Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a sample dataset derived from 2010 U.S. Government Census data. It is intended to be used in combination with example analyses on the public dataset "Iowa Liquor Sales", available as a Google Public Dataset, on Kaggle, and at https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy.
This dataset is intended for use as an example. Columns have purposely not been filtered by string manipulation in order to explore joining data between two pandas DataFrames and to do further processing.
Because this data is at the Zip Code Tabulation Area (ZCTA) level, additional processing is required to join it with general-purpose datasets, which may be specified at the zip code, county name, county FIPS code, or coordinate level. This is intentional.
Facebook
TwitterThis dataset contains information on antibody testing for COVID-19: the number of people who received a test, the number of people with positive results, the percentage of people tested who tested positive, and the rate of testing per 100,000 people, stratified by modified ZIP Code Tabulation Area (ZCTA) of residence. Modified ZCTA reflects the first non-missing address within NYC for each person reported with an antibody test result. This unit of geography is similar to ZIP codes but combines census blocks with smaller populations to allow more stable estimates of population size for rate calculation. It can be challenging to map data that are reported by ZIP Code. A ZIP Code doesn’t refer to an area, but rather a collection of points that make up a mail delivery route. Furthermore, there are some buildings that have their own ZIP Code, and some non-residential areas with ZIP Codes. To deal with the challenges of ZIP Codes, the Health Department uses ZCTAs which solidify ZIP codes into units of area. Often, data reported by ZIP code are actually mapped by ZCTA. The ZCTA geography was developed by the U.S. Census Bureau. These data can also be accessed here: https://github.com/nychealth/coronavirus-data/blob/master/totals/antibody-by-modzcta.csv Exposure to COVID-19 can be detected by measuring antibodies to the disease in a person’s blood, which can indicate that a person may have had an immune response to the virus. Antibodies are proteins produced by the body’s immune system that can be found in the blood. People can test positive for antibodies after they have been exposed, sometimes when they no longer test positive for the virus itself. It is important to note that the science around COVID-19 antibody tests is evolving rapidly and there is still much uncertainty about what individual antibody test results mean for a single person and what population-level antibody test results mean for understanding the epidemiology of COVID-19 at a population level.
These data only provide information on people tested. People receiving an antibody test do not reflect all people in New York City; therefore, these data may not reflect antibody prevalence among all New Yorkers. Increasing instances of screening programs further impact the generalizability of these data, as screening programs influence who and how many people are tested over time. Examples of screening programs in NYC include: employers screening their workers (e.g., hospitals), and long-term care facilities screening their residents.
In addition, there may be potential biases toward people receiving an antibody test who have a positive result because people who were previously ill are preferentially seeking testing, in addition to the testing of persons with higher exposure (e.g., health care workers, first responders)
Rates were calculated using interpolated intercensal population estimates updated in 2019. These rates differ from previously reported rates based on the 2000 Census or previous versions of population estimates. The Health Department produced these population estimates based on estimates from the U.S. Census Bureau and NYC Department of City Planning.
Antibody tests are categorized based on the date of specimen collection and are aggregated by full weeks starting each Sunday and ending on Saturday. For example, a person whose blood was collected for antibody testing on Wednesday, May 6 would be categorized as tested during the week ending May 9. A person tested twice in one week would only be counted once in that week. This dataset includes testing data beginning April 5, 2020.
Data are updated daily, and the dataset preserves historical records and source data changes, so each extract date reflects the current copy of the data as of that date. For example, an extract date of 11/04/2020 and extract date of 11/03/2020 will both contain all records as they were as of that extract date. Without filtering or grouping by extract date, an analysis will almost certainly be miscalculating or counting the same values multiple times. To analyze the most current data, only use the latest extract date. Antibody tests that are missing dates are not included in the dataset; as dates are identified, these events are added. Lags between occurrence and report of cases and tests can be assessed by comparing counts and rates across multiple data extract dates.
For further details, visit:
• https://www1.nyc.gov/site/doh/covid/covid-19-data.page
• https://github.com/nychealth/coronavirus-data
• https://data.cityofnewyork.us/Health/Modified-Zip-Code-Tabulation-Areas-MODZCTA-/pri4-ifjk
Facebook
Twitter[doc] formats - tsv - 1
This dataset contains one tsv file at the root:
data.tsv
kind sound dog woof cat meow pokemon pika human hello
size_categories:
The delimiter is automatically set to "\t" (tabulation) because of the .tsv extension of the data file.
