MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Description
We release the synthetic data generated using the method described in the paper Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models (ACL 2024 Findings). The external knowledge we use is based on LLM-generated topics and writing styles.
Generated Datasets
The original train/validation/test data, and the generated synthetic training data are listed as follows. For each dataset, we generate 5000… See the full description on the dataset page: https://huggingface.co/datasets/ritaranx/clinical-synthetic-text-llm.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Fork of gretelai/synthetic_text_to_sql
The gretelai/synthetic_text_to_sql dataset is a large, Apache 2.0 licensed, synthetic Text-to-SQL dataset consisting of 105,851 high-quality records across 100 diverse domains, designed for training language models. It includes comprehensive SQL tasks with varying complexities, database contexts, natural language explanations, and contextual tags, outperforming existing datasets in SQL correctness and standards compliance.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This data repository contains the key datasets required to reproduce the paper "Scrambled text: training Language Models to correct OCR errors using synthetic data".In addition it contains the 10,000 synthetic 19th century articles generated using GPT4o. These articles are available both as a csv with the prompt parameters as columns as well as the articles as individual text files.The files in the repository are as followsncse_hf_dataset: A huggingface dictionary dataset containing 91 articles from the Nineteenth Century Serials Edition (NCSE) with original OCR and the transcribed groundtruth. This dataset is used as the testset in the papersynth_gt.zip: A zip file containing 5 parquet files of training data from the 10,000 synthetic articles. The each parquet file is made up of observations of a fixed length of tokens, for a total of 2 Million tokens. The observation lengths are 200, 100, 50, 25, 10.synthetic_articles.zip: A zip file containing the csv of all the synthetic articles and the prompts used to generate them.synthetic_articles_text.zip: A zip file containing the text files of all the synthetic articles. The file names are the prompt parameters and the id reference from the synthetic article csv.The data in this repo is used by the code repositories associated with the project https://github.com/JonnoB/scrambledtext_analysishttps://github.com/JonnoB/training_lms_with_synthetic_data
https://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/
Synthetic Text Similarity
This dataset is created to facilitate the evaluation and training of models on the task of text similarity at longer contexts/examples than Bob likes frogs. as per classical sentence similarity datasets. It consists of document pairs with associated similarity scores, representing the closeness of the documents in semantic space.
Dataset Description
For each version of this dataset, embeddings are computed for all unique documents, followed by… See the full description on the dataset page: https://huggingface.co/datasets/pszemraj/synthetic-text-similarity.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
This is a synthetically generated dataset, in which word instances are placed in natural scene images, while taking into account the scene layout. The dataset consists of 800 thousand images with approximately 8 million synthetic word instances. Each text instance is annotated with its text-string, word-level and character-level bounding-boxes.
SynthPAI was created to provide a dataset that can be used to investigate the personal attribute inference (PAI) capabilities of LLM on online texts. Due to associated privacy concerns with real-world data, open datasets are rare (non-existent) in the research community. SynthPAI is a synthetic dataset that aims to fill this gap.
Dataset Details Dataset Description SynthPAI was created using 300 GPT-4 agents seeded with individual personalities interacting with each other in a simulated online forum and consists of 103 threads and 7823 comments. For each profile, we further provide a set of personal attributes that a human could infer from the profile. We additionally conducted a user study to evaluate the quality of the synthetic comments, establishing that humans can barely distinguish between real and synthetic comments.
Curated by: The dataset was created by SRILab at ETH Zurich. It was not created on behalf of any outside entity. Funded by: Two authors of this work are supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) (SERI-funded ERC Consolidator Grant). This project did, however, not receive explicit funding by SERI and was devised independently. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the SERI-funded ERC Consolidator Grant. Shared by: SRILab at ETH Zurich Language(s) (NLP): English License: CC-BY-NC-SA-4.0
Dataset Sources
Repository: https://github.com/eth-sri/SynthPAI Paper: https://arxiv.org/abs/2406.07217
Uses The dataset is intended to be used as a privacy-preserving method of (i) evaluating PAI capabilities of language models and (ii) aiding the development of potential defenses against such automated inferences.
Direct Use As in the associated paper , where we include an analysis of the personal attribute inference (PAI) capabilities of 18 state-of-the-art LLMs across different attributes and on anonymized texts.
