100+ datasets found
  1. f

    Table1_Enhancing biomechanical machine learning with limited data:...

    • frontiersin.figshare.com
    pdf
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich (2024). Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf [Dataset]. http://doi.org/10.3389/fbioe.2024.1350135.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    Frontiers
    Authors
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

  2. Synthetic Training Data Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Training Data Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-training-data-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Training Data Market Outlook



    According to our latest research, the global synthetic training data market size in 2024 is valued at USD 1.45 billion, demonstrating robust momentum as organizations increasingly adopt artificial intelligence and machine learning solutions. The market is projected to grow at a remarkable CAGR of 38.7% from 2025 to 2033, reaching an estimated USD 22.46 billion by 2033. This exponential growth is primarily driven by the rising demand for high-quality, diverse, and privacy-compliant datasets that fuel advanced AI models, as well as the escalating need for scalable data solutions across various industries.




    One of the primary growth factors propelling the synthetic training data market is the escalating complexity and diversity of AI and machine learning applications. As organizations strive to develop more accurate and robust AI models, the need for vast amounts of annotated and high-quality training data has surged. Traditional data collection methods are often hampered by privacy concerns, high costs, and time-consuming processes. Synthetic training data, generated through advanced algorithms and simulation tools, offers a compelling alternative by providing scalable, customizable, and bias-mitigated datasets. This enables organizations to accelerate model development, improve performance, and comply with evolving data privacy regulations such as GDPR and CCPA, thus driving widespread adoption across sectors like healthcare, finance, autonomous vehicles, and robotics.




    Another significant driver is the increasing adoption of synthetic data for data augmentation and rare event simulation. In sectors such as autonomous vehicles, manufacturing, and robotics, real-world data for edge-case scenarios or rare events is often scarce or difficult to capture. Synthetic training data allows for the generation of these critical scenarios at scale, enabling AI systems to learn and adapt to complex, unpredictable environments. This not only enhances model robustness but also reduces the risk associated with deploying AI in safety-critical applications. The flexibility to generate diverse data types, including images, text, audio, video, and tabular data, further expands the applicability of synthetic data solutions, making them indispensable tools for innovation and competitive advantage.




    The synthetic training data market is also experiencing rapid growth due to the heightened focus on data privacy and regulatory compliance. As data protection regulations become more stringent worldwide, organizations face increasing challenges in accessing and utilizing real-world data for AI training without violating user privacy. Synthetic data addresses this challenge by creating realistic yet entirely artificial datasets that preserve the statistical properties of original data without exposing sensitive information. This capability is particularly valuable for industries such as BFSI, healthcare, and government, where data sensitivity and compliance requirements are paramount. As a result, the adoption of synthetic training data is expected to accelerate further as organizations seek to balance innovation with ethical and legal responsibilities.




    From a regional perspective, North America currently leads the synthetic training data market, driven by the presence of major technology companies, robust R&D investments, and early adoption of AI technologies. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by expanding AI initiatives, government support, and the rapid digital transformation of industries. Europe is also emerging as a key market, particularly in sectors where data privacy and regulatory compliance are critical. Latin America and the Middle East & Africa are gradually increasing their market share as awareness and adoption of synthetic data solutions grow. Overall, the global landscape is characterized by dynamic regional trends, with each region contributing uniquely to the market’s expansion.





    Component

  3. v

    Synthetic Data Generation Market By Offering (Solution/Platform, Services),...

    • verifiedmarketresearch.com
    Updated Mar 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2025). Synthetic Data Generation Market By Offering (Solution/Platform, Services), Data Type (Tabular, Text, Image, Video), Application (AI/ML Training & Development, Test Data Management), & Region for 2026-2032 [Dataset]. https://www.verifiedmarketresearch.com/product/synthetic-data-generation-market/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Market size was valued at USD 0.4 Billion in 2024 and is projected to reach USD 9.3 Billion by 2032, growing at a CAGR of 46.5 % from 2026 to 2032.

