100+ datasets found
  1. i

    Dataset of article: Synthetic Datasets Generator for Testing Information...

    • ieee-dataport.org
    Updated Mar 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sandro Mendonça (2020). Dataset of article: Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools [Dataset]. http://doi.org/10.21227/5aeq-rr34
    Explore at:
    Dataset updated
    Mar 13, 2020
    Dataset provided by
    IEEE Dataport
    Authors
    Sandro Mendonça
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.

  2. f

    Data Sheet 2_Large language models generating synthetic clinical datasets: a...

    • frontiersin.figshare.com
    xlsx
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  3. C

    Synthetic Integrated Services Data

    • data.wprdc.org
    csv, html, pdf, zip
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny County (2024). Synthetic Integrated Services Data [Dataset]. https://data.wprdc.org/dataset/synthetic-integrated-services-data
    Explore at:
    html, csv(1375554033), zip(39231637), pdfAvailable download formats
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    Allegheny County
    Description

    Motivation

    This dataset was created to pilot techniques for creating synthetic data from datasets containing sensitive and protected information in the local government context. Synthetic data generation replaces actual data with representative data generated from statistical models; this preserves the key data properties that allow insights to be drawn from the data while protecting the privacy of the people included in the data. We invite you to read the Understanding Synthetic Data white paper for a concise introduction to synthetic data.

    This effort was a collaboration of the Urban Institute, Allegheny County’s Department of Human Services (DHS) and CountyStat, and the University of Pittsburgh’s Western Pennsylvania Regional Data Center.

    Collection

    The source data for this project consisted of 1) month-by-month records of services included in Allegheny County's data warehouse and 2) demographic data about the individuals who received the services. As the County’s data warehouse combines this service and client data, this data is referred to as “Integrated Services data”. Read more about the data warehouse and the kinds of services it includes here.

    Preprocessing

    Synthetic data are typically generated from probability distributions or models identified as being representative of the confidential data. For this dataset, a model of the Integrated Services data was used to generate multiple versions of the synthetic dataset. These different candidate datasets were evaluated to select for publication the dataset version that best balances utility and privacy. For high-level information about this evaluation, see the Synthetic Data User Guide.

    For more information about the creation of the synthetic version of this data, see the technical brief for this project, which discusses the technical decision making and modeling process in more detail.

    Recommended Uses

    This disaggregated synthetic data allows for many analyses that are not possible with aggregate data (summary statistics). Broadly, this synthetic version of this data could be analyzed to better understand the usage of human services by people in Allegheny County, including the interplay in the usage of multiple services and demographic information about clients.

    Known Limitations/Biases

    Some amount of deviation from the original data is inherent to the synthetic data generation process. Specific examples of limitations (including undercounts and overcounts for the usage of different services) are given in the Synthetic Data User Guide and the technical report describing this dataset's creation.

    Feedback

    Please reach out to this dataset's data steward (listed below) to let us know how you are using this data and if you found it to be helpful. Please also provide any feedback on how to make this dataset more applicable to your work, any suggestions of future synthetic datasets, or any additional information that would make this more useful. Also, please copy wprdc@pitt.edu on any such feedback (as the WPRDC always loves to hear about how people use the data that they publish and how the data could be improved).

    Further Documentation and Resources

    1) A high-level overview of synthetic data generation as a method for protecting privacy can be found in the Understanding Synthetic Data white paper.
    2) The Synthetic Data User Guide provides high-level information to help users understand the motivation, evaluation process, and limitations of the synthetic version of Allegheny County DHS's Human Services data published here.
    3) Generating a Fully Synthetic Human Services Dataset: A Technical Report on Synthesis and Evaluation Methodologies describes the full technical methodology used for generating the synthetic data, evaluating the various options, and selecting the final candidate for publication.
    4) The WPRDC also hosts the Allegheny County Human Services Community Profiles dataset, which provides annual updates on human-services usage, aggregated by neighborhood/municipality. That data can be explored using the County's Human Services Community Profile web site.

  4. Synthetic Data Generation Market Analysis North America, Europe, APAC,...

    • technavio.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Synthetic Data Generation Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, China, Germany, UK, Japan - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
    Explore at:
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    Synthetic Data Generation Market Size 2024-2028

    The synthetic data generation market size is forecast to increase by USD 2.88 billion at a CAGR of 60.02% between 2023 and 2028.

