100+ datasets found
  1. Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035...

    • rootsanalysis.com
    Updated Sep 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/synthetic-data-generation-market
    Explore at:
    Dataset updated
    Sep 28, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The global synthetic data market size is projected to grow from USD 0.4 billion in the current year to USD 19.22 billion by 2035, representing a CAGR of 42.14%, during the forecast period till 2035

  2. d

    Machine Learning (ML) Data | 800M+ B2B Profiles | AI-Ready for Deep Learning...

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xverum, Machine Learning (ML) Data | 800M+ B2B Profiles | AI-Ready for Deep Learning (DL), NLP & LLM Training [Dataset]. https://datarade.ai/data-products/xverum-company-data-b2b-data-belgium-netherlands-denm-xverum
    Explore at:
    .json, .csvAvailable download formats
    Dataset provided by
    Xverum LLC
    Authors
    Xverum
    Area covered
    Jordan, Oman, Barbados, India, Dominican Republic, United Kingdom, Western Sahara, Norway, Sint Maarten (Dutch part), Cook Islands
    Description

    Xverum’s AI & ML Training Data provides one of the most extensive datasets available for AI and machine learning applications, featuring 800M B2B profiles with 100+ attributes. This dataset is designed to enable AI developers, data scientists, and businesses to train robust and accurate ML models. From natural language processing (NLP) to predictive analytics, our data empowers a wide range of industries and use cases with unparalleled scale, depth, and quality.

    What Makes Our Data Unique?

    Scale and Coverage: - A global dataset encompassing 800M B2B profiles from a wide array of industries and geographies. - Includes coverage across the Americas, Europe, Asia, and other key markets, ensuring worldwide representation.

    Rich Attributes for Training Models: - Over 100 fields of detailed information, including company details, job roles, geographic data, industry categories, past experiences, and behavioral insights. - Tailored for training models in NLP, recommendation systems, and predictive algorithms.

    Compliance and Quality: - Fully GDPR and CCPA compliant, providing secure and ethically sourced data. - Extensive data cleaning and validation processes ensure reliability and accuracy.

    Annotation-Ready: - Pre-structured and formatted datasets that are easily ingestible into AI workflows. - Ideal for supervised learning with tagging options such as entities, sentiment, or categories.

    How Is the Data Sourced? - Publicly available information gathered through advanced, GDPR-compliant web aggregation techniques. - Proprietary enrichment pipelines that validate, clean, and structure raw data into high-quality datasets. This approach ensures we deliver comprehensive, up-to-date, and actionable data for machine learning training.

    Primary Use Cases and Verticals

    Natural Language Processing (NLP): Train models for named entity recognition (NER), text classification, sentiment analysis, and conversational AI. Ideal for chatbots, language models, and content categorization.

    Predictive Analytics and Recommendation Systems: Enable personalized marketing campaigns by predicting buyer behavior. Build smarter recommendation engines for ecommerce and content platforms.

    B2B Lead Generation and Market Insights: Create models that identify high-value leads using enriched company and contact information. Develop AI systems that track trends and provide strategic insights for businesses.

    HR and Talent Acquisition AI: Optimize talent-matching algorithms using structured job descriptions and candidate profiles. Build AI-powered platforms for recruitment analytics.

    How This Product Fits Into Xverum’s Broader Data Offering Xverum is a leading provider of structured, high-quality web datasets. While we specialize in B2B profiles and company data, we also offer complementary datasets tailored for specific verticals, including ecommerce product data, job listings, and customer reviews. The AI Training Data is a natural extension of our core capabilities, bridging the gap between structured data and machine learning workflows. By providing annotation-ready datasets, real-time API access, and customization options, we ensure our clients can seamlessly integrate our data into their AI development processes.

    Why Choose Xverum? - Experience and Expertise: A trusted name in structured web data with a proven track record. - Flexibility: Datasets can be tailored for any AI/ML application. - Scalability: With 800M profiles and more being added, you’ll always have access to fresh, up-to-date data. - Compliance: We prioritize data ethics and security, ensuring all data adheres to GDPR and other legal frameworks.

    Ready to supercharge your AI and ML projects? Explore Xverum’s AI Training Data to unlock the potential of 800M global B2B profiles. Whether you’re building a chatbot, predictive algorithm, or next-gen AI application, our data is here to help.

    Contact us for sample datasets or to discuss your specific needs.

  3. f

    Summary of identified synthetic data use cases in health care and examples.

    • plos.figshare.com
    xls
    Updated Jun 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aldren Gonzales; Guruprabha Guruswamy; Scott R. Smith (2023). Summary of identified synthetic data use cases in health care and examples. [Dataset]. http://doi.org/10.1371/journal.pdig.0000082.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 21, 2023
    Dataset provided by
    PLOS Digital Health
    Authors
    Aldren Gonzales; Guruprabha Guruswamy; Scott R. Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of identified synthetic data use cases in health care and examples.

