This tabular data set contains estimated and measured data on the physical and chemical soil properties, soil interpretations, and static and dynamic metadata. The static tabular metadata documents the underlying data structure, independent of the actual data contained in an export. The static tabular metadata table names are mdstatdomdet, mdstatdommas, mdstatidxdet, mdstatidxmas, mdstatrshipdet, mdstatrshipmas, mdstattabcols, and mdstattabs. The dynamic metadata documents the contents of a particular export. The dynamic metadata table names are distinterpmd, distlegendmd, and distmd. The structure of the static and dynamic metadata tables can be viewed online via the URL listed in the Online_Linkage element above. Most tabular data exist in the database as a range of soil properties, depicting the range for the soil survey area. Data are obtained from a combination of field observations, site descriptions and transects, and laboratory analyses. In making the soil survey, soil scientists observed landforms and landscape features, such as the steepness, length, and shape of slopes; the general pattern of drainage; the kinds of crops and native plants growing on the soils; and the kinds of bedrock. They observed and studied many soil profiles. Samples of some of the soils in the area were collected for laboratory analyses and for engineering tests. Soil boundaries were drawn on the soil maps and a locally tailored tabular data base was constructed, based on those observations and the resulting landscape model the soil scientist developed. These data can be used with their companion field maps. Contact the U.S. Department of Agriculture, Natural Resources Conservation Service State Soil Scientist for additional information.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Soil Data Viewer is a tool built as an extension to ArcMap that allows a user to create soil-based thematic maps. The application can also be run independently of ArcMap, but output is then limited to a tabular report. The soil survey attribute database associated with the spatial soil map is a complicated database with more than 50 tables. Soil Data Viewer provides users access to soil interpretations and soil properties while shielding them from the complexity of the soil database. Each soil map unit, typically a set of polygons, may contain multiple soil components that have different use and management. Soil Data Viewer makes it easy to compute a single value for a map unit and display results, relieving the user from the burden of querying the database, processing the data and linking to the spatial map. Soil Data Viewer contains processing rules to enforce appropriate use of the data. This provides the user with a tool for quick geospatial analysis of soil data for use in resource assessment and management. Resources in this dataset:Resource Title: Soil Data Viewer. File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053620 Soil Data Viewer is a tool built as an extension to ArcMap that allows a user to create soil-based thematic maps. The application can also be run independent of ArcMap, but output is then limited to a tabular report. Soil Data Viewer contains processing rules to enforce appropriate use of the data. This provides the user with a tool for quick geospatial analysis of soil data for use in resource assessment and management. Links to download and install Download Soil Data Viewer 6.2 for use with ArcGIS 10.x and Windows XP, Windows 7, Windows 8.x, or Windows 10. Earlier versions are also available.
The United States Department of Agriculture, Natural Resource Conservation Service (USDA, NRCS) has developed the U.S. General Soil Map (STATSGO2) Database (formerly known as the State Soil Geographic (STATSGO) database). Data are available for all 50 states as well as for Puerto Rico. Soil maps for the STATSGO2 database are made by generalizing detailed soil survey data. The mapping scale for STATSGO2 map is 1:250,000 (with the exception of Alaska, which is 1:1,000,000). The level of mapping is designed to be used for broad planning and management uses covering state, regional, and multi-state areas. STATSGO2 data are designed for use in a geographic information system (GIS).
Digitizing is done by line segment (vector) format in accordance with Natural Resources Conservation Service (NRCS) digitizing standards. The base map used is the U.S. Geological Survey 1:250,000 topographic quadrangles. The number of soil polygons per quadrangle map is between 100 and 400. The minimum area mapped is about 1,544 acres.
STATSGO2 data are collected in 1:250,000 quadrangle units. Map unit delineations match at state boundaries. States have been joined as one complete seamless data base to form statewide coverage. Composition of soil map units was coordinated across state boundaries, so that component identities and relative extents would match.