    The global synthetic data generation market is expanding steadily, driven by the growing need for privacy-compliant data solutions and advancements in AI technology. Key factors include the increasing demand for data to train machine learning models, particularly in industries like healthcare services and finance where privacy regulations are strict and the use of predictive analytics is critical, and the use of generative AI and machine learning algorithms, which create high-quality synthetic datasets that mimic real-world data without compromising security.
    This report provides a detailed analysis of the global synthetic data generation market, covering market size, growth forecasts, and key segments such as agent-based modeling and data synthesis. It offers practical insights for business strategy, technology adoption, and compliance planning. A significant trend highlighted is the rise of synthetic data in AI training, enabling faster and more ethical development of models. One major challenge addressed is the difficulty in ensuring data quality, as poorly generated synthetic data can lead to inaccurate outcomes.
    For businesses aiming to stay competitive in a data-driven global landscape, this report delivers essential data and strategies to leverage synthetic data trends and address quality challenges, ensuring they remain leaders in innovation while meeting regulatory demands
    

    What will be the Size of the Market During the Forecast Period?

    Request Free Sample

    Synthetic data generation offers a more time-efficient solution compared to traditional methods of data collection and labeling, making it an attractive option for businesses looking to accelerate their AI and machine learning projects. The market represents a promising opportunity for organizations seeking to overcome the challenges of data scarcity and privacy concerns while maintaining data diversity and improving the efficiency of their artificial intelligence and machine learning initiatives. By leveraging this technology, technology decision-makers can drive innovation and gain a competitive edge in their respective industries.

    Market Segmentation

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    End-user
    
      Healthcare and life sciences
      Retail and e-commerce
      Transportation and logistics
      IT and telecommunication
      BFSI and others
    
    
    Type
    
      Agent-based modelling
      Direct modelling
    
    
    Data
    
      Tabular Data
      Text Data
      Image & Video Data
      Others
    
    
    Offering Band
    
      Fully Synthetic Data
      Partially Synthetic Data
      Hybrid Synthetic Data
    
    
    Application
    
      Data Protection
      Data Sharing
      Predictive Analytics
      Natural Language Processing
      Computer Vision Algorithms
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        Germany
        UK
        France
        Italy
    
    
      APAC
    
        China
        Japan
        India
    
    
      Middle East and Africa
    
    
    
      South America
    

    By End-user Insights

    The healthcare and life sciences segment is estimated to witness significant growth during the forecast period. In the thriving healthcare and life sciences sector, synthetic data generation is gaining significant traction as a cost-effective and time-efficient alternative to utilizing real-world data. This market segment's rapid expansion is driven by the increasing demand for data-driven insights and the importance of safeguarding sensitive information. One noteworthy application of synthetic data generation is in the realm of computer vision, specifically with geospatial imagery and medical imaging.

    For instance, in healthcare, synthetic data can be generated to replicate medical imaging, such as MRI scans and X-rays, for research and machine learning model development without compromising patient privacy. Similarly, in the field of physical security, synthetic data can be employed to enhance autonomous vehicle simulation, ensuring optimal performance and safety without the need for real-world data. By generating artificial datasets, organizations can diversify their data sources and improve the overall quality and accuracy of their machine learning models.

    Get a glance at the share of various segments. Request Free Sample

    The healthcare and life sciences segment was valued at USD 12.60 million in 2018 and showed a gradual increase during the forecast period.

    Regional Insights

    North America is estimated to contribute 36% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the m

  5. Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035...