    The Synthetic Data Generation Market is driven by the rising demand for AI and machine learning, where high-quality, privacy-compliant data is crucial for model training. Businesses seek synthetic data to overcome real-data limitations, ensuring security, diversity, and scalability without regulatory concerns. Industries like healthcare, finance, and autonomous vehicles increasingly adopt synthetic data to enhance AI accuracy while complying with stringent privacy laws.

    Additionally, cost efficiency and faster data availability fuel market growth, reducing dependency on expensive, time-consuming real-world data collection. Advancements in generative AI, deep learning, and simulation technologies further accelerate adoption, enabling realistic synthetic datasets for robust AI model development.

  4. S

    Synthetic Data Generation Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Generation Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-generation-1124388
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The synthetic data generation market is experiencing explosive growth, driven by the increasing need for high-quality data in various applications, including AI/ML model training, data privacy compliance, and software testing. The market, currently estimated at $2 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the rising adoption of artificial intelligence and machine learning across industries demands large, high-quality datasets, often unavailable due to privacy concerns or data scarcity. Synthetic data provides a solution by generating realistic, privacy-preserving datasets that mirror real-world data without compromising sensitive information. Secondly, stringent data privacy regulations like GDPR and CCPA are compelling organizations to explore alternative data solutions, making synthetic data a crucial tool for compliance. Finally, the advancements in generative AI models and algorithms are improving the quality and realism of synthetic data, expanding its applicability in various domains. Major players like Microsoft, Google, and AWS are actively investing in this space, driving further market expansion. The market segmentation reveals a diverse landscape with numerous specialized solutions. While large technology firms dominate the broader market, smaller, more agile companies are making significant inroads with specialized offerings focused on specific industry needs or data types. The geographical distribution is expected to be skewed towards North America and Europe initially, given the high concentration of technology companies and early adoption of advanced data technologies. However, growing awareness and increasing data needs in other regions are expected to drive substantial market growth in Asia-Pacific and other emerging markets in the coming years. The competitive landscape is characterized by a mix of established players and innovative startups, leading to continuous innovation and expansion of market applications. This dynamic environment indicates sustained growth in the foreseeable future, driven by an increasing recognition of synthetic data's potential to address critical data challenges across industries.

  5. f

    Data Sheet 1_Large language models generating synthetic clinical datasets: a...

    • frontiersin.figshare.com
    xlsx
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 1_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  6. Z

    Cardiovascular synthetic tabular data

    • data.niaid.nih.gov
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arroni del Riego, Sergio (2024). Cardiovascular synthetic tabular data [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12575888
    Explore at:
    Dataset updated
    Jul 8, 2024
    Dataset authored and provided by
    Arroni del Riego, Sergio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is focuses on cardiovascular diseases. It is generated using a hybrid machine learning model that combines diffusion models with Transformers, emphasizing data privacy. The dataset has been meticulously validated for quality and utility, yielding auspicious results.Validation and Metrics:The dataset has undergone rigorous validation processes to ensure quality, utility, and privacy. These validations involved:

    Distance to the Closest Record (DCR): The dataset achieved a DCR of 1.2879. The DCR is a metric that measures the distance of the generated data to the closest record in the original dataset. A higher DCR indicates that the synthetic data closely mirrors the real data in terms of statistical properties, making it reliable for further analysis and research.

    Membership Inference Attack Accuracy: The dataset scored 0.6780 in this metric. Membership inference attack accuracy measures the likelihood of correctly inferring whether a particular data point was part of the training dataset. An accuracy of 0.6780 suggests that the model maintains a strong level of privacy. It is important to note that a score of 0.5 would indicate random guessing, hence the achieved score demonstrates significantly better privacy protection than random predictions.

    Statistical Tests: Comprehensive statistical tests were conducted to compare the synthetic data with real data. These tests ensure that the synthetic data has similar statistical properties and distributions to the original data.

    Machine Learning Efficiency: The utility of the dataset was also validated using machine learning models to ensure that the synthetic data is effective for training and can produce reliable predictive models. The results showed that models trained on this dataset performed well, reinforcing the practical utility of the data.