  4. Synthetic Data Generation Engine Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generation Engine Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generation-engine-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Engine Market Outlook



    According to our latest research, the global Synthetic Data Generation Engine market size reached USD 1.42 billion in 2024, reflecting a rapidly expanding sector driven by the escalating demand for advanced data solutions. The market is expected to achieve a robust CAGR of 37.8% from 2025 to 2033, propelling it to an estimated value of USD 21.8 billion by 2033. This exceptional growth is primarily fueled by the increasing need for high-quality, privacy-compliant datasets to train artificial intelligence and machine learning models in sectors such as healthcare, BFSI, and IT & telecommunications. As per our latest research, the proliferation of data-centric applications and stringent data privacy regulations are acting as significant catalysts for the adoption of synthetic data generation engines globally.



    One of the key growth factors for the synthetic data generation engine market is the mounting emphasis on data privacy and compliance with regulations such as GDPR and CCPA. Organizations are under immense pressure to protect sensitive customer information while still deriving actionable insights from data. Synthetic data generation engines offer a compelling solution by creating artificial datasets that mimic real-world data without exposing personally identifiable information. This not only ensures compliance but also enables organizations to accelerate their AI and analytics initiatives without the constraints of data access or privacy risks. The rising awareness among enterprises about the benefits of synthetic data in mitigating data breaches and regulatory penalties is further propelling market expansion.



    Another significant driver is the exponential growth in artificial intelligence and machine learning adoption across industries. Training robust and unbiased models requires vast and diverse datasets, which are often difficult to obtain due to privacy concerns, labeling costs, or data scarcity. Synthetic data generation engines address this challenge by providing scalable and customizable datasets for various applications, including machine learning model training, data augmentation, and fraud detection. The ability to generate balanced and representative data has become a critical enabler for organizations seeking to improve model accuracy, reduce bias, and accelerate time-to-market for AI solutions. This trend is particularly pronounced in sectors such as healthcare, automotive, and finance, where data diversity and privacy are paramount.



    Furthermore, the increasing complexity of data types and the need for multi-modal data synthesis are shaping the evolution of the synthetic data generation engine market. With the proliferation of unstructured data in the form of images, videos, audio, and text, organizations are seeking advanced engines capable of generating synthetic data across multiple modalities. This capability enhances the versatility of synthetic data solutions, enabling their application in emerging use cases such as autonomous vehicle simulation, natural language processing, and biometric authentication. The integration of generative AI techniques, such as GANs and diffusion models, is further enhancing the realism and utility of synthetic datasets, expanding the addressable market for synthetic data generation engines.



    From a regional perspective, North America continues to dominate the synthetic data generation engine market, accounting for the largest revenue share in 2024. The region's leadership is attributed to the strong presence of technology giants, early adoption of AI and machine learning, and stringent regulatory frameworks. Europe follows closely, driven by robust data privacy regulations and increasing investments in digital transformation. Meanwhile, the Asia Pacific region is emerging as the fastest-growing market, supported by expanding IT infrastructure, government-led AI initiatives, and a burgeoning startup ecosystem. Latin America and the Middle East & Africa are also witnessing gradual adoption, fueled by the growing recognition of synthetic data's potential to overcome data access and privacy challenges.





    &l

  5. Synthetic Data Generation Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generation Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generation-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Market Outlook




    According to our latest research, the global synthetic data generation market size reached USD 1.6 billion in 2024, demonstrating robust expansion driven by increasing demand for high-quality, privacy-preserving datasets. The market is projected to grow at a CAGR of 38.2% over the forecast period, reaching USD 19.2 billion by 2033. This remarkable growth trajectory is fueled by the growing adoption of artificial intelligence (AI) and machine learning (ML) technologies across industries, coupled with stringent data privacy regulations that necessitate innovative data solutions. As per our latest research, organizations worldwide are increasingly leveraging synthetic data to address data scarcity, enhance AI model training, and ensure compliance with evolving privacy standards.




    One of the primary growth factors for the synthetic data generation market is the rising emphasis on data privacy and regulatory compliance. With the implementation of stringent data protection laws such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, enterprises are under immense pressure to safeguard sensitive information. Synthetic data offers a compelling solution by enabling organizations to generate artificial datasets that mirror the statistical properties of real data without exposing personally identifiable information. This not only facilitates regulatory compliance but also empowers organizations to innovate without the risk of data breaches or privacy violations. As businesses increasingly recognize the value of privacy-preserving data, the demand for advanced synthetic data generation solutions is set to surge.