    • rootsanalysis.com
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roots Analysis (2024). Synthetic Data Generation Market Size, Share, Trends & Insights Report, 2035 [Dataset]. https://www.rootsanalysis.com/synthetic-data-generation-market
    Explore at:
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    Authors
    Roots Analysis
    License

    https://www.rootsanalysis.com/privacy.htmlhttps://www.rootsanalysis.com/privacy.html

    Time period covered
    2021 - 2031
    Area covered
    Global
    Description

    The global synthetic data market size is projected to grow from USD 0.4 billion in the current year to USD 19.22 billion by 2035, representing a CAGR of 42.14%, during the forecast period till 2035

  6. E

    Synthetic Data Generation Market Size, Share, Trend Analysis by 2033

    • emergenresearch.com
    pdf
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emergen Research (2024). Synthetic Data Generation Market Size, Share, Trend Analysis by 2033 [Dataset]. https://www.emergenresearch.com/industry-report/synthetic-data-generation-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Emergen Research
    License

    https://www.emergenresearch.com/purpose-of-privacy-policyhttps://www.emergenresearch.com/purpose-of-privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    The Synthetic Data Generation Market size is expected to reach a valuation of USD 36.09 Billion in 2033 growing at a CAGR of 39.45%. The research report classifies market by share, trend, demand and based on segmentation by Data Type, Modeling Type, Offering, Application, End Use and Regional Outlook.

  7. d

    Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats

    • datarade.ai
    Updated Sep 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ainnotate (2022). Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats [Dataset]. https://datarade.ai/data-products/synthetic-document-dataset-for-ai-jpeg-png-pdf-formats-ainnotate
    Explore at:
    Dataset updated
    Sep 17, 2022
    Dataset authored and provided by
    Ainnotate
    Area covered
    Tonga, Korea (Democratic People's Republic of), Tokelau, Cabo Verde, Germany, Denmark, Brazil, Syrian Arab Republic, Ireland, Canada
    Description

    Ainnotate’s proprietary dataset generation methodology based on large scale generative modelling and Domain randomization provides data that is well balanced with consistent sampling, accommodating rare events, so that it can enable superior simulation and training of your models.

    Ainnotate currently provides synthetic datasets in the following domains and use cases.

    Internal Services - Visa application, Passport validation, License validation, Birth certificates Financial Services - Bank checks, Bank statements, Pay slips, Invoices, Tax forms, Insurance claims and Mortgage/Loan forms Healthcare - Medical Id cards

  8. T

    A Study of the Synthetic Data Generation Market by Tabular Data and Direct...

    • futuremarketinsights.com
    pdf
    Updated Mar 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    A Study of the Synthetic Data Generation Market by Tabular Data and Direct Modeling from 2024 to 2034 [Dataset]. https://www.futuremarketinsights.com/reports/synthetic-data-generation-market
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 8, 2024
    Dataset authored and provided by
    Future Market Insights
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2024 - 2034
    Area covered
    Worldwide
    Description

    The synthetic data generation market is projected to be worth US$ 300 million in 2024. The market is anticipated to reach US$ 13.0 billion by 2034. The market is further expected to surge at a CAGR of 45.9% during the forecast period 2024 to 2034.

    AttributesKey Insights
    Synthetic Data Generation Market Estimated Size in 2024US$ 300 million
    Projected Market Value in 2034US$ 13.0 billion
    Value-based CAGR from 2024 to 203445.9%

    Country-wise Insights

    CountriesForecast CAGRs from 2024 to 2034
    The United States46.2%
    The United Kingdom47.2%
    China46.8%
    Japan47.0%
    Korea47.3%

    Category-wise Insights

    CategoryCAGR through 2034
    Tabular Data45.7%
    Sandwich Assays45.5%

    Report Scope

    AttributeDetails
    Estimated Market Size in 2024US$ 0.3 billion
    Projected Market Valuation in 2034US$ 13.0 billion
    Value-based CAGR 2024 to 203445.9%
    Forecast Period2024 to 2034
    Historical Data Available for2019 to 2023
    Market AnalysisValue in US$ Billion
    Key Regions Covered
    • North America
    • Latin America
    • Western Europe
    • Eastern Europe
    • South Asia and Pacific
    • East Asia
    • The Middle East & Africa
    Key Market Segments Covered
    • Data Type
    • Modeling Type
    • Offering
    • Application
    • End Use
    • Region
    Key Countries Profiled
    • The United States
    • Canada
    • Brazil
    • Mexico
    • Germany
    • France
    • France
    • Spain
    • Italy
    • Russia
    • Poland
    • Czech Republic
    • Romania
    • India
    • Bangladesh
    • Australia
    • New Zealand
    • China
    • Japan
    • South Korea
    • GCC countries
    • South Africa
    • Israel
    Key Companies Profiled
    • Mostly AI
    • CVEDIA Inc.
    • Gretel Labs
    • Datagen
    • NVIDIA Corporation
    • Synthesis AI
    • Amazon.com, Inc.
    • Microsoft Corporation
    • IBM Corporation
    • Meta

