1 dataset found
  1. DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    J. de Curtò; I. de Zarzà; J. de Curtò; I. de Zarzà (2022). DrCyZ: Techniques for analyzing and extracting useful information from CyZ. [Dataset]. http://doi.org/10.5281/zenodo.5816858
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 18, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    J. de Curtò; I. de Zarzà; J. de Curtò; I. de Zarzà
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

    Samples from NASA Perseverance and set of GAN generated synthetic images from Neural Mars.

    Repository: https://github.com/decurtoidiaz/drcyz


    Subset of samples from (includes tools to visualize and analyse the dataset):

    CyZ: MARS Space Exploration Dataset. [https://doi.org/10.5281/zenodo.5655473]

    Images from NASA missions of the celestial body.

    Repository: https://github.com/decurtoidiaz/cyz

    Authors:

    J. de Curtò c@decurto.be

    I. de Zarzà z@dezarza.be

    ------------------------------------------
    File Information from DrCyZ-1.0
    ------------------------------------------

    • Subset of samples from Perseverance (drcyz/c).
    ∙ png (drcyz/c/png).
    PNG files (5025) selected from NASA Perseverance (CyZ-1.1) after t-SNE and K-means Clustering.
    ∙ csv (drcyz/c/csv).
    CSV file.

    • Resized samples from Perseverance (drcyz/c+).
    ∙ png 64x64; 128x128; 256x256; 512x512 (drcyz/c+/drcyz_64-512).
    PNG files resized at the corresponding size.
    ∙ TFRecords 64x64; 128x128; 256x256; 512x512 (drcyz/c+/tfr_drcyz_64-512).
    TFRecord resized at the corresponding size to import on Tensorflow.

    • Synthetic images from Neural Mars generated using Stylegan2-ada (drcyz/drcyz+).
    ∙ png 100; 1000; 10000 (drcyz/drcyz+/drcyz_256_100-10000)
    PNG files subset of 100, 1000 and 10000 at size 256x256.

    • Network Checkpoint from Stylegan2-ada trained at size 256x256 (drcyz/model_drcyz).
    ∙ network-snapshot-000798-drcyz.pkl

    • Notebooks in python to analyse the original dataset and reproduce the experiments; K-means Clustering, t-SNE, PCA, synthetic generation using Stylegan2-ada and instance segmentation using Deeplab (https://github.com/decurtoidiaz/drcyz/tree/main/dr_cyz+).
    ∙ clustering_curiosity_de_curto_and_de_zarza.ipynb
    K-means Clustering and PCA(2) with images from Curiosity.
    ∙ clustering_perseverance_de_curto_and_de_zarza.ipynb
    K-means Clustering and PCA(2) with images from Perseverance.
    ∙ tsne_curiosity_de_curto_and_de_zarza.ipynb
    t-SNE and PCA (components selected to explain 99% of variance) with images from Curiosity.
    ∙ tsne_perseverance_de_curto_and_de_zarza.ipynb
    t-SNE and PCA (components selected to explain 99% of variance) with images from Perseverance.
    ∙ Stylegan2-ada_de_curto_and_de_zarza.ipynb
    Stylegan2-ada trained on a subset of images from NASA Perseverance (DrCyZ).
    ∙ statistics_perseverance_de_curto_and_de_zarza.ipynb
    Compute statistics from synthetic samples generated by Stylegan2-ada (DrCyZ) and images from NASA Perseverance (CyZ).
    ∙ DeepLab_TFLite_ADE20k_de_curto_and_de_zarza.ipynb
    Example of instance segmentation using Deeplab with a sample from NASA Perseverance (DrCyZ).

  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
J. de Curtò; I. de Zarzà; J. de Curtò; I. de Zarzà (2022). DrCyZ: Techniques for analyzing and extracting useful information from CyZ. [Dataset]. http://doi.org/10.5281/zenodo.5816858
Organization logo

DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

Explore at:
zipAvailable download formats
Dataset updated
Jan 18, 2022
Dataset provided by
Zenodohttp://zenodo.org/
Authors
J. de Curtò; I. de Zarzà; J. de Curtò; I. de Zarzà
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

Samples from NASA Perseverance and set of GAN generated synthetic images from Neural Mars.

Repository: https://github.com/decurtoidiaz/drcyz


Subset of samples from (includes tools to visualize and analyse the dataset):

CyZ: MARS Space Exploration Dataset. [https://doi.org/10.5281/zenodo.5655473]

Images from NASA missions of the celestial body.

Repository: https://github.com/decurtoidiaz/cyz

Authors:

J. de Curtò c@decurto.be

I. de Zarzà z@dezarza.be

------------------------------------------
File Information from DrCyZ-1.0
------------------------------------------

• Subset of samples from Perseverance (drcyz/c).
∙ png (drcyz/c/png).
PNG files (5025) selected from NASA Perseverance (CyZ-1.1) after t-SNE and K-means Clustering.
∙ csv (drcyz/c/csv).
CSV file.

• Resized samples from Perseverance (drcyz/c+).
∙ png 64x64; 128x128; 256x256; 512x512 (drcyz/c+/drcyz_64-512).
PNG files resized at the corresponding size.
∙ TFRecords 64x64; 128x128; 256x256; 512x512 (drcyz/c+/tfr_drcyz_64-512).
TFRecord resized at the corresponding size to import on Tensorflow.

• Synthetic images from Neural Mars generated using Stylegan2-ada (drcyz/drcyz+).
∙ png 100; 1000; 10000 (drcyz/drcyz+/drcyz_256_100-10000)
PNG files subset of 100, 1000 and 10000 at size 256x256.

• Network Checkpoint from Stylegan2-ada trained at size 256x256 (drcyz/model_drcyz).
∙ network-snapshot-000798-drcyz.pkl

• Notebooks in python to analyse the original dataset and reproduce the experiments; K-means Clustering, t-SNE, PCA, synthetic generation using Stylegan2-ada and instance segmentation using Deeplab (https://github.com/decurtoidiaz/drcyz/tree/main/dr_cyz+).
∙ clustering_curiosity_de_curto_and_de_zarza.ipynb
K-means Clustering and PCA(2) with images from Curiosity.
∙ clustering_perseverance_de_curto_and_de_zarza.ipynb
K-means Clustering and PCA(2) with images from Perseverance.
∙ tsne_curiosity_de_curto_and_de_zarza.ipynb
t-SNE and PCA (components selected to explain 99% of variance) with images from Curiosity.
∙ tsne_perseverance_de_curto_and_de_zarza.ipynb
t-SNE and PCA (components selected to explain 99% of variance) with images from Perseverance.
∙ Stylegan2-ada_de_curto_and_de_zarza.ipynb
Stylegan2-ada trained on a subset of images from NASA Perseverance (DrCyZ).
∙ statistics_perseverance_de_curto_and_de_zarza.ipynb
Compute statistics from synthetic samples generated by Stylegan2-ada (DrCyZ) and images from NASA Perseverance (CyZ).
∙ DeepLab_TFLite_ADE20k_de_curto_and_de_zarza.ipynb
Example of instance segmentation using Deeplab with a sample from NASA Perseverance (DrCyZ).

Search
Clear search
Close search
Google apps
Main menu