    Another significant driver is the exponential growth in AI and ML adoption across various sectors, including healthcare, finance, automotive, and retail. High-quality, diverse, and unbiased data is the cornerstone of effective AI model development. However, acquiring such data is often challenging due to privacy concerns, limited availability, or high acquisition costs. Synthetic data generation bridges this gap by providing scalable, customizable datasets tailored to specific use cases, thereby accelerating AI training and reducing dependency on real-world data. Organizations are leveraging synthetic data to enhance algorithm performance, mitigate data bias, and simulate rare events, which are otherwise difficult to capture in real datasets. This capability is particularly valuable in sectors like autonomous vehicles, where training models on rare but critical scenarios is essential for safety and reliability.




    Furthermore, the growing complexity of data types—ranging from tabular and image data to text, audio, and video—has amplified the need for versatile synthetic data generation tools. Enterprises are increasingly seeking solutions that can generate multi-modal synthetic datasets to support diverse applications such as fraud detection, product testing, and quality assurance. The flexibility offered by synthetic data generation platforms enables organizations to simulate a wide array of scenarios, test software systems, and validate AI models in controlled environments. This not only enhances operational efficiency but also drives innovation by enabling rapid prototyping and experimentation. As the digital ecosystem continues to evolve, the ability to generate synthetic data across various formats will be a critical differentiator for businesses striving to maintain a competitive edge.




    Regionally, North America leads the synthetic data generation market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The dominance of North America can be attributed to the strong presence of technology giants, advanced research institutions, and a favorable regulatory environment that encourages AI innovation. Europe is witnessing rapid growth due to proactive data privacy regulations and increasing investments in digital transformation initiatives. Meanwhile, Asia Pacific is emerging as a high-growth region, driven by the proliferation of digital technologies and rising adoption of AI-powered solutions across industries. Latin America and the Middle East & Africa are also expected to experience steady growth, supported by government-led digitalization programs and expanding IT infrastructure.



    <a href="https://growthmark

  6. V

    Department of Transportation Inventory of Artificial Intelligence Use Cases

    • data.virginia.gov
    • data.transportation.gov
    • +1more
    csv, json, rdf, xsl
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2024). Department of Transportation Inventory of Artificial Intelligence Use Cases [Dataset]. https://data.virginia.gov/dataset/department-of-transportation-inventory-of-artificial-intelligence-use-cases
    Explore at:
    rdf, xsl, json, csvAvailable download formats
    Dataset updated
    Nov 14, 2024
    Dataset provided by
    US Department of Transportation
    Authors
    U.S Department of Transportation
    Description

    This dataset is a list of Department of Transportation (DOT) Artificial Intelligence (AI) use cases.

    Artificial intelligence (AI) promises to drive the growth of the United States economy and improve the quality of life of all Americans. Pursuant to Section 5 of Executive Order (EO) 13960, "Promoting the Use of Trustworthy Artificial Intelligence in the Federal Government," Federal agencies are required to inventory their AI use cases and share their inventories with other government agencies and the public.

    In accordance with the requirements of EO 13960, this spreadsheet provides the mechanism for federal agencies to create their inaugural AI use case inventories.

    https://www.federalregister.gov/documents/2020/12/08/2020-27065/promoting-the-use-of-trustworthy-artificial-intelligence-in-the-federal-government

  7. d

    Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats

    • datarade.ai
    Updated Sep 18, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ainnotate (2022). Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats [Dataset]. https://datarade.ai/data-products/synthetic-document-dataset-for-ai-jpeg-png-pdf-formats-ainnotate
    Explore at:
    Dataset updated
    Sep 18, 2022
    Dataset authored and provided by
    Ainnotate
    Area covered
    Syrian Arab Republic, Ireland, Canada, Tokelau, Brazil, Korea (Democratic People's Republic of), Germany, Cabo Verde, Denmark, Tonga
    Description

    Ainnotate’s proprietary dataset generation methodology based on large scale generative modelling and Domain randomization provides data that is well balanced with consistent sampling, accommodating rare events, so that it can enable superior simulation and training of your models.

    Ainnotate currently provides synthetic datasets in the following domains and use cases.