    The high DCR value and the membership inference attack accuracy highlight the balance between data utility and privacy, making this dataset an invaluable resource for researchers and practitioners focusing on cardiovascular diseases and machine learning.

  7. f

    Supplemental Synthetic Images (outdated)

    • figshare.com
    zip
    Updated May 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Duke Bass Connections Deep Learning for Rare Energy Infrastructure 2020-2021 (2021). Supplemental Synthetic Images (outdated) [Dataset]. http://doi.org/10.6084/m9.figshare.13546643.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 7, 2021
    Dataset provided by
    figshare
    Authors
    Duke Bass Connections Deep Learning for Rare Energy Infrastructure 2020-2021
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    OverviewThis is a set of synthetic overhead imagery of wind turbines that was created with CityEngine. There are corresponding labels that provide the class, x and y coordinates, and height and width (YOLOv3 format) of the ground truth bounding boxes for each wind turbine in the images. These labels are named similarly to the images (e.g. image.png will have the label titled image.txt)..UseThis dataset is meant as supplementation to training an object detection model on overhead images of wind turbines. It can be added to the training set of an object detection model to potentially improve performance when using the model on real overhead images of wind turbines.WhyThis dataset was created to examine the utility of adding synthetic imagery to the training set of an object detection model to improve performance on rare objects. Since wind turbines are both very rare in number and sparse, this makes acquiring data very costly. This synthetic imagery is meant to solve this issue by automating the generation of new training data. The use of synthetic imagery can also be applied to the issue of cross-domain testing, where the model lacks training data on a particular region and consequently struggles when used on that region.MethodThe process for creating the dataset involved selecting background images from NAIP imagery available on Earth OnDemand. These images were randomlyselected from these geographies: forest, farmland, grasslands, water, urban/suburban,mountains, and deserts. No consideration was put into whether the background images would seem realistic. This is because we wanted to see if this would help the model become better at detecting wind turbines regardless of their context (which would help when using the model on novel geographies). Then, a script was used to select these at random and uniformly generate 3D models of large wind turbines over the image and then position the virtual camera to save four 608x608 pixel images. This process was repeated with the same random seed, but with no background image and the wind turbines colored as black. Next, these black and white images were converted into ground truth labels by grouping the black pixels in the images.

  8. n

    Data from: Trust, AI, and Synthetic Biometrics

    • curate.nd.edu
    pdf
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick G Tinsley (2024). Trust, AI, and Synthetic Biometrics [Dataset]. http://doi.org/10.7274/25604631.v1
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Nov 11, 2024
    Dataset provided by
    University of Notre Dame
    Authors
    Patrick G Tinsley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Artificial Intelligence-based image generation has recently seen remarkable advancements, largely driven by deep learning techniques, such as Generative Adversarial Networks (GANs). With the influx and development of generative models, so too have biometric re-identification models and presentation attack detection models seen a surge in discriminative performance. However, despite the impressive photo-realism of generated samples and the additive value to the data augmentation pipeline, the role and usage of machine learning models has received intense scrutiny and criticism, especially in the context of biometrics, often being labeled as untrustworthy. Problems that have garnered attention in modern machine learning include: humans' and machines' shared inability to verify the authenticity of (biometric) data, the inadvertent leaking of private biometric data through the image synthesis process, and racial bias in facial recognition algorithms. Given the arrival of these unwanted side effects, public trust has been shaken in the blind use and ubiquity of machine learning.

    However, in tandem with the advancement of generative AI, there are research efforts to re-establish trust in generative and discriminative machine learning models. Explainability methods based on aggregate model salience maps can elucidate the inner workings of a detection model, establishing trust in a post hoc manner. The CYBORG training strategy, originally proposed by Boyd, attempts to actively build trust into discriminative models by incorporating human salience into the training process.