Out-of-Scope Use The dataset shall not be used as part of any system that performs attribute inferences on real natural persons without their consent or otherwise maliciously.
Dataset Structure We provide the instance descriptions below. Each data point consists of a single comment (that can be a top-level post):
Comment
author str: unique identifier of the person writing
username str: corresponding username
parent_id str: unique identifier of the parent comment
thread_id str: unique identifier of the thread
children list[str]: unique identifiers of children comments
profile Profile: profile making the comment - described below
text str: text of the comment
guesses list[dict]: Dict containing model estimates of attributes based on the comment. Only contains attributes for which a prediction exists.
reviews dict: Dict containing human estimates of attributes based on the comment. Each guess contains a corresponding hardness rating (and certainty rating). Contains all attributes
The associated profiles are structured as follows
Profile
username str: identifier
attributes: set of personal attributes that describe the user (directly listed below)
The corresponding attributes and values are
Attributes
Age continuous [18-99] The age of a user in years.
Place of Birth tuple [city, country] The place of birth of a user. We create tuples jointly for city and country in free-text format. (field name: birth_city_country)
Location tuple [city, country] The current location of a user. We create tuples jointly for city and country in free-text format. (field name: city_country)
Education free-text We use a free-text field to describe the user's education level. This includes additional details such as the degree and major. To ensure comparability with the evaluation of prior work, we later map these to a categorical scale: high school, college degree, master's degree, PhD.
Income Level free-text [low, medium, high, very high] The income level of a user. We first generate a continuous income level in the profile's local currency. In our code, we map this to a categorical value considering the distribution of income levels in the respective profile location. For this, we roughly follow the local equivalents of the following reference levels for the US: Low (<30k USD), Middle (30-60k USD), High (60-150k USD), Very High (>150k USD).
Occupation free-text The occupation of a user, described as a free-text field.
Relationship Status categorical [single, In a Relationship, married, divorced, widowed] The relationship status of a user as one of 5 categories.
Sex categorical [Male, Female] Biological Sex of a profile.
Dataset Creation Curation Rationale SynthPAI was created to provide a dataset that can be used to investigate the personal attribute inference (PAI) capabilities of LLM on online texts. Due to associated privacy concerns with real-world data, open datasets are rare (non-existent) in the research community. SynthPAI is a synthetic dataset that aims to fill this gap. We additionally conducted a user study to evaluate the quality of the synthetic comments, establishing that humans can barely distinguish between real and synthetic comments.
Source Data The dataset is fully synthetic and was created using GPT-4 agents (version gpt-4-1106-preview) seeded with individual personalities interacting with each other in a simulated online forum.
Data Collection and Processing The dataset was created by sampling comments from the agents in threads. A human then inferred a set of personal attributes from sets of comments associated with each profile. Further, it was manually reviewed to remove any offensive or inappropriate content. We give a detailed overview of our dataset-creation procedure in the corresponding paper.
Annotations
Annotations are provided by authors of the paper.
Personal and Sensitive Information
All contained personal information is purely synthetic and does not relate to any real individual.
Bias, Risks, and Limitations All profiles are synthetic and do not correspond to any real subpopulations. We provide a distribution of the personal attributes of the profiles in the accompanying paper. As the dataset has been created synthetically, data points can inherit limitations (e.g., biases) from the underlying model, GPT-4. While we manually reviewed comments individually, we cannot provide respective guarantees.
Citation BibTeX:
@misc{2406.07217, Author = {Hanna Yukhymenko and Robin Staab and Mark Vero and Martin Vechev}, Title = {A Synthetic Dataset for Personal Attribute Inference}, Year = {2024}, Eprint = {arXiv:2406.07217}, } APA:
Hanna Yukhymenko, Robin Staab, Mark Vero, Martin Vechev: “A Synthetic Dataset for Personal Attribute Inference”, 2024; arXiv:2406.07217.
Dataset Card Authors
Hanna Yukhymenko Robin Staab Mark Vero
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
privacy
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Synthetic Data Generation Market size was valued at USD 0.4 Billion in 2024 and is projected to reach USD 9.3 Billion by 2032, growing at a CAGR of 46.5 % from 2026 to 2032.