Each STATSGO2 map is linked to the Soil Interpretations Record (SIR) attribute database. The attribute database gives the proportionate extent of the component soils and their properties for each map unit. The STATSGO map units consist of 1 to 21 components each. The Soil Interpretations Record database includes over 25 physical and chemical soil properties, interpretations, and productivity. Examples of information that can be queried from the database are available water capacity, soil reaction, salinity, flooding, water table, bedrock, and interpretations for engineering uses, cropland, woodland, rangeland, pastureland, wildlife, and recreation development.
STATSGO2 data are available in the USGS Digital Line Graph (DLG-3) Optional distribution format. NRCS soil map symbols are not normally carried within the DLG-3 file; however, these map symbols are made available as a unique ascii file when NRCS soils data are distributed in the DLG-3 format. STATSGO2 data are also available in ArcInfo 7.0 coverage and GRASS 4.13 vector formats. Both DOS/Windows and UNIX compatible file formats are available. Data are available via ftp by state including Puerto Rico. The complete data set is also available on CD-ROM for a fee.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The SSURGO database contains information about soil as collected by the National Cooperative Soil Survey over the course of a century. The information can be displayed in tables or as maps and is available for most areas in the United States and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS (Natural Resources Conservation Service). The information was gathered by walking over the land and observing the soil. Many soil samples were analyzed in laboratories. The maps outline areas called map units. The map units describe soils and other components that have unique properties, interpretations, and productivity. The information was collected at scales ranging from 1:12,000 to 1:63,360. More details were gathered at a scale of 1:12,000 than at a scale of 1:63,360. The mapping is intended for natural resource planning and management by landowners, townships, and counties. Some knowledge of soils data and map scale is necessary to avoid misunderstandings. The maps are linked in the database to information about the component soils and their properties for each map unit. Each map unit may contain one to three major components and some minor components. The map units are typically named for the major components. Examples of information available from the database include available water capacity, soil reaction, electrical conductivity, and frequency of flooding; yields for cropland, woodland, rangeland, and pastureland; and limitations affecting recreational development, building site development, and other engineering uses. SSURGO datasets consist of map data, tabular data, and information about how the maps and tables were created. The extent of a SSURGO dataset is a soil survey area, which may consist of a single county, multiple counties, or parts of multiple counties. SSURGO map data can be viewed in the Web Soil Survey or downloaded in ESRI® Shapefile format. The coordinate systems are Geographic. Attribute data can be downloaded in text format that can be imported into a Microsoft® Access® database. A complete SSURGO dataset consists of:
GIS data (as ESRI® Shapefiles) attribute data (dbf files - a multitude of separate tables) database template (MS Access format - this helps with understanding the structure and linkages of the various tables) metadata
Resources in this dataset:Resource Title: SSURGO Metadata - Tables and Columns Report. File Name: SSURGO_Metadata_-_Tables_and_Columns.pdfResource Description: This report contains a complete listing of all columns in each database table. Please see SSURGO Metadata - Table Column Descriptions Report for more detailed descriptions of each column.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Metadata - Table Column Descriptions Report. File Name: SSURGO_Metadata_-_Table_Column_Descriptions.pdfResource Description: This report contains the descriptions of all columns in each database table. Please see SSURGO Metadata - Tables and Columns Report for a complete listing of all columns in each database table.
Find the Soil Survey Geographic (SSURGO) web site at https://www.nrcs.usda.gov/wps/portal/nrcs/detail/vt/soils/?cid=nrcs142p2_010596#Datamart Title: SSURGO Data Dictionary. File Name: SSURGO 2.3.2 Data Dictionary.csvResource Description: CSV version of the data dictionary
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 30 meter cell size. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data. The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) dataset published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped of 1:250,000 in the continental U.S., Hawaii, Puerto, and the Virgin Islands and 1:1,000,000 in Alaska. The dataset was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined.
Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the entire map unit.
This dataset consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1- by 2-degree topographic quadrangle units. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
These data provide information about soil features on or near the surface of the Earth. Data were collected as part of the National Cooperative Soil Survey. These data are intended for geographic display and analysis at the state, regional, and national level. The data should be displayed and analyzed at scales appropriate for 1:250,000-scale data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: STATSGO2-State For complete information, please visit https://data.gov.
