100+ datasets found
  1. Sales data based on demographics

    • kaggle.com
    zip
    Updated Jan 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Sales data based on demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographical-shopping-purchases-data
    Explore at:
    zip(1541029 bytes)Available download formats
    Dataset updated
    Jan 12, 2023
    Authors
    The Devastator
    Description

    Demographical Shopping Purchases Data

    Analyzing customer purchasing patterns and preferences

    By Joseph Nowicki [source]

    About this dataset

    This dataset contains demographic information about customers who have made purchases in a store, including their name, IP address, region, age, items purchased, and total amount spent. Furthermore, this data can provide insights into customer shopping behaviour for the store in question - from their geographical information to the types of products they purchase. With detailed demographic data like this at hand it is possible to make strategic decisions regarding target customers as well as developing specific marketing campaigns or promotions tailored to meet their needs and interests. By gaining deeper understanding of customer habits through this dataset we unlock more possibilities for businesses seeking higher engagement levels with shoppers

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset includes information such as customer's names, IP address, age, items purchased and amount spent. This data can be used to uncover patterns in spending behavior of shoppers from different areas or regions across demographics like age group or gender.

    Research Ideas

    • Analyze customer shopping trends based on age and region to maximize targetted advertising.
    • Analyze the correlation between customer spending habits based on store versus online behavior.
    • Use IP addresses to track geographical trends in items purchased from a particular online store to identify new markets for targeted expansion

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    See the dataset description for more information.

    Columns

    File: Demographic_Data_Orig.csv | Column name | Description | |:---------------|:------------------------------------------------------------------------------------------------| | full.name | The full name of the customer. (String) | | ip.address | The IP address of the customer. (String) | | region | The region of residence of the customer. (String) | | in.store | A boolean value indicating whether the customer made the purchase in-store or online. (Boolean) | | age | The age of the customer. (Integer) | | items | The number of items purchased by the customer. (Integer) | | amount | The total amount spent by the customer. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Joseph Nowicki.

  2. d

    Demografy's Consumer Demographics Prediction SaaS

    • datarade.ai
    .json, .csv
    Updated Jun 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Demografy (2021). Demografy's Consumer Demographics Prediction SaaS [Dataset]. https://datarade.ai/data-products/demografy-s-consumer-demographics-prediction-saas-demografy
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jun 4, 2021
    Dataset authored and provided by
    Demografy
    Area covered
    Moldova (Republic of), Sweden, Finland, Croatia, Luxembourg, Poland, Denmark, Monaco, Czech Republic, Italy
    Description

    Demografy is a privacy by design customer demographics prediction AI platform.

    Core features: - Demographic segmentation - Demographic analytics - API integration - Data export

    Key advantages: - 100% coverage of lists - Accuracy estimate before purchase - GDPR-compliance as no sensitive data is required. Demografy can work with only first names or masked last names

    Use cases: - Actionable analytics about your customers to get demographic insights - Appending missing demographic data to your records for customer segmentation and targeted marketing campaigns - Enhanced personalization knowing you customer better

    Unlike traditional solutions, you don’t need to know and disclose your customer or prospect addresses, emails or other sensitive information. You can provide even masked last names keeping personal data in-house. This makes Demografy privacy by design and enables you to get 100% coverage of your audience since all you need to know is names.

  3. KPMG Customer Demography Cleaned Dataset

    • kaggle.com
    zip
    Updated Sep 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarishEdison (2022). KPMG Customer Demography Cleaned Dataset [Dataset]. https://www.kaggle.com/datasets/harishedison/kpmg-customer-demography-cleaned-dataset
    Explore at:
    zip(140162 bytes)Available download formats
    Dataset updated
    Sep 25, 2022
    Authors
    HarishEdison
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    This dataset was sourced from KPMG AU's Data Analytics virtual internship course on Forage

    Sprocket Pvt Ltd is a client of KPMG AU. Sprocket is a bike and bike accessories retail business. They need to find the right customer segment to target for marketing to boost revenue. The following dataset is of their customer demographics for the past 3 years.

    The original dataset of 3 separate sheets of Customer demographic, Transactions, and Customer Addresses was fully cleaned and merged using a power query. Data types of columns were changed, and values of certain columns which had illegal values were corrected using a standard approach. This final master dataset can be used for customer segmentation projects using clustering methods.