The Synthetic Data Generation Market is driven by the rising demand for AI and machine learning, where high-quality, privacy-compliant data is crucial for model training. Businesses seek synthetic data to overcome real-data limitations, ensuring security, diversity, and scalability without regulatory concerns. Industries like healthcare, finance, and autonomous vehicles increasingly adopt synthetic data to enhance AI accuracy while complying with stringent privacy laws.
Additionally, cost efficiency and faster data availability fuel market growth, reducing dependency on expensive, time-consuming real-world data collection. Advancements in generative AI, deep learning, and simulation technologies further accelerate adoption, enabling realistic synthetic datasets for robust AI model development.
Dataset Card for synthetic-text-classification-news-multi-label
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/davidberenstein1957/synthetic-text-classification-news-multi-label/raw/main/pipeline.yaml"
or explore the configuration:… See the full description on the dataset page: https://huggingface.co/datasets/argilla/synthetic-text-classification-news-multi-label.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global synthetic data generation market size was USD 378.3 Billion in 2023 and is projected to reach USD 13,800 Billion by 2032, expanding at a CAGR of 31.1 % during 2024–2032. The market growth is attributed to the increasing demand for privacy-preserving synthetic data across the world.
Growing demand for privacy-preserving synthetic data is expected to boost the market. Synthetic data, being artificially generated, does not contain any personal or sensitive information, thereby ensuring data privacy. This has propelled organizations to adopt synthetic data generation methods, particularly in sectors where data privacy is paramount, such as healthcare and finance.
Artificial Intelligence (AI) has significantly influenced the synthetic data generation market, transforming the way businesses operate and make decisions. The integration of AI in synthetic data generation has enhanced the efficiency and accuracy of data modeling, simulation, and analysis. AI algorithms, through machine learning and deep learning techniques, generate synthetic data that closely mimics real-world data, thereby providing a safe and effective alternative for data privacy concerns.
AI has led to the increased adoption of synthetic data in various sectors such as healthcare, finance, and retail, among others. Furthermore, AI-driven synthetic data generation aids in overcoming the challenges of data scarcity and bias, thereby improving the quality of predictive models and decision-making processes. The impact of AI on the synthetic data generation market is profound, fostering innovation, enhancing data security, and driving market growth. For instance,
In October 2023, K2view
According to our latest research, the global Synthetic Data Generation Engine market size reached USD 1.42 billion in 2024, reflecting a rapidly expanding sector driven by the escalating demand for advanced data solutions. The market is expected to achieve a robust CAGR of 37.8% from 2025 to 2033, propelling it to an estimated value of USD 21.8 billion by 2033. This exceptional growth is primarily fueled by the increasing need for high-quality, privacy-compliant datasets to train artificial intelligence and machine learning models in sectors such as healthcare, BFSI, and IT & telecommunications. As per our latest research, the proliferation of data-centric applications and stringent data privacy regulations are acting as significant catalysts for the adoption of synthetic data generation engines globally.
One of the key growth factors for the synthetic data generation engine market is the mounting emphasis on data privacy and compliance with regulations such as GDPR and CCPA. Organizations are under immense pressure to protect sensitive customer information while still deriving actionable insights from data. Synthetic data generation engines offer a compelling solution by creating artificial datasets that mimic real-world data without exposing personally identifiable information. This not only ensures compliance but also enables organizations to accelerate their AI and analytics initiatives without the constraints of data access or privacy risks. The rising awareness among enterprises about the benefits of synthetic data in mitigating data breaches and regulatory penalties is further propelling market expansion.
Another significant driver is the exponential growth in artificial intelligence and machine learning adoption across industries. Training robust and unbiased models requires vast and diverse datasets, which are often difficult to obtain due to privacy concerns, labeling costs, or data scarcity. Synthetic data generation engines address this challenge by providing scalable and customizable datasets for various applications, including machine learning model training, data augmentation, and fraud detection. The ability to generate balanced and representative data has become a critical enabler for organizations seeking to improve model accuracy, reduce bias, and accelerate time-to-market for AI solutions. This trend is particularly pronounced in sectors such as healthcare, automotive, and finance, where data diversity and privacy are paramount.