    Internal Services - Visa application, Passport validation, License validation, Birth certificates Financial Services - Bank checks, Bank statements, Pay slips, Invoices, Tax forms, Insurance claims and Mortgage/Loan forms Healthcare - Medical Id cards

  8. S

    Synthetic Data Generation Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Synthetic Data Generation Market Report [Dataset]. https://www.marketresearchforecast.com/reports/synthetic-data-generation-market-1834
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Generation Marketsize was valued at USD 288.5 USD Million in 2023 and is projected to reach USD 1920.28 USD Million by 2032, exhibiting a CAGR of 31.1 % during the forecast period.Synthetic data generation stands for the generation of fake datasets that resemble real datasets with reference to their data distribution and patterns. It refers to the process of creating synthetic data points utilizing algorithms or models instead of conducting observations or surveys. There is one of its core advantages: it can maintain the statistical characteristics of the original data and remove the privacy risk of using real data. Further, with synthetic data, there is no limitation to how much data can be created, and hence, it can be used for extensive testing and training of machine learning models, unlike the case with conventional data, which may be highly regulated or limited in availability. It also helps in the generation of datasets that are comprehensive and include many examples of specific situations or contexts that may occur in practice for improving the AI system’s performance. The use of SDG significantly shortens the process of the development cycle, requiring less time and effort for data collection as well as annotation. It basically allows researchers and developers to be highly efficient in their discovery and development in specific domains like healthcare, finance, etc. Key drivers for this market are: Growing Demand for Data Privacy and Security to Fuel Market Growth. Potential restraints include: Lack of Data Accuracy and Realism Hinders Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

  9. D

    Synthetic Data Generation Engine Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Synthetic Data Generation Engine Market Research Report 2033 [Dataset]. https://dataintelo.com/report/synthetic-data-generation-engine-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Engine Market Outlook



    According to our latest research, the global synthetic data generation engine market size reached USD 1.48 billion in 2024. The market is experiencing robust expansion, driven by the increasing demand for privacy-compliant data and advanced analytics solutions. The market is projected to grow at a remarkable CAGR of 35.6% from 2025 to 2033, reaching an estimated USD 18.67 billion by the end of the forecast period. This rapid growth is primarily propelled by the adoption of artificial intelligence (AI) and machine learning (ML) across various industry verticals, along with the escalating need for high-quality, diverse datasets that do not compromise sensitive information.



    One of the primary growth factors fueling the synthetic data generation engine market is the heightened focus on data privacy and regulatory compliance. With stringent regulations such as GDPR, CCPA, and HIPAA being enforced globally, organizations are increasingly seeking solutions that enable them to generate and utilize data without exposing real customer information. Synthetic data generation engines provide a powerful means to create realistic, anonymized datasets that retain the statistical properties of original data, thus supporting robust analytics and model development while ensuring compliance with data protection laws. This capability is especially critical for sectors like healthcare, banking, and government, where data sensitivity is paramount.



    Another significant driver is the surging adoption of AI and ML models across industries, which require vast volumes of diverse and representative data for training and validation. Traditional data collection methods often fall short due to limitations in data availability, quality, or privacy concerns. Synthetic data generation engines address these challenges by enabling the creation of customized datasets tailored for specific use cases, including rare-event modeling, edge-case scenario testing, and data augmentation. This not only accelerates innovation but also reduces the time and cost associated with data acquisition and labeling, making it a strategic asset for organizations seeking to maintain a competitive edge in AI-driven markets.



    Moreover, the increasing integration of synthetic data generation engines into enterprise IT ecosystems is being catalyzed by advancements in cloud computing and scalable software architectures. Cloud-based deployment models are making these solutions more accessible and cost-effective for organizations of all sizes, from startups to large enterprises. The flexibility to generate, store, and manage synthetic datasets in the cloud enhances collaboration, speeds up development cycles, and supports global operations. As a result, cloud adoption is expected to further accelerate market growth, particularly among businesses undergoing digital transformation and seeking to leverage synthetic data for innovation and compliance.



    Regionally, North America currently dominates the synthetic data generation engine market, accounting for the largest revenue share in 2024, followed closely by Europe and the Asia Pacific. North America's leadership is attributed to the presence of major technology providers, robust regulatory frameworks, and a high level of AI adoption across industries. Europe is experiencing rapid growth due to strong data privacy regulations and a thriving technology ecosystem, while Asia Pacific is emerging as a lucrative market, driven by digitalization initiatives and increasing investments in AI and analytics. The regional outlook suggests that market expansion will be broad-based, with significant opportunities for vendors and stakeholders across all major geographies.



    Component Analysis



    The component segment of the synthetic data generation engine market is bifurcated into software and services, each playing a vital role in the overall ecosystem. Software solutions form the backbone of this market, providing the core algorithms and platforms that enable the generation, management, and deployment of synthetic datasets. These platforms are continually evolving, integrating advanced techniques such as generative adversarial networks (GANs), variational autoencoders, and other deep learning models to produce highly realistic and diverse synthetic data. The software segment is anticipated to maintain its dominance throughout the forecast period, as organizations increasingly invest in proprietary and commercial tools to address their un

  10. Artificial Intelligence (AI) Training Dataset Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Artificial Intelligence (AI) Training Dataset Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/artificial-intelligence-training-dataset-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Artificial Intelligence (AI) Training Dataset Market Outlook



    According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.




    One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.




    Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.




    The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.




    From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.