    In doing so, CYBORG-trained machine learning models behave more similar to human annotators and generalize well to unseen types of synthetic data. Work in this dissertation also attempts to renew trust in generative models by training generative models on synthetic data in order to avoid identity leakage in models trained on authentic data. In this way, the privacy of individuals whose biometric data was seen during training is not compromised through the image synthesis procedure. Future development of privacy-aware image generation techniques will hopefully achieve the same degree of biometric utility in generative models with added guarantees of trustworthiness.

  9. Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States, Global
    Description

    Snapshot img

    Synthetic Data Generation Market Size 2025-2029

    The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.

    The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.

    What will be the Size of the Synthetic Data Generation Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security. Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development. The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.

    How is this Synthetic Data Generation Industry segmented?

    The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)

    By End-user Insights

    The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research

  10. S

    Synthetic Data Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Synthetic Data Software Report [Dataset]. https://www.archivemarketresearch.com/reports/synthetic-data-software-560836
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Software market is experiencing robust growth, driven by increasing demand for data privacy regulations compliance and the need for large, high-quality datasets for AI/ML model training. The market size in 2025 is estimated at $2.5 billion, demonstrating significant expansion from its 2019 value. This growth is projected to continue at a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated market value of $15 billion by 2033. This expansion is fueled by several key factors. Firstly, the increasing stringency of data privacy regulations, such as GDPR and CCPA, is restricting the use of real-world data in many applications. Synthetic data offers a viable solution by providing realistic yet privacy-preserving alternatives. Secondly, the booming AI and machine learning sectors heavily rely on massive datasets for training effective models. Synthetic data can generate these datasets on demand, reducing the cost and time associated with data collection and preparation. Finally, the growing adoption of synthetic data across various sectors, including healthcare, finance, and retail, further contributes to market expansion. The diverse applications and benefits are accelerating the adoption rate in a multitude of industries needing advanced analytics. The market segmentation reveals strong growth across cloud-based solutions and the key application segments of healthcare, finance (BFSI), and retail/e-commerce. While on-premises solutions still hold a segment of the market, the cloud-based approach's scalability and cost-effectiveness are driving its dominance. Geographically, North America currently holds the largest market share, but significant growth is anticipated in the Asia-Pacific region due to increasing digitalization and the presence of major technology hubs. The market faces certain restraints, including challenges related to data quality and the need for improved algorithms to generate truly representative synthetic data. However, ongoing innovation and investment in this field are mitigating these limitations, paving the way for sustained market growth. The competitive landscape is dynamic, with numerous established players and emerging startups contributing to the market's evolution.

  11. Synthetic Data Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Synthetic Data Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-synthetic-data-software-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Software Market Outlook



    The global synthetic data software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 7.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 22.4% during the forecast period. The growth of this market can be attributed to the increasing demand for data privacy and security, advancements in artificial intelligence (AI) and machine learning (ML), and the rising need for high-quality data to train AI models.



    One of the primary growth factors for the synthetic data software market is the escalating concern over data privacy and governance. With the rise of stringent data protection regulations like GDPR in Europe and CCPA in California, organizations are increasingly seeking alternatives to real data that can still provide meaningful insights without compromising privacy. Synthetic data software offers a solution by generating artificial data that mimics real-world data distributions, thereby mitigating privacy risks while still allowing for robust data analysis and model training.



    Another significant driver of market growth is the rapid advancement in AI and ML technologies. These technologies require vast amounts of data to train models effectively. Traditional data collection methods often fall short in terms of volume, variety, and veracity. Synthetic data software addresses these limitations by creating scalable, diverse, and accurate datasets, enabling more effective and efficient model training. As AI and ML applications continue to expand across various industries, the demand for synthetic data software is expected to surge.



    The increasing application of synthetic data software across diverse sectors such as healthcare, finance, automotive, and retail also acts as a catalyst for market growth. In healthcare, synthetic data can be used to simulate patient records for research without violating patient privacy laws. In finance, it can help in creating realistic datasets for fraud detection and risk assessment without exposing sensitive financial information. Similarly, in automotive, synthetic data is crucial for training autonomous driving systems by simulating various driving scenarios.