  4. Consumer characteristics used by marketers in targeting worldwide 2021

    • statista.com
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Consumer characteristics used by marketers in targeting worldwide 2021 [Dataset]. https://www.statista.com/statistics/1345085/consumer-characteristics-define-target-segments/
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2021
    Area covered
    Worldwide
    Description

    During a survey carried out in November 2021 among marketers from ** countries worldwide, ** percent stated their organizations used past purchases to define target consumer segments. Consumer demographics, such as age, gender, income, or location, were used most often, named by ** percent of respondents.

  5. Customer Segmentation for Targeted Campaigns

    • kaggle.com
    zip
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mani Devesh (2024). Customer Segmentation for Targeted Campaigns [Dataset]. https://www.kaggle.com/datasets/manidevesh/customer-sales-data
    Explore at:
    zip(914292 bytes)Available download formats
    Dataset updated
    May 21, 2024
    Authors
    Mani Devesh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Project Overview: Customer Segmentation Using K-Means Clustering

    Introduction In this project, I analysed customer data from a retail store to identify distinct customer segments. The dataset includes key attributes such as age, city, and total sales of the customers. By leveraging K-Means clustering, an unsupervised machine learning technique, I aim to group customers based on their age and sales metrics. These insights will enable the creation of targeted marketing campaigns tailored to the specific needs and behaviours of each customer segment.

    Objectives - Cluster Customers: Use K-Means clustering to group customers based on age and total sales. - Analyse Segments: Examine the characteristics of each customer segment. - Targeted Marketing: Develop strategies for personalized marketing campaigns targeting each identified customer group.

    Data Description The dataset comprises:

    • Age: The age of the customers.
    • City: The city where the customers reside.
    • Total Sales: The total sales generated by each customer.

    Methodology - Data Preprocessing: Clean and preprocess the data to handle any missing or inconsistent entries. - Feature Selection: Focus on age and total sales as primary features for clustering. - K-Means Clustering: Apply the K-Means algorithm to identify distinct customer segments. - Cluster Analysis: Analyse the resulting clusters to understand the demographic and sales characteristics of each group. - Marketing Strategy Development: Create targeted marketing strategies for each customer segment to enhance engagement and sales.

    Expected Outcomes - Customer Segments: Clear identification of customer groups based on age and purchasing behaviour. - Insights for Marketing: Detailed understanding of each segment to inform targeted marketing efforts. - Business Impact: Enhanced ability to tailor marketing campaigns, potentially leading to increased customer satisfaction and sales.

    By clustering customers based on age and total sales, this project aims to provide actionable insights for personalized marketing, ultimately driving better customer engagement and higher sales for the retail store.

  6. Consumer Marketing Data API | Tailored Consumer Insights | Target with...

    • datarade.ai
    Updated Oct 27, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai (2021). Consumer Marketing Data API | Tailored Consumer Insights | Target with Precision | Best Price Guarantee [Dataset]. https://datarade.ai/data-products/consumer-marketing-data-api-tailored-consumer-insights-ta-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Oct 27, 2021
    Dataset provided by
    Area covered
    Estonia, Vanuatu, Sweden, Hong Kong, Senegal, United Arab Emirates, Turkey, Philippines, Madagascar, Burundi
    Description

    Success.ai’s Consumer Marketing Data API empowers your marketing, analytics, and product teams with on-demand access to a vast and continuously updated dataset of consumer insights. Covering detailed demographics, behavioral patterns, and purchasing histories, this API enables you to go beyond generic outreach and craft tailored campaigns that truly resonate with your target audiences.

    With AI-validated accuracy and support for precise filtering, the Consumer Marketing Data API ensures you’re always equipped with the most relevant data. Backed by our Best Price Guarantee, this solution is essential for refining your strategies, improving conversion rates, and driving sustainable growth in today’s competitive consumer landscape.

    Why Choose Success.ai’s Consumer Marketing Data API?

    1. Tailored Consumer Insights for Precision Targeting

      • Access verified demographic, behavioral, and purchasing data to understand what consumers truly value.
      • AI-driven validation ensures 99% accuracy, minimizing wasted spend and improving engagement outcomes.
    2. Comprehensive Global Reach

      • Includes consumer profiles from diverse regions and markets, enabling you to scale campaigns and discover emerging opportunities.
      • Adapt swiftly to new markets, product launches, and shifting consumer preferences with real-time data at your fingertips.
    3. Continuously Updated and Real-Time Data

      • Receive ongoing updates that reflect evolving consumer behaviors, interests, and market trends.
      • Respond quickly to seasonal changes, competitor moves, and industry disruptions, ensuring your campaigns remain timely and relevant.
    4. Ethical and Compliant

      • Fully adheres to GDPR, CCPA, and other global data privacy regulations, guaranteeing responsible and lawful data usage.