    Data Type Analysis



    The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da

  11. f

    Data Sheet 1_Large language models generating synthetic clinical datasets: a...

    • frontiersin.figshare.com
    xlsx
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 1_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  12. R

    AI in Synthetic Data Market Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). AI in Synthetic Data Market Market Research Report 2033 [Dataset]. https://researchintelo.com/report/ai-in-synthetic-data-market-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    AI in Synthetic Data Market Outlook



    According to our latest research, the AI in Synthetic Data market size reached USD 1.32 billion in 2024, reflecting an exceptional surge in demand across various industries. The market is poised to expand at a CAGR of 36.7% from 2025 to 2033, with the forecasted market size expected to reach USD 21.38 billion by 2033. This remarkable growth trajectory is driven by the increasing necessity for privacy-preserving data solutions, the proliferation of AI and machine learning applications, and the rapid digital transformation across sectors. As per our latest research, the market’s robust expansion is underpinned by the urgent need to generate high-quality, diverse, and scalable datasets without compromising sensitive information, positioning synthetic data as a cornerstone for next-generation AI development.




    One of the primary growth factors for the AI in Synthetic Data market is the escalating demand for data privacy and compliance with stringent regulations such as GDPR, HIPAA, and CCPA. Enterprises are increasingly leveraging synthetic data to circumvent the challenges associated with using real-world data, particularly in industries like healthcare, finance, and government, where data sensitivity is paramount. The ability of synthetic data to mimic real-world datasets while ensuring anonymity enables organizations to innovate rapidly without breaching privacy laws. Furthermore, the adoption of synthetic data significantly reduces the risk of data breaches, which is a critical concern in today’s data-driven economy. As a result, organizations are not only accelerating their AI and machine learning initiatives but are also achieving compliance and operational efficiency.




    Another significant driver is the exponential growth in AI and machine learning adoption across diverse sectors. These technologies require vast volumes of high-quality data for training, validation, and testing purposes. However, acquiring and labeling real-world data is often expensive, time-consuming, and fraught with privacy concerns. Synthetic data addresses these challenges by enabling the generation of large, labeled datasets that are tailored to specific use cases, such as image recognition, natural language processing, and fraud detection. This capability is particularly transformative for sectors like automotive, where synthetic data is used to train autonomous vehicle algorithms, and healthcare, where it supports the development of diagnostic and predictive models without exposing patient information.




    Technological advancements in generative AI models, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), have further propelled the market. These innovations have significantly improved the realism, diversity, and utility of synthetic data, making it nearly indistinguishable from real-world data in many applications. The synergy between synthetic data generation and advanced AI models is enabling new possibilities in areas like computer vision, speech synthesis, and anomaly detection. As organizations continue to invest in AI-driven solutions, the demand for synthetic data is expected to surge, fueling further market expansion and innovation.




    From a regional perspective, North America currently leads the AI in Synthetic Data market due to its early adoption of AI technologies, strong presence of leading technology companies, and supportive regulatory frameworks. Europe follows closely, driven by its rigorous data privacy regulations and a burgeoning ecosystem of AI startups. The Asia Pacific region is emerging as a lucrative market, propelled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing steady growth, albeit at a slower pace, as organizations in these regions begin to recognize the value of synthetic data for digital transformation and innovation.



    Component Analysis



    The AI in Synthetic Data market is segmented by component into Software and Services, each playing a pivotal role in the industry’s growth. Software solutions dominate the market, accounting for the largest share in 2024, as organizations increasingly adopt advanced platforms for data generation, management, and integration. These software platforms leverage state-of-the-art generative AI models that enable users to create highly realistic and customizab

  13. D

    Synthetic Tabular Data Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Synthetic Tabular Data Market Research Report 2033 [Dataset]. https://dataintelo.com/report/synthetic-tabular-data-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Tabular Data Market Outlook



    According to our latest research, the global synthetic tabular data market size in 2024 stands at USD 470 million, reflecting a robust demand across multiple sectors driven by the need for privacy-preserving data and advanced analytics. The market is projected to grow at a CAGR of 35.8% from 2025 to 2033, reaching a forecasted value of USD 6.9 billion by 2033. Key growth factors include the increasing adoption of artificial intelligence and machine learning, stringent data privacy regulations worldwide, and the growing necessity for high-quality, diverse datasets to fuel innovation while minimizing compliance risks.




    One of the primary growth drivers in the synthetic tabular data market is the escalating emphasis on data privacy and compliance with global regulations such as GDPR, CCPA, and HIPAA. Organizations are under immense pressure to safeguard sensitive information while still leveraging data for insights and competitive advantage. Synthetic tabular data, which mimics real datasets without exposing actual personal or confidential information, offers a compelling solution. This technology enables businesses to conduct analytics, develop machine learning models, and perform robust testing without risking data breaches or non-compliance penalties. The rising number of data privacy incidents and the growing public scrutiny over data handling practices have further accelerated the adoption of synthetic data solutions across industries.