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The recently released (2011) gSSURGO value added look up (valu) table (created by USDA-NRCS) contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.Summarized description of the Format and organization of SSURGO:Adjacent soil surveys may have been composed by different individuals, and may be of widely different vintages. Any given survey must comply with basic standards, but older surveys reflect a more generalized approach than more modern surveys. The figure to the right illustrates such differences.Polygons represent a repeating pattern of legend entries: groups of map-able soil concepts called map unitsMap unit data is stored in the mapunit table, and is referenced by the field mukeyPre-aggregated map unit data is stored in the muaggatt table, and is referenced by the field mukeyMap units are comprised of multiple, unmapped soil types called 'components'Component data is stored in the component table, and is referenced by the field cokeySoil components (or soil type) are associated with multiple horizonsHorizon data is stored in the chorizon table, and is referenced by the field cokeySince there is a 1:many:many (mapunit:component:horizon) relationship between spatial and horizon-level soil property data two aggregation steps are required in order to produce a thematic mapSource: http://casoilresource.lawr.ucdavis.edu/drupal/book/export/html/335Summary Descriptions of gSSURGO Soil Survey Attributes contained within the MUAGGATT table.MUAGGATT Table:Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth – MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency – MaximumPonding Frequency – PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class – WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification – PresenceRating for Manure and Food Processing Waste - Weighted Average
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary SphereExtent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaVisible Scale: 1:144,000 to 1:1,000Number of Features: 36,569,286Source: USDA Natural Resources Conservation ServicePublication Date: December 2021Data from the gSSURGO database was used to create this layer.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some mapunits have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Mapunit Name (muname) fields. This field was created using the dominant soil order of each mapunit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied the first value in the table was selected.Percent AlfisolsPercent AndisolsPercent AridisolsPercent EntisolsPercent GelisolsPercent HistosolsPercent InceptisolsPercent MollisolsPercent SpodosolsPercent UltisolsPercent VertisolsSoil Order - Dominant ConditionEsri Popup StringThis field contains a text string calculated by Esri that is used to create a basic pop-up using some of the more popular SSURGO attributes.Map Unit KeyThe Mapunit key field is found
THE NYSERDA 2022 SOILS DATA IS TO BE USED FOR NYSERDA’S PROCUREMENT PURPOSES OR THE NY-SUN PROGRAM AND IS NOT INTENDED TO REPRESENT ACTUAL IN SITU SOIL CONDITIONS. NYSERDA has launched the Renewable Energy Standard (RES) request for proposals, RESRFP22-1, to continue accelerating progress towards New York’s goal of generating 70 percent of its electricity from renewable sources by 2030. Through RESRFP22-1, NYSERDA seeks to procure approximately 4.5 million Tier 1 eligible Renewable Energy Certificates (RECs) from eligible facilities that enter commercial operation on or after January 1, 2015 and on or before November 30, 2024, unless extended to November 30, 2027. In order to facilitate the protection of agricultural lands, developers participating in RESRFP22-1 or the NY-Sun program may be responsible for making an agricultural mitigation payment to a designated fund based on the extent to which the solar project’s facility area overlaps with an Agricultural District and New York’s highly productive agricultural soils, identified as Mineral Soil Groups (MSG) classifications 1 through 4 (MSG 1-4). This mitigation approach is designed to discourage solar projects from siting on MSG 1-4. Furthermore, this mitigation approach is designed to encourage retaining agricultural productivity on the project site. Instances where Proposers cannot avoid or minimize impacts on MSG 1-4 will result in a payment to a fund administered by NYSERDA. Disbursement of collected agricultural mitigation payment funds will be informed by consultation with the New York State Department of Agriculture and Markets (AGM) to support ongoing regional agricultural practices and/or soil conservation initiatives. This dataset contains a combination of soils data from multiple sources to serve participants of NYSERDA’s Large-Scale Renewable and NY-Sun programs. The NYSERDA 2022 Soils Data was created by converting the 2022 New York State Agricultural Land Classification master list of soils maintained by AGM to a tabular form and providing a corresponding unique identifier for each listed soil that enables the user to link the soils to the Natural Resources Conservation Service (NRCS) SSURGO soils database, allowing for a geographical representation. When the NYSERDA 2022 Soils Data is joined with spatial data from the Natural Resources Conservation Service (NRCS) SSURGO soils database, the corresponding soil unit can be mapped in a geographic information system software. The latest version of the SSURGO database should be used to get the most accurate join. Data is updated yearly from both NRCS and from AGM, however, NYSERDA will not update this dataset and it will remain intact for future reference. NYSERDA intends on creating new soils datasets for future procurements on an annual basis. The New York State Energy Research and Development Authority (NYSERDA) offers objective information and analysis, innovative programs, technical expertise, and support to help New Yorkers increase energy efficiency, save money, use renewable energy, and reduce reliance on fossil fuels. To learn more about NYSERDA’s programs, visit nyserda.ny.gov or follow us on X, Facebook, YouTube, or Instagram.