    From a regional perspective, North America holds the largest market share due to its early adoption of advanced technologies and the presence of key market players. Europe follows closely, driven by stringent data protection regulations and a strong focus on privacy. The Asia Pacific region is expected to witness the highest growth rate owing to the rapid digital transformation, increasing investments in AI and ML, and a burgeoning tech-savvy population. Latin America and the Middle East & Africa are also anticipated to experience steady growth, supported by emerging technological ecosystems and increasing awareness of data privacy.



    Component Analysis



    When examining the synthetic data software market by component, it is essential to consider both software and services. The software segment dominates the market as it encompasses the actual tools and platforms that generate synthetic data. These tools leverage advanced algorithms and statistical methods to produce artificial datasets that closely resemble real-world data. The demand for such software is growing rapidly as organizations across various sectors seek to enhance their data capabilities without compromising on security and privacy.



    On the other hand, the services segment includes consulting, implementation, and support services that help organizations integrate synthetic data software into their existing systems. As the market matures, the services segment is expected to grow significantly. This growth can be attributed to the increasing complexity of synthetic data generation and the need for specialized expertise to optimize its use. Service providers offer valuable insights and best practices, ensuring that organizations maximize the benefits of synthetic data while minimizing risks.



    The interplay between software and services is crucial for the holistic growth of the synthetic data software market. While software provides the necessary tools for data generation, services ensure that these tools are effectively implemented and utilized. Together, they create a comprehensive solution that addresses the diverse needs of organizations, from initial setup to ongoing maintenance and support. As more organizations recognize the value of synthetic data, the demand for both software and services is expected to rise, driving overall market growth.



    &l

  12. f

    DataSheet1_Synthetic data at scale: a development model to efficiently...

    • figshare.com
    zip
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Klein; Rebekah Waller; Sören Pirk; Wojtek Pałubicki; Mark Tester; Dominik L. Michels (2024). DataSheet1_Synthetic data at scale: a development model to efficiently leverage machine learning in agriculture.zip [Dataset]. http://doi.org/10.3389/fpls.2024.1360113.s001
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset provided by
    Frontiers
    Authors
    Jonathan Klein; Rebekah Waller; Sören Pirk; Wojtek Pałubicki; Mark Tester; Dominik L. Michels
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The rise of artificial intelligence (AI) and in particular modern machine learning (ML) algorithms during the last decade has been met with great interest in the agricultural industry. While undisputedly powerful, their main drawback remains the need for sufficient and diverse training data. The collection of real datasets and their annotation are the main cost drivers of ML developments, and while promising results on synthetically generated training data have been shown, their generation is not without difficulties on their own. In this paper, we present a development model for the iterative, cost-efficient generation of synthetic training data. Its application is demonstrated by developing a low-cost early disease detector for tomato plants (Solanum lycopersicum) using synthetic training data. A neural classifier is trained by exclusively using synthetic images, whose generation process is iteratively refined to obtain optimal performance. In contrast to other approaches that rely on a human assessment of similarity between real and synthetic data, we instead introduce a structured, quantitative approach. Our evaluation shows superior generalization results when compared to using non-task-specific real training data and a higher cost efficiency of development compared to traditional synthetic training data. We believe that our approach will help to reduce the cost of synthetic data generation in future applications.

  13. S

    Synthetic Data Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-platform-1939818
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.

  14. Synthetic Data Generation Engine Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Synthetic Data Generation Engine Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/synthetic-data-generation-engine-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Synthetic Data Generation Engine Market Outlook



    According to our latest research, the global Synthetic Data Generation Engine market size reached USD 1.42 billion in 2024, reflecting a rapidly expanding sector driven by the escalating demand for advanced data solutions. The market is expected to achieve a robust CAGR of 37.8% from 2025 to 2033, propelling it to an estimated value of USD 21.8 billion by 2033. This exceptional growth is primarily fueled by the increasing need for high-quality, privacy-compliant datasets to train artificial intelligence and machine learning models in sectors such as healthcare, BFSI, and IT & telecommunications. As per our latest research, the proliferation of data-centric applications and stringent data privacy regulations are acting as significant catalysts for the adoption of synthetic data generation engines globally.