    Another significant factor fueling market expansion is the exponential growth in artificial intelligence and machine learning initiatives across various sectors. Machine learning algorithms require vast, diverse, and high-quality datasets to train and validate models effectively. However, access to such data is often restricted due to privacy concerns, data scarcity, or regulatory barriers. Synthetic tabular data addresses this challenge by generating realistic, statistically representative datasets that closely resemble actual data distributions. This fosters innovation in areas such as fraud detection, predictive analytics, and recommendation systems, empowering organizations to build more accurate and robust AI models while maintaining data confidentiality.




    Additionally, the synthetic tabular data market is benefiting from advancements in generative modeling techniques, such as Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs). These technologies have significantly improved the fidelity and utility of synthetic data, making it increasingly difficult to distinguish from real-world datasets. As a result, industries like healthcare, finance, and retail are embracing synthetic tabular data for applications ranging from clinical research and financial risk modeling to customer behavior analysis and supply chain optimization. The growing ecosystem of synthetic data platforms, tools, and services is also lowering the barriers to entry, enabling organizations of all sizes to harness the benefits of synthetic data.




    From a regional perspective, North America currently leads the synthetic tabular data market, driven by a mature technology landscape, early adoption of AI and data privacy frameworks, and significant investments in research and development. Europe follows closely, propelled by stringent GDPR regulations and a strong focus on ethical AI. The Asia Pacific region is emerging as a high-growth market, supported by rapid digital transformation, expanding data-driven industries, and increasing awareness of data privacy issues. Latin America and the Middle East & Africa are also witnessing steady growth, albeit from a smaller base, as enterprises in these regions recognize the value of synthetic data for digital innovation and regulatory compliance.



    Data Type Analysis



    The synthetic tabular data market is segmented by data type into numerical, categorical, and mixed datasets, each serving distinct use cases and industries. Numerical synthetic data, representing quantitative values such as sales figures, sensor readings, or financial metrics, is particularly vital for sectors that rely heavily on statistical analysis and predictive modeling. Organizations in finance, manufacturing, and scientific research utilize numerical synthetic data to simulate scenarios, perform stress testing, and enhance the robustness of their analytical models. The ability to generate large volumes of realistic numer

  14. USAID Inventory of Artificial Intelligence (AI) Use Cases

    • catalog.data.gov
    Updated Jan 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.usaid.gov (2025). USAID Inventory of Artificial Intelligence (AI) Use Cases [Dataset]. https://catalog.data.gov/dataset/usaid-inventory-of-artificial-intelligence-ai-use-cases-2023
    Explore at:
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    United States Agency for International Developmenthttp://usaid.gov/
    Description

    This data asset contains an inventory of USAID AI use cases.

  15. Autonomous driving Synthetic Data

    • kaggle.com
    Updated Sep 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Guan (2024). Autonomous driving Synthetic Data [Dataset]. https://www.kaggle.com/datasets/annaguan321/autonomous-driving-synthetic-data-cat/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Anna Guan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    About Dataset

    Overview This dataset contains images of synthetic road scenarios designed for training and testing autonomous vehicle AI systems. Each image simulates common driving conditions, incorporating various elements such as vehicles, pedestrians, and potential obstacles like animals. In this specific dataset, certain elements, such as the dog shown in the image, are synthetically generated to test the ability of machine learning models to detect unexpected road hazards. This dataset is ideal for projects involving computer vision, object detection, and autonomous driving simulations.

    To learn more about how synthetic data is shaping the future of AI and autonomous driving, check out our latest blog posts at NeuroBot Blog for insights and case studies. https://www.neurobot.co/use-cases-posts/autonomous-driving-challenge

    Want to see more synthetic data in action? Head over to www.neurobot.co to schedule a demo or sign up to upload your own images and generate custom synthetic data tailored to your projects.

    Note Important Disclaimer: This dataset has not been part of any official research study or peer-reviewed article reviewed by autonomous driving authorities or safety experts. It is recommended for educational purposes only. The synthetic elements included in the images are not based on real-world data and should not be used in production-level autonomous vehicle systems without proper review by experts in the field of AI safety and autonomous vehicle regulations. Ensure you use this dataset responsibly, considering ethical implications.