Furthermore, the increasing complexity of data types and the need for multi-modal data synthesis are shaping the evolution of the synthetic data generation engine market. With the proliferation of unstructured data in the form of images, videos, audio, and text, organizations are seeking advanced engines capable of generating synthetic data across multiple modalities. This capability enhances the versatility of synthetic data solutions, enabling their application in emerging use cases such as autonomous vehicle simulation, natural language processing, and biometric authentication. The integration of generative AI techniques, such as GANs and diffusion models, is further enhancing the realism and utility of synthetic datasets, expanding the addressable market for synthetic data generation engines.
From a regional perspective, North America continues to dominate the synthetic data generation engine market, accounting for the largest revenue share in 2024. The region's leadership is attributed to the strong presence of technology giants, early adoption of AI and machine learning, and stringent regulatory frameworks. Europe follows closely, driven by robust data privacy regulations and increasing investments in digital transformation. Meanwhile, the Asia Pacific region is emerging as the fastest-growing market, supported by expanding IT infrastructure, government-led AI initiatives, and a burgeoning startup ecosystem. Latin America and the Middle East & Africa are also witnessing gradual adoption, fueled by the growing recognition of synthetic data's potential to overcome data access and privacy challenges.
According to our latest research, the global synthetic data generation market size reached USD 1.6 billion in 2024, demonstrating robust expansion driven by increasing demand for high-quality, privacy-preserving datasets. The market is projected to grow at a CAGR of 38.2% over the forecast period, reaching USD 19.2 billion by 2033. This remarkable growth trajectory is fueled by the growing adoption of artificial intelligence (AI) and machine learning (ML) technologies across industries, coupled with stringent data privacy regulations that necessitate innovative data solutions. As per our latest research, organizations worldwide are increasingly leveraging synthetic data to address data scarcity, enhance AI model training, and ensure compliance with evolving privacy standards.
One of the primary growth factors for the synthetic data generation market is the rising emphasis on data privacy and regulatory compliance. With the implementation of stringent data protection laws such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, enterprises are under immense pressure to safeguard sensitive information. Synthetic data offers a compelling solution by enabling organizations to generate artificial datasets that mirror the statistical properties of real data without exposing personally identifiable information. This not only facilitates regulatory compliance but also empowers organizations to innovate without the risk of data breaches or privacy violations. As businesses increasingly recognize the value of privacy-preserving data, the demand for advanced synthetic data generation solutions is set to surge.
Another significant driver is the exponential growth in AI and ML adoption across various sectors, including healthcare, finance, automotive, and retail. High-quality, diverse, and unbiased data is the cornerstone of effective AI model development. However, acquiring such data is often challenging due to privacy concerns, limited availability, or high acquisition costs. Synthetic data generation bridges this gap by providing scalable, customizable datasets tailored to specific use cases, thereby accelerating AI training and reducing dependency on real-world data. Organizations are leveraging synthetic data to enhance algorithm performance, mitigate data bias, and simulate rare events, which are otherwise difficult to capture in real datasets. This capability is particularly valuable in sectors like autonomous vehicles, where training models on rare but critical scenarios is essential for safety and reliability.
Furthermore, the growing complexity of data types—ranging from tabular and image data to text, audio, and video—has amplified the need for versatile synthetic data generation tools. Enterprises are increasingly seeking solutions that can generate multi-modal synthetic datasets to support diverse applications such as fraud detection, product testing, and quality assurance. The flexibility offered by synthetic data generation platforms enables organizations to simulate a wide array of scenarios, test software systems, and validate AI models in controlled environments. This not only enhances operational efficiency but also drives innovation by enabling rapid prototyping and experimentation. As the digital ecosystem continues to evolve, the ability to generate synthetic data across various formats will be a critical differentiator for businesses striving to maintain a competitive edge.