  9. R

    Synthetic Data Generation Market Size & Share | Forecast Report 2037

    • researchnester.com
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Nester (2025). Synthetic Data Generation Market Size & Share | Forecast Report 2037 [Dataset]. https://www.researchnester.com/reports/synthetic-data-generation-market/5711
    Explore at:
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Research Nester
    License

    https://www.researchnester.comhttps://www.researchnester.com

    Description

    The synthetic data generation market size is projected to grow from USD 307.42 million to USD 18.23 billion, witnessing a CAGR of over 36.9% during the forecast period, between 2025 and 2037. North America region is attributed to hold the largest revenue share of about 33% by 2037 due to the increasing technological advancements in the region.

  10. S

    Synthetic Data Generation Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Synthetic Data Generation Market Report [Dataset]. https://www.marketresearchforecast.com/reports/synthetic-data-generation-market-1834
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Dec 8, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Generation Marketsize was valued at USD 288.5 USD Million in 2023 and is projected to reach USD 1920.28 USD Million by 2032, exhibiting a CAGR of 31.1 % during the forecast period.Synthetic data generation stands for the generation of fake datasets that resemble real datasets with reference to their data distribution and patterns. It refers to the process of creating synthetic data points utilizing algorithms or models instead of conducting observations or surveys. There is one of its core advantages: it can maintain the statistical characteristics of the original data and remove the privacy risk of using real data. Further, with synthetic data, there is no limitation to how much data can be created, and hence, it can be used for extensive testing and training of machine learning models, unlike the case with conventional data, which may be highly regulated or limited in availability. It also helps in the generation of datasets that are comprehensive and include many examples of specific situations or contexts that may occur in practice for improving the AI system’s performance. The use of SDG significantly shortens the process of the development cycle, requiring less time and effort for data collection as well as annotation. It basically allows researchers and developers to be highly efficient in their discovery and development in specific domains like healthcare, finance, etc. Key drivers for this market are: Growing Demand for Data Privacy and Security to Fuel Market Growth. Potential restraints include: Lack of Data Accuracy and Realism Hinders Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

  11. M

    Synthetic Data Generation Market to Surpass USD 6,637.98 Mn By 2034

    • scoop.market.us
    Updated Mar 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Scoop (2025). Synthetic Data Generation Market to Surpass USD 6,637.98 Mn By 2034 [Dataset]. https://scoop.market.us/synthetic-data-generation-market-news/
    Explore at:
    Dataset updated
    Mar 18, 2025
    Dataset authored and provided by
    Market.us Scoop
    License

    https://scoop.market.us/privacy-policyhttps://scoop.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Market Size

    As per the latest insights from Market.us, the Global Synthetic Data Generation Market is set to reach USD 6,637.98 million by 2034, expanding at a CAGR of 35.7% from 2025 to 2034. The market, valued at USD 313.50 million in 2024, is witnessing rapid growth due to rising demand for high-quality, privacy-compliant, and AI-driven data solutions.

    North America dominated in 2024, securing over 35% of the market, with revenues surpassing USD 109.7 million. The region’s leadership is fueled by strong investments in artificial intelligence, machine learning, and data security across industries such as healthcare, finance, and autonomous systems. With increasing reliance on synthetic data to enhance AI model training and reduce data privacy risks, the market is poised for significant expansion in the coming years.

    https://market.us/wp-content/uploads/2025/03/Synthetic-Data-Generation-Market-Size.png" alt="Synthetic Data Generation Market Size" class="wp-image-143209">
  12. E

    Synthetic Data Generation (SDG) Market Top Companies: Profiles and...

    • emergenresearch.com
    pdf
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emergen Research (2024). Synthetic Data Generation (SDG) Market Top Companies: Profiles and Strategies (2024-2033) [Dataset]. https://www.emergenresearch.com/industry-report/synthetic-data-generation-market/top-companies
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Emergen Research
    License

    https://www.emergenresearch.com/purpose-of-privacy-policyhttps://www.emergenresearch.com/purpose-of-privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Explore the top companies and key players in the Synthetic Data Generation (SDG) Market with our detailed report. Get insights on key players, market strategies and learn about their market positions and contributions to the industry.