    Data Highlights:

    • Detailed Demographics: Age, gender, location, and income levels to refine targeting and messaging.
    • Behavioral Insights: Interests, browsing patterns, and content consumption habits to anticipate consumer needs.
    • Purchasing History: Understand consumer spending, brand loyalty, and product preferences to tailor promotions effectively.
    • Real-Time Updates: Keep pace with evolving consumer tastes, ensuring your strategies remain forward-focused and competitive.

    Key Features of the Consumer Marketing Data API:

    1. Granular Targeting and Segmentation

      • Query the API to segment consumers by demographics, interests, past purchases, or engagement patterns.
      • Focus campaigns on the most receptive audiences, enhancing conversion rates and ROI.
    2. Flexible and Seamless Integration

      • Easily integrate the API into CRM systems, marketing automation tools, or analytics platforms.
      • Streamline workflows and eliminate manual data imports, freeing resources for strategic initiatives.
    3. Continuous Data Enrichment

      • Refresh consumer profiles with the latest data, ensuring every decision is backed by current insights.
      • Reduce data decay and maintain top-notch data hygiene to maximize long-term marketing effectiveness.
    4. AI-Driven Validation

      • Rely on advanced AI validation techniques to guarantee high-quality data accuracy and reliability.
      • Increase confidence in your campaigns and decrease budget wasted on irrelevant targets.

    Strategic Use Cases:

    1. Highly Personalized Marketing Campaigns

      • Deliver tailored offers, recommendations, and content that align with individual consumer preferences.
      • Boost engagement and loyalty by making every touchpoint relevant and meaningful.
    2. Market Expansion and Product Launches

      • Identify segments most receptive to new products or services, ensuring successful market entry.
      • Stay ahead of consumer demands, evolving your product line and marketing mix to meet changing preferences.
    3. Competitive Analysis and Trend Forecasting

      • Leverage consumer insights to anticipate emerging trends and outpace competitors in capturing new markets.
      • Adjust marketing strategies proactively to capitalize on seasonal, cultural, or economic shifts.
    4. Customer Retention and Loyalty Programs

      • Use historical purchase and engagement data to identify at-risk customers and implement retention strategies.
      • Cultivate brand advocates by delivering personalized offers and exclusive perks to loyal consumers.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality consumer marketing data at unmatched prices, ensuring maximum ROI for your outreach efforts.
    2. Seamless Integration

      • Easily incorporate the API into existing workflows, eliminating data silos and manual data management.
    3. Data Accuracy with AI Validation

      • Depend on 99% accuracy to guide data-driven decisions, refine targeting, and elevate your marketing initiatives.
    4. Customizable and Scalable Solutions

      • Tailor datasets to focus on specific demog...
  7. w

    Global Kroger Customer Market Research Report: By Customer Demographics (Age...

    • wiseguyreports.com
    Updated Oct 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Kroger Customer Market Research Report: By Customer Demographics (Age Group, Income Level, Family Size, Gender), By Shopping Behavior (Frequency of Shopping, Preferred Shopping Channel, Product Purchase Patterns), By Product Preferences (Organic Products, Discounted Items, Brand Loyalty, Private Label Purchases), By Technology Adoption (Online Shopping, Mobile App Usage, Social Media Engagement) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/kroger-customer-market
    Explore at:
    Dataset updated
    Oct 12, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202424.6(USD Billion)
    MARKET SIZE 202525.4(USD Billion)
    MARKET SIZE 203535.0(USD Billion)
    SEGMENTS COVEREDCustomer Demographics, Shopping Behavior, Product Preferences, Technology Adoption, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSconsumer preferences shift, competitive pricing strategies, technological integration, sustainability focus, e-commerce growth
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDMetro AG, Costco Wholesale, Walmart, Target, Whole Foods Market, Trader Joe's, Aldi, Tesco, Amazon, Lidl, Ahold Delhaize, Safeway
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESE-commerce expansion for grocery delivery, Health and wellness product lines, Sustainable packaging initiatives, Personalized shopping experiences, Loyalty program enhancements
    COMPOUND ANNUAL GROWTH RATE (CAGR) 3.2% (2025 - 2035)
  8. Customer Transactions and Demographics