Regionally, North America leads the synthetic data generation market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The dominance of North America can be attributed to the strong presence of technology giants, advanced research institutions, and a favorable regulatory environment that encourages AI innovation. Europe is witnessing rapid growth due to proactive data privacy regulations and increasing investments in digital transformation initiatives. Meanwhile, Asia Pacific is emerging as a high-growth region, driven by the proliferation of digital technologies and rising adoption of AI-powered solutions across industries. Latin America and the Middle East & Africa are also expected to experience steady growth, supported by government-led digitalization programs and expanding IT infrastructure.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Synthetic Data is Segmented by Data Type (Tabular, Text/NLP, Image and Video, and More), Offering (Fully Synthetic, Partially Synthetic/Hybrid), Technology (GANs, Diffusion Models, and More), Deployment Mode (Cloud, On-Premise), Application (AI/ML Training and Development, and More), End User Industry (BFSI, Healthcare and Life-Sciences, and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Optical Character Recognition (OCR) systems frequently encounter difficulties when processing rare or ancient scripts, especially when they occur in historical contexts involving multiple writing systems. These challenges often constrain researchers to fine-tune or to train new OCR models tailored to their specific needs. To support these efforts, we introduce a synthetic dataset comprising 6.2 million lines, specifically geared towards mixed polytonic Greek and Latin scripts. Being augmented with artificially degraded lines, the dataset bolsters strong results when used to train historical OCR models. This resource can be used both for training and testing purposes, and is particularly valuable for researchers working with ancient Greek and limited annotated data. The software used to generate this datasets is linked to below on our Git. This is a sample, but please contact us if you would like access to the whole dataset.
According to our latest research, the synthetic data market size reached USD 1.52 billion in 2024, reflecting robust growth driven by increasing demand for privacy-preserving data and the acceleration of AI and machine learning initiatives across industries. The market is projected to expand at a compelling CAGR of 34.7% from 2025 to 2033, with the forecasted market size expected to reach USD 21.4 billion by 2033. Key growth factors include the rising necessity for high-quality, diverse, and privacy-compliant datasets, the proliferation of AI-driven applications, and stringent data protection regulations worldwide.
The primary growth driver for the synthetic data market is the escalating need for advanced data privacy and compliance. Organizations across sectors such as healthcare, BFSI, and government are under increasing pressure to comply with regulations like GDPR, HIPAA, and CCPA. Synthetic data offers a viable solution by enabling the creation of realistic yet anonymized datasets, thus mitigating the risk of data breaches and privacy violations. This capability is especially crucial for industries handling sensitive personal and financial information, where traditional data anonymization techniques often fall short. As regulatory scrutiny intensifies, the adoption of synthetic data solutions is set to expand rapidly, ensuring organizations can leverage data-driven innovation without compromising on privacy or compliance.
Another significant factor propelling the synthetic data market is the surge in AI and machine learning deployment across enterprises. AI models require vast, diverse, and high-quality datasets for effective training and validation. However, real-world data is often scarce, incomplete, or biased, limiting the performance of these models. Synthetic data addresses these challenges by generating tailored datasets that represent a wide range of scenarios and edge cases. This not only enhances the accuracy and robustness of AI systems but also accelerates the development cycle by reducing dependencies on real data collection and labeling. As the demand for intelligent automation and predictive analytics grows, synthetic data is emerging as a foundational enabler for next-generation AI applications.
In addition to privacy and AI training, synthetic data is gaining traction in test data management and fraud detection. Enterprises are increasingly leveraging synthetic datasets to simulate complex business environments, test software systems, and identify vulnerabilities in a controlled manner. In fraud detection, synthetic data allows organizations to model and anticipate new fraudulent behaviors without exposing sensitive customer data. This versatility is driving adoption across diverse verticals, from automotive and manufacturing to retail and telecommunications. As digital transformation initiatives intensify and the need for robust data testing environments grows, the synthetic data market is poised for sustained expansion.
Regionally, North America dominates the synthetic data market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The strong presence of technology giants, a mature AI ecosystem, and early regulatory adoption are key factors supporting North America’s leadership. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by rapid digitalization, expanding AI investments, and increasing awareness of data privacy. Europe continues to see steady adoption, particularly in sectors like healthcare and finance where data protection regulations are stringent. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a nascent stage, as organizations in these regions begin to recognize the value of synthetic data for digital innovation and compliance.
The synthetic data market is segmented by component into software and services. The software segment currently holds the largest market
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Image generated by DALL-E. See prompt for more details
synthetic_text_to_sql
gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes:
105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The UTRSet-Synth dataset is introduced as a complementary training resource to the UTRSet-Real Dataset, specifically designed to enhance the effectiveness of Urdu OCR models. It is a high-quality synthetic dataset comprising 20,000 lines that closely resemble real-world representations of Urdu text. To generate the dataset, a custom-designed synthetic data generation module which offers precise control over variations in crucial factors such as font, text size, colour, resolution, orientation… See the full description on the dataset page: https://huggingface.co/datasets/abdur75648/UTRSet-Synth.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This synthetic dataset is designed for practicing fake news detection using natural language processing (NLP) techniques. It contains 1000 news samples labeled as "real" or "fake", including fabricated headlines and articles that mimic real-world patterns. Researchers and students can utilise this dataset to train NLP classification models, perform feature engineering on textual data, and practice binary classification problems in news analytics.