  13. Z

    Synthetic datasets for end-to-end Relation Extraction of relationships...

    • data.niaid.nih.gov
    Updated Nov 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Magdalena Wysocka (2023). Synthetic datasets for end-to-end Relation Extraction of relationships between Organisms and Natural-Products [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8422293
    Explore at:
    Dataset updated
    Nov 14, 2023
    Dataset provided by
    Magdalena Wysocka
    Andre Freitas
    Maxime Delmas
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Synthetic datasets (training/validation) for end-to-end Relation Extraction of relationships between Organisms and Natural-Products. The datasets are provided for reproducibility purposes, but, can also be used to train new models. As in the corresponding article, 3 subtypes of synthetic datasets are provided:

    Diversity-synt: The seed literature references used in the generation process correspond to the top-500 extracted items per biological kingdoms using the GME-sampler. Random-synt: 5 datasets of equivalent sizes as Diversity-synt, but using randomly sampled seed literature references. Extended-synt: A merge of Diversity-synt and the 5 Random-synt datasets. All datasets were produced with Vicuna-13b-v1.3. Like the model, the produced synthetic data are also submitted to the License of the model used for generation, see the original LLaMA model card. LLaMA is licensed under the LLaMA License, Copyright (c) Meta Platforms, Inc. All Rights Reserved.

  14. Synthea synthetic patient generator data in OMOP Common Data Model

    • registry.opendata.aws
    Updated Jan 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amazon Web Sevices (2023). Synthea synthetic patient generator data in OMOP Common Data Model [Dataset]. https://registry.opendata.aws/synthea-omop/
    Explore at:
    Dataset updated
    Jan 4, 2023
    Dataset provided by
    Amazon.comhttp://amazon.com/
    Description

    The Synthea generated data is provided here as a 1,000 person (1k), 100,000 person (100k), and 2,800,000 persom (2.8m) data sets in the OMOP Common Data Model format. SyntheaTM is a synthetic patient generator that models the medical history of synthetic patients. Our mission is to output high-quality synthetic, realistic but not real, patient data and associated health records covering every aspect of healthcare. The resulting data is free from cost, privacy, and security restrictions. It can be used without restriction for a variety of secondary uses in academia, research, industry, and government (although a citation would be appreciated). You can read our first academic paper here: https://doi.org/10.1093/jamia/ocx079

  15. f

    Parameter Settings of Synthetic Data Generation.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leung-Yau Lo; Man-Leung Wong; Kin-Hong Lee; Kwong-Sak Leung (2023). Parameter Settings of Synthetic Data Generation. [Dataset]. http://doi.org/10.1371/journal.pone.0138596.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Leung-Yau Lo; Man-Leung Wong; Kin-Hong Lee; Kwong-Sak Leung
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Parameter Settings of Synthetic Data Generation.

  16. h

    synthetic-data-generation-project

    • huggingface.co
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shreya Balaji (2025). synthetic-data-generation-project [Dataset]. https://huggingface.co/datasets/shreyabalaji23/synthetic-data-generation-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 16, 2025
    Authors
    Shreya Balaji
    Description

    shreyabalaji23/synthetic-data-generation-project dataset hosted on Hugging Face and contributed by the HF Datasets community

  17. Australian synthetic healthcare data with Synthea

    • data.csiro.au
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian synthetic healthcare data with Synthea [Dataset]. https://data.csiro.au/collection/csiro:61499
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Ibrahima Diouf; Mitchell O'Brien; Hamed Hassanzadeh; Donna Truran; Hoa Ngo; Parnesh Raniga; Denis Bauer; David Hansen; Sankalp Khanna; Roc Reguant Comellas; Michael Lawley; John Grimes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    We developed an Australianised version of Synthea. Synthea is a synthetic data generation software that uses publicly available population aggregate statistics such as demographics, disease prevalence and incidence rates, and health reports. Synthea generates data based on manually curated models of clinical workflows and disease progression that cover a patient’s entire life and does not use real patient data; guaranteeing a completely synthetic dataset. We generated 117,258 synthetic patients from Queensland.