  16. D

    Data Labeling Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Labeling Market Report [Dataset]. https://www.datainsightsmarket.com/reports/data-labeling-market-20383
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data labeling market is experiencing robust growth, projected to reach $3.84 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 28.13% from 2025 to 2033. This expansion is fueled by the increasing demand for high-quality training data across various sectors, including healthcare, automotive, and finance, which heavily rely on machine learning and artificial intelligence (AI). The surge in AI adoption, particularly in areas like autonomous vehicles, medical image analysis, and fraud detection, necessitates vast quantities of accurately labeled data. The market is segmented by sourcing type (in-house vs. outsourced), data type (text, image, audio), labeling method (manual, automatic, semi-supervised), and end-user industry. Outsourcing is expected to dominate the sourcing segment due to cost-effectiveness and access to specialized expertise. Similarly, image data labeling is likely to hold a significant share, given the visual nature of many AI applications. The shift towards automation and semi-supervised techniques aims to improve efficiency and reduce labeling costs, though manual labeling will remain crucial for tasks requiring high accuracy and nuanced understanding. Geographical distribution shows strong potential across North America and Europe, with Asia-Pacific emerging as a key growth region driven by increasing technological advancements and digital transformation. Competition in the data labeling market is intense, with a mix of established players like Amazon Mechanical Turk and Appen, alongside emerging specialized companies. The market's future trajectory will likely be shaped by advancements in automation technologies, the development of more efficient labeling techniques, and the increasing need for specialized data labeling services catering to niche applications. Companies are focusing on improving the accuracy and speed of data labeling through innovations in AI-powered tools and techniques. Furthermore, the rise of synthetic data generation offers a promising avenue for supplementing real-world data, potentially addressing data scarcity challenges and reducing labeling costs in certain applications. This will, however, require careful attention to ensure that the synthetic data generated is representative of real-world data to maintain model accuracy. This comprehensive report provides an in-depth analysis of the global data labeling market, offering invaluable insights for businesses, investors, and researchers. The study period covers 2019-2033, with 2025 as the base and estimated year, and a forecast period of 2025-2033. We delve into market size, segmentation, growth drivers, challenges, and emerging trends, examining the impact of technological advancements and regulatory changes on this rapidly evolving sector. The market is projected to reach multi-billion dollar valuations by 2033, fueled by the increasing demand for high-quality data to train sophisticated machine learning models. Recent developments include: September 2024: The National Geospatial-Intelligence Agency (NGA) is poised to invest heavily in artificial intelligence, earmarking up to USD 700 million for data labeling services over the next five years. This initiative aims to enhance NGA's machine-learning capabilities, particularly in analyzing satellite imagery and other geospatial data. The agency has opted for a multi-vendor indefinite-delivery/indefinite-quantity (IDIQ) contract, emphasizing the importance of annotating raw data be it images or videos—to render it understandable for machine learning models. For instance, when dealing with satellite imagery, the focus could be on labeling distinct entities such as buildings, roads, or patches of vegetation.October 2023: Refuel.ai unveiled a new platform, Refuel Cloud, and a specialized large language model (LLM) for data labeling. Refuel Cloud harnesses advanced LLMs, including its proprietary model, to automate data cleaning, labeling, and enrichment at scale, catering to diverse industry use cases. Recognizing that clean data underpins modern AI and data-centric software, Refuel Cloud addresses the historical challenge of human labor bottlenecks in data production. With Refuel Cloud, enterprises can swiftly generate the expansive, precise datasets they require in mere minutes, a task that traditionally spanned weeks.. Key drivers for this market are: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Potential restraints include: Rising Penetration of Connected Cars and Advances in Autonomous Driving Technology, Advances in Big Data Analytics based on AI and ML. Notable trends are: Healthcare is Expected to Witness Remarkable Growth.

  17. Synthetic Data Video Generator Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Video Generator Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-video-generator-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Video Generator Market Outlook



    According to our latest research, the global Synthetic Data Video Generator market size in 2024 stands at USD 1.46 billion, with robust momentum driven by advances in artificial intelligence and the increasing need for high-quality, privacy-compliant video datasets. The market is witnessing a remarkable compound annual growth rate (CAGR) of 37.2% from 2025 to 2033, propelled by growing adoption across sectors such as autonomous vehicles, healthcare, and surveillance. By 2033, the market is projected to reach USD 18.16 billion, reflecting a seismic shift in how organizations leverage synthetic data to accelerate innovation and mitigate data privacy concerns.



    The primary growth factor for the Synthetic Data Video Generator market is the surging demand for data privacy and compliance in machine learning and computer vision applications. As regulatory frameworks like GDPR and CCPA become more stringent, organizations are increasingly wary of using real-world video data that may contain personally identifiable information. Synthetic data video generators provide a scalable and ethical alternative, enabling enterprises to train and validate AI models without risking privacy breaches. This trend is particularly pronounced in sectors such as healthcare and finance, where data sensitivity is paramount. The ability to generate diverse, customizable, and annotation-rich video datasets not only addresses compliance requirements but also accelerates the development and deployment of AI solutions.