Facebook
TwitterUS Census Bureau ZIP Code Tabulation Areas (ZCTAs) found within or partially within the borders of the City of Detroit. ZCTAs are a geographic product of the U.S. Census Bureau created to allow mapping, display, and geographic analyses of the United States Postal Service (USPS) Zone Improvement Plan (ZIP) Codes dataset. They are areal representations of ZIP Codes, and not all ZIP Codes are represented by ZCTAs (for example, ZIP Codes associated with PO Boxes). For a list of all ZIP Codes within or partially within the borders of the City of Detroit, please refer to our City of Detroit USPS Zone Improvement Plan (ZIP) Codes dataset.More information on ZCTAs, and how they differ from ZIP Codes, can be found on the US Census Bureau's website.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms
These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
2024 Primary & General Elections VTDs Voting Tabulation Districts (VTDs), the census geographic equivalent of county election precincts, are created for the purpose of relating 2020 Census population data to election precinct data. VTDs can differ from actual election precincts because precincts do not always follow census geography. The VTDs currently included in the redistricting database closely correspond to the precincts in effect for the 2024 primary and general elections. On the occasion that a precinct is in two noncontiguous pieces, it is a suffixed VTD in the database. For example, if precinct 0001 had two non-contiguous areas, the corresponding VTD would be VTD 0001A and VTD 0001B. If an election precinct does not match any census geography, it is consolidated with an adjacent precinct and given that precinct's corresponding VTD number. There are 9,712 VTDs in the 2024 primary & general elections VTDs shapefile. GIS users can join the council's redistricting election datasets to the 2024 primary & general elections VTDs shapefile in this directory. Use the common field name 'VTDKEY' to join the data. GIS users can join 2020 Census population data (VTDs_24PG_Pop.zip) to the 2024 primary & general elections VTDs shapefile in this directory. Use the common field name 'VTDKEY' to join the data. The VTDs shapefile (.shp) is in a compressed file (.zip) format: VTDs_24PG.zip - 2024 Primary & General Elections VTDs CNTY (num) - County FIPS Census code COLOR (num) - Color assignment for symbology VTD (txt) - VTD name (2024 general election) CNTYKEY (num) - Unique code used to join to geographic data VTDKEY (num) - Unique code used to join to geographic data CNTYVTD (txt) - Unique code used to join geographic data (CNTYKEY + VTD) The population data file contains the 2020 Census population by VTD as comma-separated values: VTDs_24PG_Pop.zip (.txt file in compressed format) - 2024 primary & general elections VTD, 2020 Census population CountyFIPS (txt) - County FIPS Census Code County (txt) - County name CNTY (num) - County FIPS Census Code VTD (txt) - VTD name (2024 general election) CNTYVTD (txt) - Unique code used to join geographic data (CNTY + VTD) VTDKEY (num) - Unique code used to join to geographic data total (num) - Total Population
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census ZIP Code Tabulation Areas This feature layer, utilizing National Geospatial Data Asset (NGDA) data from the U.S. Census Bureau (USCB), displays ZIP Code Tabulation Areas in the United States. Per the USCB, “ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery.” Tabulation Area: 90210 Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (ZIP Code Tabulation Areas) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 58 (Series Information for 2020 Census 5-Digit ZIP Code Tabulation Area (ZCTA5) National TIGER/Line Shapefiles, Current)OGC API Features Link: (Census ZIP Code Tabulation Areas - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information, please visit: ZIP Code Tabulation Areas (ZCTAs)For feedback please contact: Esri_US_Federal_Data@esri.comThumbnail source: Esri BasemapsNGDA Data Set This data set is part of the NGDA Governmental Units, and Administrative and Statistical Boundaries Theme Community. Per the Federal Geospatial Data Committee (FGDC), this theme is defined as the “boundaries that delineate geographic areas for uses such as governance and the general provision of services (e.g., states, American Indian reservations, counties, cities, towns, etc.), administration and/or for a specific purpose (e.g., congressional districts, school districts, fire districts, Alaska Native Regional Corporations, etc.), and/or provision of statistical data (census tracts, census blocks, metropolitan and micropolitan statistical areas, etc.). Boundaries for these various types of geographic areas are either defined through a documented legal description or through criteria and guidelines. Other boundaries may include international limits, those of federal land ownership, the extent of administrative regions for various federal agencies, as well as the jurisdictional offshore limits of U.S. sovereignty. Boundaries associated solely with natural resources and/or cultural entities are excluded from this theme and are included in the appropriate subject themes.” For other NGDA Content: Esri Federal Datasets
Facebook
TwitterA. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents. On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021. Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset. Dataset is cumulative and covers cases going back to 3/2/2020 when testing began. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000 Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website. Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongo
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a sample dataset derived from 2010 U.S. Government Census data. It is intended to be used in combination with example analyses on the public dataset "Iowa Liquor Sales", available as a Google Public Dataset, on Kaggle, and at https://data.iowa.gov/Sales-Distribution/Iowa-Liquor-Sales/m3tr-qhgy.
This dataset is intended for use as an example. Columns have purposely not been filtered by string manipulation in order to explore joining data between two pandas DataFrames and to do further processing.
Because this data is at the Zip Code Tabulation Area (ZCTA) level, additional processing is required to join it with general-purpose datasets, which may be specified at the zip code, county name, county FIPS code, or coordinate level. This is intentional.