100+ datasets found
  1. f

    Demographic distribution of the target population and the study sample.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    • +1more
    Updated Feb 20, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kungu, Stella; Musyimi, Robert; Tigoi, Caroline C.; Scott, J. Anthony G.; Abdullahi, Osman; Mugo, Daisy; Karani, Angela; Jomo, Jane; Wanjiru, Eva; Lipsitch, Marc (2012). Demographic distribution of the target population and the study sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001156064
    Explore at:
    Dataset updated
    Feb 20, 2012
    Authors
    Kungu, Stella; Musyimi, Robert; Tigoi, Caroline C.; Scott, J. Anthony G.; Abdullahi, Osman; Mugo, Daisy; Karani, Angela; Jomo, Jane; Wanjiru, Eva; Lipsitch, Marc
    Description

    Demographic distribution of the target population and the study sample.

  2. Population Assessment of Tobacco and Health (PATH) Study [United States]...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Master Linkage Files [Dataset]. http://doi.org/10.3886/ICPSR38008.v19
    Explore at:
    ascii, delimited, spss, stata, r, sasAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38008/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38008/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). For Wave 1 (baseline), the study sampled over 150,000 mailing addresses across the United States to create a national sample of people who do and do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete the Youth Interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Units (PSUs) and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This second replenishment sample was combined for estimation and analysis purposes with Wave 7 adult and youth respondents from the Wave 4 Cohort who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0001 (DS0001) contains the data from the Public-Use File Master Linkage File (PUF-MLF). This file contains 93 variables and 82,139 cases. The file provides a master list of every person's unique identification number and what type of respondent they were in each wave for data that are available in the Public-Use Files and Special Collection Public-Use Files. Dataset 0002 (DS0002) contains the data from the Restricted-Use File Master Linkage File (RUF-MLF). This file contains 202 variables and 82,139 cases. The file provides a master list of every person's unique identification number and what type of respondent they were in each wave for data that are available in the Restricted-Use Files, Special Collection Restricted-Use Files, and Biomarker Restricted-Use Files.

  3. Data from: RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY

    • scielo.figshare.com
    • search.datacite.org
    jpeg
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.C. Lai (2023). RESEARCH METHODOLOGY FOR NOVELTY TECHNOLOGY [Dataset]. http://doi.org/10.6084/m9.figshare.7482734.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    P.C. Lai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract This paper contributes to the existing literature by reviewing the research methodology and the literature review with the focus on potential applications for the novelty technology of the single platform E-payment. These included, but were not restricted to the subjects, population, sample size requirement, data collection method and measurement of variables, pilot study and statistical techniques for data analysis. The reviews will shed some light and potential applications for future researchers, students and others to conceptualize, operationalize and analyze the underlying research methodology to assist in the development of their research methodology.

  4. w

    Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel)...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Jan 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Social Affairs (2020). Living Standards Measurement Survey 2003 (General Population, Wave 2 Panel) and Roma Settlement Survey 2003 - Serbia and Montenegro [Dataset]. https://microdata.worldbank.org/index.php/catalog/81
    Explore at:
    Dataset updated
    Jan 30, 2020
    Dataset provided by
    Ministry of Social Affairs
    Strategic Marketing & Media Research Institute Group (SMMRI)
    Time period covered
    2003
    Area covered
    Serbia and Montenegro
    Description

    Abstract

    The study included four separate surveys:

    1. The LSMS survey of general population of Serbia in 2002
    2. The survey of Family Income Support (MOP in Serbian) recipients in 2002 These two datasets are published together separately from the 2003 datasets.

    3. The LSMS survey of general population of Serbia in 2003 (panel survey)

    4. The survey of Roma from Roma settlements in 2003 These two datasets are published together.

    Objectives

    LSMS represents multi-topical study of household living standard and is based on international experience in designing and conducting this type of research. The basic survey was carried out in 2002 on a representative sample of households in Serbia (without Kosovo and Metohija). Its goal was to establish a poverty profile according to the comprehensive data on welfare of households and to identify vulnerable groups. Also its aim was to assess the targeting of safety net programs by collecting detailed information from individuals on participation in specific government social programs. This study was used as the basic document in developing Poverty Reduction Strategy (PRS) in Serbia which was adopted by the Government of the Republic of Serbia in October 2003.

    The survey was repeated in 2003 on a panel sample (the households which participated in 2002 survey were re-interviewed).