https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5https://www.arcgis.com/home/item.html?id=806c857d504c476ba6477ac475c45bf5
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals.Dataset SummaryPhenomenon Mapped: Ready-to-use project packages with over 170 attributes derived from the SSURGO dataset, split up by HUC8s. Geographic Extent: The dataset covers the 48 contiguous United States plus Hawaii and portions of Alaska. Map packages are available for Puerto Rico and the US Virgin Islands. A project package for US Island Territories and associated states of the Pacific Ocean can be downloaded by clicking one of the included areas in the map. The Pacific Project Package includes: Guam, the Marshall Islands, the Northern Marianas Islands, Palau, the Federated States of Micronesia, and American Samoa.Source: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Link to source metadata*Not all areas within SSURGO have completed soil surveys and many attributes have areas with no data.The soil data in the packages is also available as a feature layer in the ArcGIS Living Atlas of the World.AttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them.Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit SymbolMap Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability RatingLegend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project ScaleSurvey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular VersionMap Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field.Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Map Unit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Map Unit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted AverageComponent Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected.Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent KeyComponent Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence - High ValueTotal Subsidence - Low ValueTotal Subsidence - Representative ValueTotal Subsidence - High ValueCrop Productivity IndexEsri SymbologyThis field was created to provide symbology based on the Taxonomic Order field (taxorder). Because some map units have a null value for soil order, a custom script was used to populate this field using the Component Name (compname) and Map Unit Name (muname) fields. This field was created using the dominant soil order of each map unit.Esri SymbologyHorizon TableEach map unit polygon has one or more components and each component has one or more layers known as horizons. To incorporate this field from the Horizon table into the attributes for this layer, a custom script was used to first calculate the mean value weighted by thickness of the horizon for each component and then a mean value of components weighted by the Component Percentage Representative Value field for each map unit. K-Factor Rock FreeEsri Soil OrderThese fields were calculated from the Component table using a model that included the Pivot Table Tool, the Summarize Tool and a custom script. The first 11 fields provide the sum of Component Percentage Representative Value for each soil order for each map unit. The Soil Order Dominant Condition field was calculated by selecting the highest value in the preceding 11 soil order fields. In the case of tied values the component with the lowest average slope value (slope_r) was selected. If both soil order and slope were tied
This dataset contains the common Map Unit attributes for each polygon within the gSSURGO database plus NRCS derived attributes from a data summary table called the National Valu Added Look Up (valu) Table #1. It is comprised of 57 pre-summarized or "ready to map" derived soil survey geographic database attributes including soil organic carbon, available water storage, crop productivity indices, crop root zone depths, available water storage within crop root zone depths, drought vulnerable soil landscapes, and potential wetland soil landscapes. Related metadata values for themes are included. These attribute data are pre-summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria. These themes were prepared to better meet the mapping needs of users of soil survey information and can be used with both SSURGO and Gridded SSURGO (gSSURGO) datasets. Gridded SSURGO (gSSURGO) Database is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into State-wide extents, and adding a State-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format. The raster and vector map data have a State-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.VALU Table Content:The map unit average Soil Organic Carbon (SOC) values are given in units of g C per square meter for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), o-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average