    • kaggle.com
    zip
    Updated Apr 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lalith Thomala (2024). Customer Transactions and Demographics [Dataset]. https://www.kaggle.com/datasets/laleeth/customer-transactions-and-demographics
    Explore at:
    zip(589789 bytes)Available download formats
    Dataset updated
    Apr 20, 2024
    Authors
    Lalith Thomala
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Column Descriptors:

    customer_id: Unique identifier for each customer. customer_name: Name of the customer with potential metacharacters in 10% of names. product_category: Category of the purchased product (electronics, clothing, books, appliances). purchase_amount: Amount spent on the purchase. delivery_status: Status of the delivery (delivered, pending, shipped, cancelled). payment_status: Status of the payment (completed, pending, cancelled). customer_age: Age of the customer. customer_gender: Gender of the customer (Male, Female). product_rating: Rating of the purchased product (1 to 5). shipping_region: Region for shipping (North, South, East, West). loyalty_status: Loyalty status of the customer (Silver, Gold, Platinum). country: Country of the customer.

  9. Target Corporation retail market share in the U.S. 2012-2013

    • statista.com
    Updated Jun 23, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2014). Target Corporation retail market share in the U.S. 2012-2013 [Dataset]. https://www.statista.com/statistics/309261/target-corporation-retail-market-share-in-the-us/
    Explore at:
    Dataset updated
    Jun 23, 2014
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the retail sales market share of Target Corporation in the United States in 2012 and 2013. In 2013, Target held a market share of over *** percent in the United States.

  10. Metaverse target audiences according to companies worldwide 2022

    • statista.com
    Updated Apr 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Metaverse target audiences according to companies worldwide 2022 [Dataset]. https://www.statista.com/statistics/1302175/metaverse-business-target-audience-persona-global/
    Explore at:
    Dataset updated
    Apr 1, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 24, 2022 - Mar 1, 2022
    Area covered
    Worldwide
    Description

    According to a March 2022 survey of companies from selected countries that have already invested in the metaverse, most of the responding businesses saw big companies, men, and Gen Z as the target audience for their metaverse activities. In total, **** percent of respondents stated that men were a metaverse target audience, compared to only *** percent who stated the same about women. Additionally, big businesses were approximately * times more attractive than SMBs.

  11. Sales Data for Customer Segmentation

    • kaggle.com
    zip
    Updated Oct 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shazia Parween (2024). Sales Data for Customer Segmentation [Dataset]. https://www.kaggle.com/datasets/shaziaparween/sales-data-for-customer-segmentation
    Explore at:
    zip(64499 bytes)Available download formats
    Dataset updated
    Oct 19, 2024
    Authors
    Shazia Parween
    Description

    Context and Objective:

    This dataset is developed as part of a business analysis project aimed at exploring sales performance and customer demographics. It is inspired by real-world scenarios where companies strive to enhance their marketing strategies by understanding consumer behavior. The project focuses on the year 2023 and provides insights into how targeted marketing impacts sales while emphasizing demographic characteristics such as age and gender.

    Source:

    The dataset is synthetically generated, designed to simulate real-world sales scenarios for 20 products. It includes data points that mirror industry practices, ensuring a realistic and comprehensive foundation for analysis. The structure and data content are informed by common business intelligence practices and hypothetical yet plausible marketing scenarios.

    Inspiration:

    This dataset is inspired by the challenges businesses face in balancing targeted and broad marketing strategies. Companies frequently debate whether niche marketing for specific demographics or campaigns targeting a wider audience yields better outcomes. The dataset serves as a sandbox for exploring these questions, combining data analytics, visualization, and storytelling to drive actionable business insights.

    Key Features:

    Sales Data: Includes monthly sales records for 20 products, categorized by revenue, units sold, and discounts applied.

    Demographic Information: Covers customer age, gender, and location to enable segmentation and trend analysis.

    Applications:

    Business Insights: Explore product popularity trends across different demographic groups. Revenue Analysis: Understand revenue patterns throughout 2023 and their correlation with customer age and gender.

    Marketing Strategy Optimization: Evaluate the effectiveness of targeted vs. broad campaigns, particularly those targeting specific gender or age groups.

    Visualization and Storytelling: Build dashboards and presentations to communicate insights effectively. This dataset is ideal for analysts and students seeking hands-on experience in SQL, exploratory data analysis, and visualization tools like Power BI. It bridges the gap between data science and practical business decision-making.

