2 datasets found
  1. Z

    DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

    • data.niaid.nih.gov
    Updated Jan 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Curtò, J.; de Zarzà, I. (2022). DrCyZ: Techniques for analyzing and extracting useful information from CyZ. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5816857
    Explore at:
    Dataset updated
    Jan 19, 2022
    Dataset provided by
    Universitat Oberta de Catalunya
    Authors
    de Curtò, J.; de Zarzà, I.
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

    Samples from NASA Perseverance and set of GAN generated synthetic images from Neural Mars.

    Repository: https://github.com/decurtoidiaz/drcyz

    Subset of samples from (includes tools to visualize and analyse the dataset):

    CyZ: MARS Space Exploration Dataset. [https://doi.org/10.5281/zenodo.5655473]

    Images from NASA missions of the celestial body.

    Repository: https://github.com/decurtoidiaz/cyz

    Authors:

    J. de Curtò c@decurto.be

    I. de Zarzà z@dezarza.be

    File Information from DrCyZ-1.1

    • Subset of samples from Perseverance (drcyz/c).
      ∙ png (drcyz/c/png).
        PNG files (5025) selected from NASA Perseverance (CyZ-1.1) after t-SNE and K-means Clustering. 
      ∙ csv (drcyz/c/csv).
        CSV file.
    
    
    • Resized samples from Perseverance (drcyz/c+).
      ∙ png 64x64; 128x128; 256x256; 512x512; 1024x1024 (drcyz/c+/drcyz_64-1024).
        PNG files resized at the corresponding size. 
      ∙ TFRecords 64x64; 128x128; 256x256; 512x512; 1024x1024 (drcyz/c+/tfr_drcyz_64-1024).
        TFRecord resized at the corresponding size to import on Tensorflow.
    
    
    • Synthetic images from Neural Mars generated using Stylegan2-ada (drcyz/drcyz+).
      ∙ png 100; 1000; 10000 (drcyz/drcyz+/drcyz_256_100-10000)
        PNG files subset of 100, 1000 and 10000 at size 256x256.
    
    
    • Network Checkpoint from Stylegan2-ada trained at size 256x256 (drcyz/model_drcyz).
      ∙ network-snapshot-000798-drcyz.pkl
    
    
    • Notebooks in python to analyse the original dataset and reproduce the experiments; K-means Clustering, t-SNE, PCA, synthetic generation using Stylegan2-ada and instance segmentation using Deeplab (https://github.com/decurtoidiaz/drcyz/tree/main/dr_cyz+).
      ∙ clustering_curiosity_de_curto_and_de_zarza.ipynb
        K-means Clustering and PCA(2) with images from Curiosity.
      ∙ clustering_perseverance_de_curto_and_de_zarza.ipynb
        K-means Clustering and PCA(2) with images from Perseverance.
      ∙ tsne_curiosity_de_curto_and_de_zarza.ipynb
        t-SNE and PCA (components selected to explain 99% of variance) with images from Curiosity.
      ∙ tsne_perseverance_de_curto_and_de_zarza.ipynb
        t-SNE and PCA (components selected to explain 99% of variance) with images from Perseverance.
      ∙ Stylegan2-ada_de_curto_and_de_zarza.ipynb
        Stylegan2-ada trained on a subset of images from NASA Perseverance (DrCyZ).
      ∙ statistics_perseverance_de_curto_and_de_zarza.ipynb
        Compute statistics from synthetic samples generated by Stylegan2-ada (DrCyZ) and images from NASA Perseverance (CyZ).
      ∙ DeepLab_TFLite_ADE20k_de_curto_and_de_zarza.ipynb
        Example of instance segmentation using Deeplab with a sample from NASA Perseverance (DrCyZ).
    
  2. CroppedYaleFaces

    • kaggle.com
    zip
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omar Rehan (2025). CroppedYaleFaces [Dataset]. https://www.kaggle.com/datasets/aiomarrehan/croppedyalefaces
    Explore at:
    zip(58366379 bytes)Available download formats
    Dataset updated
    Nov 15, 2025
    Authors
    Omar Rehan
    Description

    Cropped Yale Face Dataset (Grayscale Images)

    The Cropped Yale Face Dataset is a widely used benchmark in computer vision and machine learning for face recognition tasks. It consists of grayscale images of human faces captured under varying lighting conditions and expressions. The dataset is well-suited for research in facial recognition, image preprocessing, and machine learning model evaluation.

    Dataset Overview

    FeatureDescription
    Number of subjects38 individuals
    Number of images2,414 images
    Image size192 × 168 pixels
    ColorGrayscale (single channel)
    VariationsLighting conditions, facial expressions, and slight head rotations
    Format.pgm images (can be converted to .png or .jpg)
    Common usageFace recognition, PCA/LDA experiments, image classification

    Example of Dataset Structure

    CroppedYale/
    ├── yaleB01/
    │  ├── yaleB01_P00A+000E+00.pgm
    │  ├── yaleB01_P00A+000E+05.pgm
    │  └── ...
    ├── yaleB02/
    │  └── ...
    └── ...
    
    • Each folder corresponds to a single subject.
    • File naming convention: yaleB<subject_id>_P<pose>A<ambient>E<expression>.pgm.