Available Water Storage (AWS) values are given in units of millimeters for eleven standard layer or zone depths. The average thickness of soil map unit component horizons used in these layer/zone calcuations is also included. The standard layers include: 0-5cm, 5-20cm, 20-50cm, 50-100cm, 100-150cm, and 150-150+cm (maximum reported soil depth). The standard zones include: 0-5cm (also a standard layer), 0-20cm, 0-30cm, 0-100cm, and 0-150+cm (full reported soil depth). Zero cm represents the soil surface.The map unit average National Commodity Crop Productivity Index (NCCPI) values (low index values indicate low productivity and high index values indicate high productivity) are provided for major earthy components. NCCPI values are included for corn/soybeans, small grains, and cotton crops. Of these crops, the highest overall NCCPI value is also identified. Earthy components are those soil series or higher level taxa components that can support crop growth. Major components are those soil components where the majorcompflag = 'Yes' in the SSURGO component table. A map unit percent composition for earthy major components is provided. See Dobos, R. R., H. R. Sinclair, Jr, and M. P. Robotham. 2012. National Commodity Crop Productivity Index (NCCPI) User Guide, Version 2. USDA-NRCS. Available at: ftp://ftp-fc.sc.egov.usda.gov/NSSC/NCCPI/NCCPI_user_guide.pdfThe map unit average root zone depth values for commodity crops are given in centimeters for major earthy components. Criteria for root-limiting soil depth include: presence of hard bedrock, soft bedrock, a fragipan, a duripan, sulfuric material, a dense layer, a layer having a pH of less than 3.5, or a layer having an electrical conductivity of more than 12 within the component soil profile. If no root-restricting zone is identified, a depth of 150 cm is used to approximate the root zone depth (Dobos et al., 2012). The map unit average available water storage within the root zone depth for major earthy components value is given in millimeters.Drought vulnerable soil landscapes comprise those map units that have available water storage within the root zone for commodity crops that is less than or equal to 6 inches (152 mm) expressed as "1" for a drought vulnerable soil landscape map unit or "0" for a nondroughty soil landscape map unit or NULL for miscellaneous areas (includes water bodies).The potential wetland soil landscapes (PWSL version 1) information is given as the percentage of the map unit (all components) that meet the criteria for a potential wetland soil landscape. See table column (field) description for criteria details. If water was determined to account for 80 or greater percent of a map unit, a value of 999 was used to indicate a water body. This is not a perfect solution, but is helpful to identifying a general water body class for mapping.The map unit sum of the component percentage representative values is also provided as useful metadata. For all valu table columns, NULL values are presented where data are incomplete or not available. How NoData or NULL values and incomplete data were handled during VALU table SOC and AWS calculations:The gSSURGO calculations for SOC and AWS as reported in the VALU table use the following data checking and summarization rules. The guiding principle was to only use the official data in the SSURGO database, and not to make assumptions in case there were some data entry errors. However, there were a few exceptions to this principle if there was a good reason for a Null value in a critical variable, or to accommodate the data coding conventions used in some soil surveys.Horizon depths considerations:If the depth to the top of the surface horizon was missing, but otherwise the horizon depths were all okay, then the depth to the top of the surface horizon (hzdept_r) was set to zero.If the depth to the bottom of the last horizon was missing, and the horizon represented bedrock or had missing bulk density, the depth to the bottom was set to equal to the depth to the top of the same horizon (hzdepb_r = hzdept_r), effectively giving the horizon zero thickness (and thus zero SOC or AWS), but not blocking calculation of other horizons in the profile due to horizon depth errors.Other types of horizon depth errors were considered uncorrectable, and led to all horizon depths for the component being set to a NoData value, effectively eliminating the component from the analysis. The errors included gaps or overlaps in the horizon depths of the soil profile, other cases of missing data for horizon depths, including missing data for the bottom depth of the last horizon if the soil texture information did