  12. I

    Global Silver Target Market Growth Drivers and Challenges 2025-2032

    • statsndata.org
    excel, pdf
    Updated Oct 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Silver Target Market Growth Drivers and Challenges 2025-2032 [Dataset]. https://www.statsndata.org/report/silver-target-market-47242
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Oct 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Silver Target market, which primarily focuses on the demographic of older adults aged 50 and above, represents a significant and growing segment of the consumer landscape. As the global population ages, this market has gained traction, driven by an increasing life expectancy and a rising number of baby boomers e

  13. Customer Segmentation

    • kaggle.com
    zip
    Updated Feb 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESTHER KANYI (2024). Customer Segmentation [Dataset]. https://www.kaggle.com/datasets/kanyianalyst/customer-age-group-segmentation
    Explore at:
    zip(1120429 bytes)Available download formats
    Dataset updated
    Feb 10, 2024
    Authors
    ESTHER KANYI
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    In marketing and selling products or services, it is essential to put in mind that different customers have different preferences, needs, and behaviors, and it's crucial to understand these differences to effectively reach and engage with them. One powerful way to do this is by segmenting customers by age. By doing so, you can tailor your marketing strategies to better resonate with each group and ultimately drive more sales and customer loyalty. This dataset is intended for analysis to identify the effects of different Age Group on revenue and profit

    Acknowledgements

    https://skillsforall.com/

  14. U.S. pet store revenue distribution by age group 2023

    • statista.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). U.S. pet store revenue distribution by age group 2023 [Dataset]. https://www.statista.com/statistics/254111/pet-store-market-segmentation-in-the-us-by-target-group/
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    As of March 2023, shoppers aged between 25 and 44 accounted for the majority of pet store revenue with a 37.2 percent share, thus making them the largest target market in the United States (U.S.). Those aged between 45 and 64 made up the second largest market by a very tight margin, providing 37.1 percent of pet store revenue in the same year. Pet stores in the U.S. There are 18,323 pet store establishments in the U.S. and California is the state with the largest number of pet stores, with 2,120 establishments. Florida closely follows, with 1,606 pet stores. The leading pet store company in the U.S. is the retail chain PetSmart Inc., with a market share of almost one-quarter. PetSmart Inc. and its main competitor, PETCO Animal Supplies, have a total market share of close to 40 percent. Pet stores in the U.S. generate revenue of almost 22 billion U.S. dollars annually. Online purchase of pet food and supplies in the U.S. The sales value of pet food in the U.S. amounts to almost 52 billion U.S. dollars. The store-based retailing channel generates close to 34 billion U.S. dollars of the total sales value, as compared to the e-commerce sale, with approximately 18 billion U.S. dollars. The website chewy.com is the leading online store in the pet supplies segment in the U.S. by a large margin. Chewy's generates over 11.1 billion U.S. dollars in net sales, offering various foods and supplies. However, for the online purchase of pet products in the U.S., the websites of Amazon and Walmart are the main destinations.

  15. Customer Segmentation & Clustering (Python)

    • kaggle.com
    zip
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sinderpreet (2024). Customer Segmentation & Clustering (Python) [Dataset]. https://www.kaggle.com/datasets/sinderpreet/customer-segmentation-and-clustering-python
    Explore at:
    zip(1583 bytes)Available download formats
    Dataset updated
    Apr 4, 2024
    Authors
    sinderpreet
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Mall Shoppers Customer Segmentation Dataset

    Overview:

    The Mall Shoppers Customer Segmentation Dataset is a rich collection of data designed to provide insights into the shopping behaviors and demographic profiles of customers visiting a mall. This dataset is pivotal for businesses aiming to tailor their marketing strategies, improve customer engagement, and enhance the shopping experience through targeted offers and services.

    Content:

    The dataset includes information on several hundred mall visitors, encompassing a variety of features such as:

    • Customer ID: A unique identifier for each customer.
    • Age: The age of the customer.
    • Gender: The gender of the customer.
    • Annual Income (k$): The annual income of the customer, expressed in thousands of dollars.
    • Spending Score (1-100): A score assigned to the customer based on their spending behavior and purchasing data. A higher score indicates higher spending.

    Purpose:

    The primary purpose of this dataset is to enable the identification of distinct customer segments within the mall's clientele. By analyzing patterns in age, income, spending score, and gender, businesses can uncover valuable insights into customer preferences and behaviors. This, in turn, allows for the development of targeted marketing strategies, personalized shopping experiences, and improved product offerings to meet the diverse needs of each customer segment.

    Applications:

    This dataset is an excellent resource for: - Customer Segmentation: Utilizing clustering techniques to categorize customers into meaningful groups based on their features. - Targeted Marketing: Crafting personalized marketing campaigns aimed at specific customer segments to increase engagement and sales. - Market Analysis: Understanding the demographic makeup and spending habits of mall visitors to inform business decisions and strategies. - Personalization: Enhancing the customer experience through personalized services, recommendations, and offers.