  18. d

    Syntegra Synthetic EHR Data | Structured Healthcare Electronic Health Record...

    • datarade.ai
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syntegra (2022). Syntegra Synthetic EHR Data | Structured Healthcare Electronic Health Record Data [Dataset]. https://datarade.ai/data-products/syntegra-synthetic-ehr-data-structured-healthcare-electroni-syntegra
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Syntegra
    Area covered
    United States of America
    Description

    Organizations can license synthetic, structured data generated by Syntegra from electronic health record systems of community hospitals across the United States, reaching beyond just claims and Rx data.

    The synthetic data provides a detailed picture of the patient's journey throughout their hospital stay, including patient demographic information and payer type, as well as rich data not found in any other sources. Examples of this data include: drugs given (timing and dosing), patient location (e.g., ICU, floor, ER), lab results (timing by day and hour), physician roles (e.g., surgeon, attending), medications given, and vital signs. The participating community hospitals with bed sizes ranging from 25 to 532 provide unique visibility and assessment of variation in care outside of large academic medical centers and healthcare networks.

    Our synthetic data engine is trained on a broadly representative dataset made up of deep clinical information of approximately 6 million unique patient records and 18 million encounters over 5 years of history. Notably, synthetic data generation allows for the creation of any number of records needed to power your project.

    EHR data is available in the following formats: — Cleaned, analytics-ready (a layer of clean and normalized concepts in Tuva Health’s standard relational data model format — FHIR USCDI (labs, medications, vitals, encounters, patients, etc.)

    The synthetic data maintains full statistical accuracy, yet does not contain any actual patients, thus removing any patient privacy liability risk. Privacy is preserved in a way that goes beyond HIPAA or GDPR compliance. Our industry-leading metrics prove that both privacy and fidelity are fully maintained.

    — Generate the data needed for product development, testing, demo, or other needs — Access data at a scalable price point — Build your desired population, both in size and demographics — Scale up and down to fit specific needs, increasing efficiency and affordability

    Syntegra's synthetic data engine also has the ability to augment the original data: — Expand population sizes, rare cohorts, or outcomes of interest — Address algorithmic fairness by correcting bias or introducing intentional bias — Conditionally generate data to inform scenario planning — Impute missing value to minimize gaps in the data

  19. Data from: Generating Synthetic Time Series PV Data with Real-World Physical...

    • osti.gov
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anderson, Kevin; Deceglie, Michael; Muller, Matthew (2023). Generating Synthetic Time Series PV Data with Real-World Physical Challenges and Noise for Use in Algorithm Test and Validation [Dataset]. https://www.osti.gov/dataexplorer/biblio/dataset/1999772-generating-synthetic-time-series-pv-data-real-world-physical-challenges-noise-use-algorithm-test-validation
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Office of Energy Efficiency and Renewable Energyhttp://energy.gov/eere
    EMN-DURMAT (EMN-DuraMAT); National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
    Authors
    Anderson, Kevin; Deceglie, Michael; Muller, Matthew
    Area covered
    World
    Description

    The publication describes the generation of the synthetic PV time series data set for real locations in the US, including satellite irradiance, rainfall, and a number of physical challenges introduced within the data.

  20. E

    Synthetic Data Generation (SDG) Market Share and Segmentation Analysis...

    • emergenresearch.com
    pdf
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emergen Research (2024). Synthetic Data Generation (SDG) Market Share and Segmentation Analysis (2024-2033) [Dataset]. https://www.emergenresearch.com/industry-report/synthetic-data-generation-market/market-share
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Emergen Research
    License

    https://www.emergenresearch.com/purpose-of-privacy-policyhttps://www.emergenresearch.com/purpose-of-privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Analyze the market segmentation of the Synthetic Data Generation (SDG) industry. Gain insights into market share distribution with a detailed breakdown of key segments and their growth.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sandro Mendonça (2020). Dataset of article: Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools [Dataset]. http://doi.org/10.21227/5aeq-rr34

Dataset of article: Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools

Explore at:
Dataset updated
Mar 13, 2020
Dataset provided by
IEEE Dataport
Authors
Sandro Mendonça
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.

Search
Clear search
Close search
Google apps
Main menu