not indicate bedrock and a bulk density value was coded. The SOC or AWS values were effectively set to zero for components eliminated in this way, so the values at the map unit level could be an underestimate for some soils.Horizon rock fragment considerations:Part of the algorithm for calculating the SOC requires finding the volume of soil that is not rock. This requires three SSURGO variables that indicate rock fragments (fraggt10_r, frag3to10_r, and sieveno10_r). If the soil is not organic, and any of these are missing, then the ratio of the volume of soil fines to the total soil volume was set to “NoData†, and the SOC results were coded as “NoData†and effectively set to zero for the horizon. If the soil is organic, then it may be logical that no measurement of rock fragments was made, and default values for the “zero rock†situation was assumed for these variables (i.e., fraggt10_r = 0, frag3to10_r = 0, sieveno10_r = 100). Organic soils were identified by an “O†in the horizon designator or the texture code represented “Peat†, “Muck†or “Decomposed Plant Material†. If all three of the fragment variables were present, but indicated more than 100% rock, then 100% rock was assumed (zero volume of soil and thus zero for SOC). The rock fragment variables do not influence the AWS calculation because rock content is already accounted for in the available water capacity (awc_r) variable at the horizon level.Horizon to component summary:To summarize data from the horizon level to the component level, the evaluation proceeded downward from the surface. If a valid value for AWS could not be calculated for any horizon, then the result for that horizon and all deeper horizons was set to NoData. The same rule was separately applied to the SOC calculation, so it was possible to have results for SOC but not AWS, or vice versa.Component to mapunit summary:To summarize data from the component level to the map unit level, the component percentages must be valid. There are tests both of the individual component percentage (comppct_r) data, and also of the sum of the component percentages at the map unit level (mu_sum_comppct_r). For the gSSURGO VALU table, the following rules were applied for the individual components: 1) The comppct_r must be in the range from 0 to 100, inclusive. 2) Individual components with a comppct_r that was Null (nothing coded) were ignored. A zero comppct_r value excludes
The gSSURGO dataset provides detailed soil survey mapping in raster format with ready-to-map attributes organized in statewide tiles for desktop GIS. gSSURGO is derived from the official Soil Survey Geographic (SSURGO) Database. SSURGO generally has the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes and are derived from properties and characteristics stored in the National Soil Information System (NASIS).
The gSSURGO data were prepared by merging the traditional vector-based SSURGO digital map data and tabular data into statewide extents, adding a statewide gridded map layer derived from the vector layer, and adding a new value-added look up table (valu) containing ready-to-map attributes. The gridded map layer is in an ArcGIS file geodatabase in raster format, thus it has the capacity to store significantly more data and greater spatial extents than the traditional SSURGO product. The raster map data have a 10-meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link the raster cells and polygons to attribute tables.
For more information, see the gSSURGO webpage: https://www.nrcs.usda.gov/resources/data-and-reports/description-of-gridded-soil-survey-geographic-gssurgo-database
https://data.ferndalemi.gov/datasets/4a0ff803687b4b948a926c48c17ab0ed_3/license.jsonhttps://data.ferndalemi.gov/datasets/4a0ff803687b4b948a926c48c17ab0ed_3/license.json
BY USING THIS WEBSITE OR THE CONTENT THEREIN, YOU AGREE TO THE TERMS OF USE.
The downloaded SSURGO data included an ArcGIS Shapefile of the soil type features for Oakland County, tabular data in text file format, and an empty pre-formatted Microsoft Access database containing queries, macros and reports. The Shapefile was intially projected in State Plane Michigan South Meters NAD 83, but was then reprojected by Oakland County staff to State Plane Michigan South International Feet NAD 83. The USDA-NRCS provided instructions for automatically importing the tabular text files into the Microsoft Access database. The key attribute of this feature class is the map unit key (MUSYM field), which relates the polygon features to the SoilAttribute table stored within SDE. The related SoilAttribute table in SDE contains some of the tabular data which was initially imported into the aforementioned Microsoft Access database.