    Conclusion:

    The Mall Shoppers Customer Segmentation Dataset offers a foundational step towards a deeper understanding of customer dynamics in a retail environment. It serves as a valuable asset for retailers, marketers, and business analysts seeking to leverage data-driven insights for strategic advantage.

  16. d

    Demographic Data | Asia & MENA | Make Informed Business Decisions with High...

    • datarade.ai
    .json, .csv
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GapMaps (2024). Demographic Data | Asia & MENA | Make Informed Business Decisions with High Quality and Granular Insights [Dataset]. https://datarade.ai/data-products/gapmaps-premium-demographics-data-asia-mena-accurate-and-gapmaps
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 2, 2024
    Dataset authored and provided by
    GapMaps
    Area covered
    Malaysia, Philippines, Saudi Arabia, Indonesia, India, Singapore
    Description

    Sourcing accurate and up-to-date demographic data across Asia and MENA has historically been difficult for retail brands looking to expand their store networks in these regions. Either the data does not exist or it isn't readily accessible or updated regularly.

    GapMaps uses known population data combined with billions of mobile device location points to provide highly accurate and globally consistent demographic datasets across Asia and MENA at 150m x 150m grid levels in major cities and 1km grids outside of major cities.

    With this information, brands can get a detailed understanding of who lives in a catchment, where they work and their spending potential which allows you to:

    • Better understand your customers
    • Identify optimal locations to expand your retail footprint
    • Define sales territories for franchisees
    • Run targeted marketing campaigns.

    Premium demographics data for Asia and MENA includes the latest estimates (updated annually) on:

    1. Population (how many people live in your local catchment)
    2. Demographics (who lives within your local catchment)
    3. Worker population (how many people work within your local catchment)
    4. Consuming Class and Premium Consuming Class (who can can afford to buy goods & services beyond their basic needs and /or shop at premium retailers)
    5. Retail Spending (Food & Beverage, Grocery, Apparel, Other). How much are consumers spending on retail goods and services by category.

    Primary Use Cases for GapMaps Demographic Data:

    1. Retail (eg. Fast Food/ QSR, Cafe, Fitness, Supermarket/Grocery)
    2. Customer Profiling: get a detailed understanding of the demographic profile of your customers, where they work and their spending potential
    3. Analyse your trade areas at a granular 150m x 150m grid levels using all the key metrics
    4. Site Selection: Identify optimal locations for future expansion and benchmark performance across existing locations.
    5. Target Marketing: Develop effective marketing strategies to acquire more customers.
    6. Integrate GapMaps demographic data with your existing GIS or BI platform to generate powerful visualizations.

    7. Commercial Real-Estate (Brokers, Developers, Investors, Single & Multi-tenant O/O)

    8. Tenant Recruitment

    9. Target Marketing

    10. Market Potential / Gap Analysis

    11. Marketing / Advertising (Billboards/OOH, Marketing Agencies, Indoor Screens)

    12. Customer Profiling

    13. Target Marketing

    14. Market Share Analysis

  17. w

    Global Consumer Segmentation Model Market Research Report: By Segmentation...

    • wiseguyreports.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Consumer Segmentation Model Market Research Report: By Segmentation Type (Demographic Segmentation, Behavioral Segmentation, Psychographic Segmentation, Geographic Segmentation), By Demographic Factors (Age, Gender, Income Level, Education Level), By Behavioral Factors (Purchase Behavior, Brand Loyalty, User Status, Usage Rate), By Psychographic Factors (Lifestyle, Values, Personality Traits, Attitudes), By Geographic Factors (Country, Region Type, Population Density) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/consumer-segmentation-model-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.51(USD Billion)
    MARKET SIZE 20252.69(USD Billion)
    MARKET SIZE 20355.2(USD Billion)
    SEGMENTS COVEREDSegmentation Type, Demographic Factors, Behavioral Factors, Psychographic Factors, Geographic Factors, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSincreasing data complexity, demand for personalization, advancements in AI algorithms, growing e-commerce adoption, rising need for targeted marketing
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDMarketLogic, Rystad Energy, CustomerThink, EVOLV.ai, Qualtrics, GfK, Accenture, Ipsos, Foresight Factory, Mintel, McKinsey & Company, Kantar, Deloitte, Nielsen, Zendesk
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESAI-driven segmentation tools, Increased demand for personalized marketing, Rising focus on customer experience, Adoption of big data analytics, Growth of e-commerce platforms
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.9% (2025 - 2035)
  18. Customer segmentation Db

