enabling AI systems to learn and adapt to complex, unpredictable environments. This not only enhances model robustness but also reduces the risk associated with deploying AI in safety-critical applications. The flexibility to generate diverse data types, including images, text, audio, video, and tabular data, further expands the applicability of synthetic data solutions, making them indispensable tools for innovation and competitive advantage.
The synthetic training data market is also experiencing rapid growth due to the heightened focus on data privacy and regulatory compliance. As data protection regulations become more stringent worldwide, organizations face increasing challenges in accessing and utilizing real-world data for AI training without violating user privacy. Synthetic data addresses this challenge by creating realistic yet entirely artificial datasets that preserve the statistical properties of original data without exposing sensitive information. This capability is particularly valuable for industries such as BFSI, healthcare, and government, where data sensitivity and compliance requirements are paramount. As a result, the adoption of synthetic training data is expected to accelerate further as organizations seek to balance innovation with ethical and legal responsibilities.
From a regional perspective, North America currently leads the synthetic training data market, driven by the presence of major technology companies, robust R&D investments, and early adoption of AI technologies. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by expanding AI initiatives, government support, and the rapid digital transformation of industries. Europe is also emerging as a key market, particularly in sectors where data privacy and regulatory compliance are critical. Latin America and the Middle East & Africa are gradually increasing their market share as awareness and adoption of synthetic data solutions grow. Overall, the global landscape is characterized by dynamic regional trends, with each region contributing uniquely to the market’s expansion.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Market Overview The global synthetic data tool market is estimated to reach a significant value of XXX million by 2033, exhibiting a CAGR of XX% from 2025 to 2033. The rising demand for data protection, the need to reduce data collection costs, and the growing adoption of artificial intelligence (AI) are fueling market growth. Synthetic data tools enable businesses to generate realistic and diverse datasets for AI models without collecting sensitive user information, addressing privacy and ethical concerns related to real-world data. Key drivers include the increasing use of synthetic data in computer vision, natural language processing, and healthcare applications. Competitive Landscape and Market Segments The synthetic data tool market is highly competitive, with established players such as Datagen, Parallel Domain, and Synthesis AI leading the market. Smaller companies such as Hazy, Mindtech, and CVEDIA are also gaining traction. The market is segmented based on application (training AI models, data augmentation, and privacy protection) and type (image, text, and structured data). North America holds the largest market share, followed by Europe and Asia Pacific. The report provides detailed analysis of the region-wise market dynamics, including growth prospects and competitive landscapes.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Automated species identification and delimitation is challenging, particularly in rare and thus often scarcely sampled species, which do not allow sufficient discrimination of infraspecific versus interspecific variation. Typical problems arising from either low or exaggerated interspecific morphological differentiation are best met by automated methods of machine learning that learn efficient and effective species identification from training samples. However, limited infraspecific sampling remains a key challenge also in machine learning.
In this study, we assessed whether a data augmentation approach may help to overcome the problem of scarce training data in automated visual species identification. The stepwise augmentation of data comprised image rotation as well as visual and virtual augmentation. The visual data augmentation applies classic approaches of data augmentation and generation of artificial images using a Generative Adversarial Networks (GAN) approach. Descriptive feature vectors are derived from bottleneck features of a VGG-16 convolutional neural network (CNN) that are then stepwise reduced in dimensionality using Global Average Pooling and PCA to prevent overfitting. Finally, data augmentation employs synthetic additional sampling in feature space by an oversampling algorithm in vector space (SMOTE). Applied on four different image datasets, which include scarab beetle genitalia (Pleophylla, Schizonycha) as well as wing patterns of bees (Osmia) and cattleheart butterflies (Parides), our augmentation approach outperformed a deep learning baseline approach by means of resulting identification accuracy with non-augmented data as well as a traditional 2D morphometric approach (Procrustes analysis of scarab beetle genitalia).
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.