This digital data release consists of seven national data files of area- and depth-weighted averages of select soil attributes for every available county in the conterminous United States and the District of Columbia as of March 2014. The files are derived from Natural Resources Conservations Service’s (NRCS) Soil Survey Geographic database (SSURGO). The data files can be linked to the raster datasets of soil mapping unit identifiers (MUKEY) available through the NRCS’s Gridded Soil Survey Geographic (gSSURGO) database (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/geo/?cid=nrcs142p2_053628). The associated files, named DRAINAGECLASS, HYDRATING, HYDGRP, HYDRICCONDITION, LAYER, TEXT, and WTDEP are area- and depth-weighted average values for selected soil characteristics from the SSURGO database for the conterminous United States and the District of Columbia. The SSURGO tables were acquired from the NRCS on March 5, 2014. The soil characteristics in the DRAINAGE table are drainage class (DRNCLASS), which identifies the natural drainage conditions of the soil and refers to the frequency and duration of wet periods. The soil characteristics in the HYDRATING table are hydric rating (HYDRATE), a yes/no field that indicates whether or not a map unit component is classified as a "hydric soil". The soil characteristics in the HYDGRP table are the percentages for each hydrologic group per MUKEY. The soil characteristics in the HYDRICCONDITION table are hydric condition (HYDCON), which describes the natural condition of the soil component. The soil characteristics in the LAYER table are available water capacity (AVG_AWC), bulk density (AVG_BD), saturated hydraulic conductivity (AVG_KSAT), vertical saturated hydraulic conductivity (AVG_KV), soil erodibility factor (AVG_KFACT), porosity (AVG_POR), field capacity (AVG_FC), the soil fraction passing a number 4 sieve (AVG_NO4), the soil fraction passing a number 10 sieve (AVG_NO10), the soil fraction passing a number 200 sieve (AVG_NO200), and organic matter (AVG_OM). The soil characteristics in the TEXT table are percent sand, silt, and clay (AVG_SAND, AVG_SILT, and AVG_CLAY). The soil characteristics in the WTDEP table are the annual minimum water table depth (WTDEP_MIN), available water storage in the 0-25 cm soil horizon (AWS025), the minimum water table depth for the months April, May and June (WTDEPAMJ), the available water storage in the first 25 centimeters of the soil horizon (AWS25), the dominant drainage class (DRCLSD), the wettest drainage class (DRCLSWET), and the hydric classification (HYDCLASS), which is an indication of the proportion of the map unit, expressed as a class, that is "hydric", based on the hydric classification of a given MUKEY. (See Entity_Description for more detail). The tables were created with a set of arc macro language (aml) and awk (awk was created at Bell Labsin the 1970s and its name is derived from the first letters of the last names of its authors – Alfred Aho, Peter Weinberger, and Brian Kernighan) scripts. Send an email to mewieczo@usgs.gov to obtain copies of the computer code (See Process_Description.) The methods used are outlined in NRCS's "SSURGO Data Packaging and Use" (NRCS, 2011). The tables can be related or joined to the gSSURGO rasters of MUKEYs by the item 'MUKEY.' Joining or relating the tables to a MUKEY grid allows the creation of grids of area- and depth-weighted soil characteristics. A 90-meter raster of MUKEYs is provided which can be used to produce rasters of soil attributes. More detailed resolution rasters are available through NRCS via the link above.
This data set consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The data set was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined.
Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the whole map unit.
This data set consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1-by 2-degree topographic quadrangle units and merged into a seamless national data set. It is distributed in state/territory and national extents. The soil map units are linked to attributes in the National Soil Information System data base which gives the proportionate extent of the component soils and their properties.
MnGeo adapted the NRCS metadata record to create this record.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset is called the Gridded SSURGO (gSSURGO) Database and is derived from the Soil Survey Geographic (SSURGO) Database. SSURGO is generally the most detailed level of soil geographic data developed by the National Cooperative Soil Survey (NCSS) in accordance with NCSS mapping standards. The tabular data represent the soil attributes, and are derived from properties and characteristics stored in the National Soil Information System (NASIS). The gSSURGO data were prepared by merging traditional SSURGO digital vector map and tabular data into a Conterminous US-wide extent, and adding a Conterminous US-wide gridded map layer derived from the vector, plus a new value added look up (valu) table containing "ready to map" attributes. The gridded map layer is offered in an ArcGIS file geodatabase raster format.