    • kaggle.com
    zip
    Updated Nov 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mouncef Ikhoubi (2025). Customer segmentation Db [Dataset]. https://www.kaggle.com/datasets/mouncefikhoubi/customer-segmentation-db/code
    Explore at:
    zip(11336 bytes)Available download formats
    Dataset updated
    Nov 2, 2025
    Authors
    Mouncef Ikhoubi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This simulated customer dataset provides a practical foundation for performing segmentation analysis and identifying distinct customer groups. The dataset encompasses a blend of demographic and behavioral information, equipping users with the necessary data to develop targeted marketing strategies, personalize customer experiences, and ultimately drive sales growth.

    Dataset Schema: Customer Demographics and Behavior

    This dataset is structured to provide a comprehensive view of each customer, combining demographic information with detailed purchasing behavior. The columns included are:

    • id: A unique identifier assigned to each customer.
    • age: The customer's age in years.
    • gender: The gender of the customer (e.g., Male, Female).
    • income: The customer's annual income, denominated in USD.
    • spending_score: A score ranging from 1 to 100 that reflects a customer's spending habits and loyalty.
    • membership_years: The total number of years the customer has held a membership.
    • purchase_frequency: The total number of purchases the customer has made in the last 12 months.
    • preferred_category: The shopping category most frequently chosen by the customer (e.g., Electronics, Clothing, Groceries, Home & Garden, Sports).
    • last_purchase_amount: The monetary value (in USD) of the customer's most recent transaction.

    Potential Applications and Use Cases

    The insights derived from this dataset can be applied to several key business areas:

    • Customer Segmentation: Group customers into distinct segments by analyzing their demographic and behavioral data to better understand the composition of your customer base.
    • Targeted Marketing: Craft and execute bespoke marketing campaigns tailored to the specific characteristics and preferences of each customer segment.
    • Customer Loyalty Programs: Develop and implement loyalty initiatives that are designed to reward desirable spending behaviors and align with customer preferences.
    • Sales Analysis: Examine sales data to identify purchasing patterns, understand trends, and forecast future sales performance.
  19. E

    Global Resolution Test Target Market Growth Drivers and Challenges 2025-2032...

    • statsndata.org
    excel, pdf
    Updated Nov 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Resolution Test Target Market Growth Drivers and Challenges 2025-2032 [Dataset]. https://www.statsndata.org/report/resolution-test-target-market-857
    Explore at:
    excel, pdfAvailable download formats
    Dataset updated
    Nov 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Resolution Test Target market is a specialized segment within the imaging and diagnostic industry, focusing on tools and methodologies that assess and optimize image resolution in various applications, including medical imaging, aerospace, and security systems. These test targets play a crucial role in ensuring

  20. Miso Market by Product and Geography - Forecast and Analysis 2021-2025

    • technavio.com
    pdf
    Updated Dec 18, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2020). Miso Market by Product and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/miso-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2020 - 2025
    Description

    Snapshot img

    The miso market size will grow up to USD 64.59 mn at a CAGR of 4% during 2021-2025.

    This miso market analysis report entails exhaustive statistical qualitative and quantitative data on Product (white miso, yellow miso, and red miso) and Geography (APAC, North America, Europe, South America, and MEA) and their contribution to the target market. View our sample report to gather market insights on the segmentations. Furthermore, with the latest key findings on the post COVID-19 impact on the market, available in this report, you can create successful business strategies to generate new sales opportunities.

    What will the Miso Market Size be in 2021?

    Browse TOC and LoE with selected illustrations and example pages of Miso Market

    Get Your FREE Sample Now!

    Miso Market: Key Drivers and Trends

    According to our research output, there has been a positive impact on the market growth post COVID-19 era. Key drivers such as the increasing soy production are notably supporting the miso market growth. On the other hand, factors such as product contamination have been identified as market challenges that limit the growth of market vendors. This report offers detailed insights on the challenges to stay prepared for the obstacles in the future, which will help companies analyze and develop growth strategies.

    This post-pandemic miso market report has assessed the shift in consumer behavior and identified trends and drivers that will help market players outmaneuver challenges. Technology innovations, implementation, and improvisation scope identified in the miso market trends is essential for building new business opportunities across segmentations and geographies.

    Who are the Major Miso Market Vendors?