The dataset comprises 1000 news samples. The data file is typically in CSV format, and sample files will be updated separately to the platform.
Ideal applications include: * Training NLP classification models such as Logistic Regression, SVM, and BERT. * Performing feature engineering on textual data. * Practicing binary classification problems in the context of news analytics.
The dataset's geographic scope is global. It was listed on 5th June 2025, providing data for general news pattern analysis.
CCO
Intended users include: * Researchers interested in natural language processing and machine learning applications. * Students learning about natural language processing, text classification, and data science. * Anyone aiming to develop or test models for fake news detection.
Original Data Source: Fake News Detection
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the rapid development of deep learning techniques, the generation and counterfeiting of multimedia material are becoming increasingly straightforward to perform. At the same time, sharing fake content on the web has become so simple that malicious users can create unpleasant situations with minimal effort. Also, forged media are getting more and more complex, with manipulated videos (e.g., deepfakes where both the visual and audio contents can be counterfeited) that are taking the scene over still images. The multimedia forensic community has addressed the possible threats that this situation could imply by developing detectors that verify the authenticity of multimedia objects. However, the vast majority of these tools only analyze one modality at a time. This was not a problem as long as still images were considered the most widely edited media, but now, since manipulated videos are becoming customary, performing monomodal analyses could be reductive. Nonetheless, there is a lack in the literature regarding multimodal detectors (systems that consider both audio and video components). This is due to the difficulty of developing them but also to the scarsity of datasets containing forged multimodal data to train and test the designed algorithms.
In this paper we focus on the generation of an audio-visual deepfake dataset. First, we present a general pipeline for synthesizing speech deepfake content from a given real or fake video, facilitating the creation of counterfeit multimodal material. The proposed method uses Text-to-Speech (TTS) and Dynamic Time Warping (DTW) techniques to achieve realistic speech tracks. Then, we use the pipeline to generate and release TIMIT-TTS, a synthetic speech dataset containing the most cutting-edge methods in the TTS field. This can be used as a standalone audio dataset, or combined with DeepfakeTIMIT and VidTIMIT video datasets to perform multimodal research. Finally, we present numerous experiments to benchmark the proposed dataset in both monomodal (i.e., audio) and multimodal (i.e., audio and video) conditions. This highlights the need for multimodal forensic detectors and more multimodal deepfake data.
For the initial version of TIMIT-TTS v1.0
Arxiv: https://arxiv.org/abs/2209.08000
TIMIT-TTS Database v1.0: https://zenodo.org/record/6560159
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 7.98(USD Billion) |
MARKET SIZE 2024 | 9.55(USD Billion) |
MARKET SIZE 2032 | 40.0(USD Billion) |
SEGMENTS COVERED | Type ,Application ,Deployment Mode ,Organization Size ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Growing Demand for Data Privacy and Security Advancement in Artificial Intelligence AI and Machine Learning ML Increasing Need for Faster and More Efficient Data Generation Growing Adoption of Synthetic Data in Various Industries Government Regulations and Compliance |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | MostlyAI ,Gretel.ai ,H2O.ai ,Scale AI ,UNchart ,Anomali ,Replica ,Big Syntho ,Owkin ,DataGenix ,Synthesized ,Verisart ,Datumize ,Deci ,Datasaur |
MARKET FORECAST PERIOD | 2025 - 2032 |
KEY MARKET OPPORTUNITIES | Data privacy compliance Improved data availability Enhanced data quality Reduced data bias Costeffective |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 19.61% (2025 - 2032) |
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Description
We release the synthetic data generated using the method described in the paper Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models (ACL 2024 Findings). The external knowledge we use is based on LLM-generated topics and writing styles.
Generated Datasets
The original train/validation/test data, and the generated synthetic training data are listed as follows. For each dataset, we generate 5000… See the full description on the dataset page: https://huggingface.co/datasets/ritaranx/clinical-synthetic-text-llm.