    Example Use Cases

    1. Face Recognition

    The dataset is perfect for evaluating facial recognition algorithms under controlled lighting and expression variations.

    from sklearn.decomposition import PCA
    from sklearn.svm import SVC
    import numpy as np
    
    # Load images and flatten
    X = images.reshape(len(images), -1)
    y = labels
    
    # Reduce dimensions using PCA
    pca = PCA(n_components=100)
    X_pca = pca.fit_transform(X)
    
    # Train classifier
    clf = SVC(kernel='linear')
    clf.fit(X_pca, y)
    

    2. Dimensionality Reduction

    Due to its moderate image size, the dataset is ideal for testing dimensionality reduction methods like PCA, LDA, or t-SNE.

    from sklearn.manifold import TSNE
    import matplotlib.pyplot as plt
    
    X_embedded = TSNE(n_components=2).fit_transform(X_pca)
    plt.scatter(X_embedded[:,0], X_embedded[:,1], c=y)
    plt.show()
    

    3. Lighting & Expression Robustness

    Researchers can use this dataset to study the effect of lighting conditions and facial expressions on recognition accuracy.

    • yaleB01_P00A+000E+00.pgm → Normal expression
    • yaleB01_P00A+000E+05.pgm → Smiling expression
    • yaleB01_P00A+010E+00.pgm → Slightly rotated face

    Key Advantages

    • Controlled environment: Minimal background noise, making it easier to focus on the face features.
    • Diverse lighting conditions: Excellent for testing illumination-invariant algorithms.
    • Compact size: Easy to load and experiment with on most machines without high computational cost.
    • Grayscale: Simplifies preprocessing while still retaining critical facial features.
  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
de Curtò, J.; de Zarzà, I. (2022). DrCyZ: Techniques for analyzing and extracting useful information from CyZ. [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5816857

DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

Explore at:
Dataset updated
Jan 19, 2022
Dataset provided by
Universitat Oberta de Catalunya
Authors
de Curtò, J.; de Zarzà, I.
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

DrCyZ: Techniques for analyzing and extracting useful information from CyZ.

Samples from NASA Perseverance and set of GAN generated synthetic images from Neural Mars.

Repository: https://github.com/decurtoidiaz/drcyz

Subset of samples from (includes tools to visualize and analyse the dataset):

CyZ: MARS Space Exploration Dataset. [https://doi.org/10.5281/zenodo.5655473]

Images from NASA missions of the celestial body.

Repository: https://github.com/decurtoidiaz/cyz

Authors:

J. de Curtò c@decurto.be

I. de Zarzà z@dezarza.be

File Information from DrCyZ-1.1

• Subset of samples from Perseverance (drcyz/c).
  ∙ png (drcyz/c/png).
    PNG files (5025) selected from NASA Perseverance (CyZ-1.1) after t-SNE and K-means Clustering. 
  ∙ csv (drcyz/c/csv).
    CSV file.


• Resized samples from Perseverance (drcyz/c+).
  ∙ png 64x64; 128x128; 256x256; 512x512; 1024x1024 (drcyz/c+/drcyz_64-1024).
    PNG files resized at the corresponding size. 
  ∙ TFRecords 64x64; 128x128; 256x256; 512x512; 1024x1024 (drcyz/c+/tfr_drcyz_64-1024).
    TFRecord resized at the corresponding size to import on Tensorflow.


• Synthetic images from Neural Mars generated using Stylegan2-ada (drcyz/drcyz+).
  ∙ png 100; 1000; 10000 (drcyz/drcyz+/drcyz_256_100-10000)
    PNG files subset of 100, 1000 and 10000 at size 256x256.


• Network Checkpoint from Stylegan2-ada trained at size 256x256 (drcyz/model_drcyz).
  ∙ network-snapshot-000798-drcyz.pkl


• Notebooks in python to analyse the original dataset and reproduce the experiments; K-means Clustering, t-SNE, PCA, synthetic generation using Stylegan2-ada and instance segmentation using Deeplab (https://github.com/decurtoidiaz/drcyz/tree/main/dr_cyz+).
  ∙ clustering_curiosity_de_curto_and_de_zarza.ipynb
    K-means Clustering and PCA(2) with images from Curiosity.
  ∙ clustering_perseverance_de_curto_and_de_zarza.ipynb
    K-means Clustering and PCA(2) with images from Perseverance.
  ∙ tsne_curiosity_de_curto_and_de_zarza.ipynb
    t-SNE and PCA (components selected to explain 99% of variance) with images from Curiosity.
  ∙ tsne_perseverance_de_curto_and_de_zarza.ipynb
    t-SNE and PCA (components selected to explain 99% of variance) with images from Perseverance.
  ∙ Stylegan2-ada_de_curto_and_de_zarza.ipynb
    Stylegan2-ada trained on a subset of images from NASA Perseverance (DrCyZ).
  ∙ statistics_perseverance_de_curto_and_de_zarza.ipynb
    Compute statistics from synthetic samples generated by Stylegan2-ada (DrCyZ) and images from NASA Perseverance (CyZ).
  ∙ DeepLab_TFLite_ADE20k_de_curto_and_de_zarza.ipynb
    Example of instance segmentation using Deeplab with a sample from NASA Perseverance (DrCyZ).
Search
Clear search
Close search
Google apps
Main menu