    The miso market forecast report provides insights on complete key vendor profiles and their business strategies to reimage themselves. The leading companies included in the report are as follows:

    Eden Foods Inc. Great Eastern Sun HIKARI MISO CO. LTD. Ichibiki Co. Ltd. MARUSAN-AI CO. LTD. Miyako Oriental Foods Inc. Miyasaka USA Saikyo-Miso Co. Ltd. Urban Platter Yamato Soysauce & Miso Co. Ltd.

    From our Porter’s five forces analysis study, get detailed insights on the functional involvement of the buyers and suppliers to form well-rounded knowledge about the supply chain and create cost reduction plans. The miso market analysis report also contains exhaustive observation on the organic and inorganic growth strategies deployed by the vendors. Click here to uncover details of successful business strategies adopted by the vendors.

    Furthermore, our research experts have outlined the magnitude of the economic impact on each segment and recovery expectations post pandemic. To recover from post COVID-19 impact, market vendors should create strategies to grab business opportunities from the fast-growing segments, while refining their scope of growth in the slow-growing ones.

    For insights on complete key vendor profiles, download a free sample of the miso market forecast report. The profiles include information on the production, sustainability, and prospects of the leading companies. The report's vendor landscape section also provides industry risk assessment in terms of labor cost, raw material price fluctuation, and other parameters, which is crucial for effective business planning.

    Which are the Key Regions for Miso Market?

    For more insights on the market share of various regions Request for a FREE sample now!

    Japan, US, China, South Korea (Republic of Korea), and UK are the key markets for miso market in APAC. Learn about the key, emerging, and untapped markets from our miso market size, share, & trends analysis report for targeting your business efforts toward promising growth regions. 62% of the market’s growth will originate from APAC during the forecast period.

    APAC has been recording significant growth rate and is expected to offer several growth opportunities to market vendors during the forecast period. drivers.2 has been identified as one of the chief factors that will drive the miso market growth in APAC over the forecast period. To garner further competitive intelligence and regional opportunities in store for vendors, view our sample report.

    What are the Revenue-generating Product Segments in the Miso Market?

    To gain further insights on the market contribution of various segments Request for a FREE sample!

    The miso market share growth by the _ segment has been significant. The miso market report provides comprehensive understanding of the subsegments of the target market to identify niche customer groups and demographic requirements. Furthermore, the report provides insights on the impact of COVID-19 on market segments, which can be used to deduce transformation patterns in consumer behavior in the coming years and improvise business plans.

    Request for a free sample of the report to get an exclusive glimpse of actionable market insights on post

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). Sales data based on demographics [Dataset]. https://www.kaggle.com/datasets/thedevastator/demographical-shopping-purchases-data
Organization logo

Sales data based on demographics

Analyzing customer purchasing patterns and preferences

Explore at:
zip(1541029 bytes)Available download formats
Dataset updated
Jan 12, 2023
Authors
The Devastator
Description

Demographical Shopping Purchases Data

Analyzing customer purchasing patterns and preferences

By Joseph Nowicki [source]

About this dataset

This dataset contains demographic information about customers who have made purchases in a store, including their name, IP address, region, age, items purchased, and total amount spent. Furthermore, this data can provide insights into customer shopping behaviour for the store in question - from their geographical information to the types of products they purchase. With detailed demographic data like this at hand it is possible to make strategic decisions regarding target customers as well as developing specific marketing campaigns or promotions tailored to meet their needs and interests. By gaining deeper understanding of customer habits through this dataset we unlock more possibilities for businesses seeking higher engagement levels with shoppers

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset includes information such as customer's names, IP address, age, items purchased and amount spent. This data can be used to uncover patterns in spending behavior of shoppers from different areas or regions across demographics like age group or gender.

Research Ideas

  • Analyze customer shopping trends based on age and region to maximize targetted advertising.
  • Analyze the correlation between customer spending habits based on store versus online behavior.
  • Use IP addresses to track geographical trends in items purchased from a particular online store to identify new markets for targeted expansion

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

See the dataset description for more information.

Columns

File: Demographic_Data_Orig.csv | Column name | Description | |:---------------|:------------------------------------------------------------------------------------------------| | full.name | The full name of the customer. (String) | | ip.address | The IP address of the customer. (String) | | region | The region of residence of the customer. (String) | | in.store | A boolean value indicating whether the customer made the purchase in-store or online. (Boolean) | | age | The age of the customer. (Integer) | | items | The number of items purchased by the customer. (Integer) | | amount | The total amount spent by the customer. (Float) |

Acknowledgements

If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Joseph Nowicki.

Search
Clear search
Close search
Google apps
Main menu