    One of the key growth factors for the synthetic data generation engine market is the mounting emphasis on data privacy and compliance with regulations such as GDPR and CCPA. Organizations are under immense pressure to protect sensitive customer information while still deriving actionable insights from data. Synthetic data generation engines offer a compelling solution by creating artificial datasets that mimic real-world data without exposing personally identifiable information. This not only ensures compliance but also enables organizations to accelerate their AI and analytics initiatives without the constraints of data access or privacy risks. The rising awareness among enterprises about the benefits of synthetic data in mitigating data breaches and regulatory penalties is further propelling market expansion.



    Another significant driver is the exponential growth in artificial intelligence and machine learning adoption across industries. Training robust and unbiased models requires vast and diverse datasets, which are often difficult to obtain due to privacy concerns, labeling costs, or data scarcity. Synthetic data generation engines address this challenge by providing scalable and customizable datasets for various applications, including machine learning model training, data augmentation, and fraud detection. The ability to generate balanced and representative data has become a critical enabler for organizations seeking to improve model accuracy, reduce bias, and accelerate time-to-market for AI solutions. This trend is particularly pronounced in sectors such as healthcare, automotive, and finance, where data diversity and privacy are paramount.



    Furthermore, the increasing complexity of data types and the need for multi-modal data synthesis are shaping the evolution of the synthetic data generation engine market. With the proliferation of unstructured data in the form of images, videos, audio, and text, organizations are seeking advanced engines capable of generating synthetic data across multiple modalities. This capability enhances the versatility of synthetic data solutions, enabling their application in emerging use cases such as autonomous vehicle simulation, natural language processing, and biometric authentication. The integration of generative AI techniques, such as GANs and diffusion models, is further enhancing the realism and utility of synthetic datasets, expanding the addressable market for synthetic data generation engines.



    From a regional perspective, North America continues to dominate the synthetic data generation engine market, accounting for the largest revenue share in 2024. The region's leadership is attributed to the strong presence of technology giants, early adoption of AI and machine learning, and stringent regulatory frameworks. Europe follows closely, driven by robust data privacy regulations and increasing investments in digital transformation. Meanwhile, the Asia Pacific region is emerging as the fastest-growing market, supported by expanding IT infrastructure, government-led AI initiatives, and a burgeoning startup ecosystem. Latin America and the Middle East & Africa are also witnessing gradual adoption, fueled by the growing recognition of synthetic data's potential to overcome data access and privacy challenges.





    &l

  15. d

    Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats

    • datarade.ai
    Updated Sep 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ainnotate (2022). Synthetic Document Dataset for AI - Jpeg, PNG & PDF formats [Dataset]. https://datarade.ai/data-products/synthetic-document-dataset-for-ai-jpeg-png-pdf-formats-ainnotate
    Explore at:
    Dataset updated
    Sep 18, 2022
    Dataset authored and provided by
    Ainnotate
    Area covered
    Korea (Democratic People's Republic of), Tonga, Tokelau, Germany, Brazil, Ireland, Cabo Verde, Denmark, Syrian Arab Republic, Canada
    Description

    Ainnotate’s proprietary dataset generation methodology based on large scale generative modelling and Domain randomization provides data that is well balanced with consistent sampling, accommodating rare events, so that it can enable superior simulation and training of your models.

    Ainnotate currently provides synthetic datasets in the following domains and use cases.

    Internal Services - Visa application, Passport validation, License validation, Birth certificates Financial Services - Bank checks, Bank statements, Pay slips, Invoices, Tax forms, Insurance claims and Mortgage/Loan forms Healthcare - Medical Id cards

  16. Artificial Intelligence (AI) Training Dataset Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Artificial Intelligence (AI) Training Dataset Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/artificial-intelligence-training-dataset-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Artificial Intelligence (AI) Training Dataset Market Outlook



    According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.