    Another significant driver is the rapid evolution of deep learning algorithms and simulation technologies, which have dramatically improved the realism and utility of synthetic video data. Innovations in generative adversarial networks (GANs), 3D rendering engines, and advanced simulation platforms have made it possible to create synthetic videos that closely mimic real-world environments and scenarios. This capability is invaluable for industries like autonomous vehicles and robotics, where extensive and varied training data is essential for safe and reliable system behavior. The reduction in time, cost, and logistical complexity associated with collecting and labeling real-world video data further enhances the attractiveness of synthetic data video generators, positioning them as a cornerstone technology for next-generation AI development.



    The expanding use cases for synthetic video data across emerging applications also contribute to market growth. Beyond traditional domains such as surveillance and entertainment, synthetic data video generators are finding adoption in areas like augmented reality, smart retail, and advanced robotics. The flexibility to simulate rare, dangerous, or hard-to-capture scenarios offers a strategic advantage for organizations seeking to future-proof their AI initiatives. As synthetic data generation platforms become more accessible and user-friendly, small and medium enterprises are also entering the fray, democratizing access to high-quality training data and fueling a new wave of AI-driven innovation.



    From a regional perspective, North America continues to dominate the Synthetic Data Video Generator market, benefiting from a concentration of technology giants, research institutions, and early adopters across key verticals. Europe follows closely, driven by strong regulatory emphasis on data protection and an active ecosystem of AI startups. Meanwhile, the Asia Pacific region is emerging as a high-growth market, buoyed by rapid digital transformation, government AI initiatives, and increasing investments in autonomous systems and smart cities. Latin America and the Middle East & Africa are also showing steady progress, albeit from a smaller base, as awareness and infrastructure for synthetic data generation mature.





    Component Analysis



    The Synthetic Data Video Generator market, when analyzed by component, is primarily segmented into Software and Services. The software segment currently commands the largest share, driven by the prolif

  18. d

    Department of Agriculture Inventory of Artificial Intelligence Use Cases

    • catalog.data.gov
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Information Officer (2025). Department of Agriculture Inventory of Artificial Intelligence Use Cases [Dataset]. https://catalog.data.gov/dataset/department-of-agriculture-inventory-of-artificial-intelligence-use-cases
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset provided by
    Office of the Chief Information Officer
    Description

    This dataset is an inventory of the uses of artificial intelligence (AI) at USDA. The inventory was developed and published as required by OMB M-24-10, "Advancing Governance, Innovation, and Risk Management for Agency Use of Artificial Intelligence". The inventory attributes were collected in accordance with a data standard established by OMB.

  19. Main generative AI use cases in financial services worldwide 2023-2024

    • statista.com
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Main generative AI use cases in financial services worldwide 2023-2024 [Dataset]. https://www.statista.com/statistics/1446225/use-cases-of-ai-in-financial-services-by-business-area/
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Generative AI experienced a massive expansion of use cases in financial services during 2024, with customer experience and engagement emerging as the dominant application. A 2024 survey revealed that ** percent of respondents prioritized this area, a dramatic increase from ** percent in the previous year. Report generation, investment research, and document processing also gained significant traction, with over ** percent of firms implementing these applications. Additional use cases included synthetic data generation, code assistance, software development, marketing and sales asset creation, and enterprise research.

  20. V

    Data for Artificial Intelligence: Data-Centric AI for Transportation: Work...

    • data.virginia.gov
    • data.transportation.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S Department of Transportation (2025). Data for Artificial Intelligence: Data-Centric AI for Transportation: Work Zone Use Case Processed Integrated Traffic Work Zone Data [Dataset]. https://data.virginia.gov/dataset/data-for-artificial-intelligence-data-centric-ai-for-transportation-work-zone-use-case-processe
    Explore at:
    xsl, csv, json, rdfAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset provided by
    Federal Highway Administration
    Authors
    U.S Department of Transportation
    Description

    Data for Artificial Intelligence: Data-Centric AI for Transportation: Work Zone Use Case proposes a data integration pipeline that enhances the utilization of work zone and traffic data from diversified platforms and introduces a novel deep learning model to predict the traffic speed and traffic collision likelihood during planned work zone events. This dataset is the processed integrated traffic data with work zone and incident information. Attached below are the number of lanes data and impacted work zone .pkl file.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Roots Analysis (2024). Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/synthetic-data-generation-market
Organization logo

Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035

Explore at:
Dataset updated
Sep 28, 2024
Dataset provided by
Authors
Roots Analysis
License

https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

Time period covered
2021 - 2031
Area covered
Global
Description

The global synthetic data market size is projected to grow from USD 0.4 billion in the current year to USD 19.22 billion by 2035, representing a CAGR of 42.14%, during the forecast period till 2035

Search
Clear search
Close search
Google apps
Main menu