The raster and vector map data have a Conterminous US-wide extent. The raster map data have a 10 meter cell size that approximates the vector polygons in an Albers Equal Area projection. Each cell (and polygon) is linked to a map unit identifier called the map unit key. A unique map unit key is used to link to raster cells and polygons to attribute tables, including the new value added look up (valu) table that contains additional derived data.
The value added look up (valu) table contains attribute data summarized to the map unit level using best practice generalization methods intended to meet the needs of most users. The generalization methods include map unit component weighted averages and percent of the map unit meeting a given criteria.
The Gridded SSURGO dataset was created for use in national, regional, and state-wide resource planning and analysis of soils data. The raster map layer data can be readily combined with other national, regional, and local raster layers, e.g., National Land Cover Database (NLCD), the National Agricultural Statistics Service (NASS) Crop Data Layer, or the National Elevation Dataset (NED).
Web Soil Survey & Geospatial Data GatewayThese requirements include:Provide a way to request data for an adhoc area of interest of any size.Provide a way to obtain data in real-time.Provide a way to request selected tabular and spatial attributes.Provide a way to return tabular and spatial data where the organization of that data doesn't hate to mirror that of the underlying source database.Provide a way to bundle results by request, rather tan by survey area.Click on Submit a custom request for soil tabular data, to input a query to extract data. For help click on:Creating my own custom database queriesIndex to SQL Library - Sample ScriptsUsing Soil Data Access websiteUsing Soil Data Access web services
Data collection, please see Related Identifiers for data sets within this collection.
Overview of all long-term experimental field sites and soils used in the DiControl Project, 1 and 2 phase
Research domain: Plant Cultivation and Agricultural Technology
Research question: At the beginning of the first project phase, the DiControl project selected soils with contrasting soil types at three sites to test the influence of a long-term tillage and fertilisation strategy on the soil microbiome and exudate patterns of lettuce roots grown in them.
For further information see Windisch et al. 2021, frontiers in Microbiology, doi: 10.3389/fmicb.2020.597745 Babin et al. 2021, FEMS, doi: 10.1093/femsec/fiab027 Chowdhury et al. 2019, environmental microbiology, doi:10.1111/1462-2920.14631 Sommermann et al. 2018, Plos one, https://doi.org/10.1371/journal.pone.0195345
Dataset version 1.0
This data set consists of general soil association units. It was developed by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 2006. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The data set was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined. Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the whole map unit. This data set consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1-by 2-degree topographic quadrangle units and merged into a seamless national data set. It is distributed in state/territory and national extents. The soil map units are linked to attributes in the National Soil Information System data base which gives the proportionate extent of the component soils and their properties.Individual Metadata [XML]
This tabular data set contains estimated and measured data on the physical and chemical soil properties, soil interpretations, and static and dynamic metadata. The static tabular metadata documents the underlying data structure, independent of the actual data contained in an export. The static tabular metadata table names are mdstatdomdet, mdstatdommas, mdstatidxdet, mdstatidxmas, mdstatrshipdet, mdstatrshipmas, mdstattabcols, and mdstattabs. The dynamic metadata documents the contents of a particular export. The dynamic metadata table names are distinterpmd, distlegendmd, and distmd. The structure of the static and dynamic metadata tables can be viewed online via the URL listed in the Online_Linkage element above. Most tabular data exist in the database as a range of soil properties, depicting the range for the soil survey area. Data are obtained from a combination of field observations, site descriptions and transects, and laboratory analyses. In making the soil survey, soil scientists observed landforms and landscape features, such as the steepness, length, and shape of slopes; the general pattern of drainage; the kinds of crops and native plants growing on the soils; and the kinds of bedrock. They observed and studied many soil profiles. Samples of some of the soils in the area were collected for laboratory analyses and for engineering tests. Soil boundaries were drawn on the soil maps and a locally tailored tabular data base was constructed, based on those observations and the resulting landscape model the soil scientist developed. These data can be used with their companion field maps. Contact the U.S. Department of Agriculture, Natural Resources Conservation Service State Soil Scientist for additional information.