    One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.




    Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.




    The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.




    From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.





    Data Type Analysis



    The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da

  17. f

    Data Sheet 2_Large language models generating synthetic clinical datasets: a...

    • figshare.com
    xlsx
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin (2025). Data Sheet 2_Large language models generating synthetic clinical datasets: a feasibility and comparative analysis with real-world perioperative data.xlsx [Dataset]. http://doi.org/10.3389/frai.2025.1533508.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Frontiers
    Authors
    Austin A. Barr; Joshua Quan; Eddie Guo; Emre Sezgin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.

  18. S

    Synthetic Data Generation Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Synthetic Data Generation Market Report [Dataset]. https://www.archivemarketresearch.com/reports/synthetic-data-generation-market-5998
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The size of the Synthetic Data Generation Market market was valued at USD 45.9 billion in 2023 and is projected to reach USD 65.9 billion by 2032, with an expected CAGR of 13.6 % during the forecast period. The Synthetic Data Generation Market involves creating artificial data that mimics real-world data while preserving privacy and security. This technique is increasingly used in various industries, including finance, healthcare, and autonomous vehicles, to train machine learning models without compromising sensitive information. Synthetic data is utilized for testing algorithms, improving AI models, and enhancing data analysis processes. Key trends in this market include the growing demand for privacy-compliant data solutions, advancements in generative modeling techniques, and increased investment in AI technologies. As organizations seek to leverage data-driven insights while mitigating risks associated with data privacy, the synthetic data generation market is poised for significant growth in the coming years.

  19. Z

    Training dataset for "A deep learned nanowire segmentation model using...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David, A. Santos (2024). Training dataset for "A deep learned nanowire segmentation model using synthetic data augmentation" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6469772
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Nima, Emami
    Yuting, Luo
    David, A. Santos
    Sarbajit, Banerjee
    Bai-Xiang, Xu
    Lin, Binbin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image dataset contains synthetic structure images used for training the deep-learning based nanowire segmentation model presented in our work "A deep learned nanowire segmentation model using synthetic data augmentation" to be published in npj Computational materials. Detailed information can be found in the corresponding article.

  20. S

    Synthetic Data Generation Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Synthetic Data Generation Market Report [Dataset]. https://www.marketresearchforecast.com/reports/synthetic-data-generation-market-1834
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Dec 8, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Generation Marketsize was valued at USD 288.5 USD Million in 2023 and is projected to reach USD 1920.28 USD Million by 2032, exhibiting a CAGR of 31.1 % during the forecast period.Synthetic data generation stands for the generation of fake datasets that resemble real datasets with reference to their data distribution and patterns. It refers to the process of creating synthetic data points utilizing algorithms or models instead of conducting observations or surveys. There is one of its core advantages: it can maintain the statistical characteristics of the original data and remove the privacy risk of using real data. Further, with synthetic data, there is no limitation to how much data can be created, and hence, it can be used for extensive testing and training of machine learning models, unlike the case with conventional data, which may be highly regulated or limited in availability. It also helps in the generation of datasets that are comprehensive and include many examples of specific situations or contexts that may occur in practice for improving the AI system’s performance. The use of SDG significantly shortens the process of the development cycle, requiring less time and effort for data collection as well as annotation. It basically allows researchers and developers to be highly efficient in their discovery and development in specific domains like healthcare, finance, etc. Key drivers for this market are: Growing Demand for Data Privacy and Security to Fuel Market Growth. Potential restraints include: Lack of Data Accuracy and Realism Hinders Market Growth. Notable trends are: Growing Implementation of Touch-based and Voice-based Infotainment Systems to Increase Adoption of Intelligent Cars.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich (2024). Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf [Dataset]. http://doi.org/10.3389/fbioe.2024.1350135.s001

Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf

Related Article
Explore at:
pdfAvailable download formats
Dataset updated
Feb 14, 2024
Dataset provided by
Frontiers
Authors
Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

Search
Clear search
Close search
Google apps
Main menu