    Analysis of the take-up and profile of the population in 2003 was the first step towards formulating the system of monitoring in the Poverty Reduction Strategy (PRS). The survey was conducted in accordance with the same methodological principles used in 2002 survey, with necessary changes referring only to the content of certain modules and the reduction in sample size. The aim of the repeated survey was to obtain panel data to enable monitoring of the change in the living standard within a period of one year, thus indicating whether there had been a decrease or increase in poverty in Serbia in the course of 2003. [Note: Panel data are the data obtained on the sample of households which participated in the both surveys. These data made possible tracking of living standard of the same persons in the period of one year.]

    Along with these two comprehensive surveys, conducted on national and regional representative samples which were to give a picture of the general population, there were also two surveys with particular emphasis on vulnerable groups. In 2002, it was the survey of living standard of Family Income Support recipients with an aim to validate this state supported program of social welfare. In 2003 the survey of Roma from Roma settlements was conducted. Since all present experiences indicated that this was one of the most vulnerable groups on the territory of Serbia and Montenegro, but with no ample research of poverty of Roma population made, the aim of the survey was to compare poverty of this group with poverty of basic population and to establish which categories of Roma population were at the greatest risk of poverty in 2003. However, it is necessary to stress that the LSMS of the Roma population comprised potentially most imperilled Roma, while the Roma integrated in the main population were not included in this study.

    Geographic coverage

    The surveys were conducted on the whole territory of Serbia (without Kosovo and Metohija).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample frame for both surveys of general population (LSMS) in 2002 and 2003 consisted of all permanent residents of Serbia, without the population of Kosovo and Metohija, according to definition of permanently resident population contained in UN Recommendations for Population Censuses, which were applied in 2002 Census of Population in the Republic of Serbia. Therefore, permanent residents were all persons living in the territory Serbia longer than one year, with the exception of diplomatic and consular staff.

    The sample frame for the survey of Family Income Support recipients included all current recipients of this program on the territory of Serbia based on the official list of recipients given by Ministry of Social affairs.

    The definition of the Roma population from Roma settlements was faced with obstacles since precise data on the total number of Roma population in Serbia are not available. According to the last population Census from 2002 there were 108,000 Roma citizens, but the data from the Census are thought to significantly underestimate the total number of the Roma population. However, since no other more precise data were available, this number was taken as the basis for estimate on Roma population from Roma settlements. According to the 2002 Census, settlements with at least 7% of the total population who declared itself as belonging to Roma nationality were selected. A total of 83% or 90,000 self-declared Roma lived in the settlements that were defined in this way and this number was taken as the sample frame for Roma from Roma settlements.

    Planned sample: In 2002 the planned size of the sample of general population included 6.500 households. The sample was both nationally and regionally representative (representative on each individual stratum). In 2003 the planned panel sample size was 3.000 households. In order to preserve the representative quality of the sample, we kept every other census block unit of the large sample realized in 2002. This way we kept the identical allocation by strata. In selected census block unit, the same households were interviewed as in the basic survey in 2002. The planned sample of Family Income Support recipients in 2002 and Roma from Roma settlements in 2003 was 500 households for each group.

    Sample type: In both national surveys the implemented sample was a two-stage stratified sample. Units of the first stage were enumeration districts, and units of the second stage were the households. In the basic 2002 survey, enumeration districts were selected with probability proportional to number of households, so that the enumeration districts with bigger number of households have a higher probability of selection. In the repeated survey in 2003, first-stage units (census block units) were selected from the basic sample obtained in 2002 by including only even numbered census block units. In practice this meant that every second census block unit from the previous survey was included in the sample. In each selected enumeration district the same households interviewed in the previous round were included and interviewed. On finishing the survey in 2003 the cases were merged both on the level of households and members.

    Stratification: Municipalities are stratified into the following six territorial strata: Vojvodina, Belgrade, Western Serbia, Central Serbia (Šumadija and Pomoravlje), Eastern Serbia and South-east Serbia. Primary units of selection are further stratified into enumeration districts which belong to urban type of settlements and enumeration districts which belong to rural type of settlement.

    The sample of Family Income Support recipients represented the cases chosen randomly from the official list of recipients provided by Ministry of Social Affairs. The sample of Roma from Roma settlements was, as in the national survey, a two-staged stratified sample, but the units in the first stage were settlements where Roma population was represented in the percentage over 7%, and the units of the second stage were Roma households. Settlements are stratified in three territorial strata: Vojvodina, Beograd and Central Serbia.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    In all surveys the same questionnaire with minimal changes was used. It included different modules, topically separate areas which had an aim of perceiving the living standard of households from different angles. Topic areas were the following: 1. Roster with demography. 2. Housing conditions and durables module with information on the age of durables owned by a household with a special block focused on collecting information on energy billing, payments, and usage. 3. Diary of food expenditures (weekly), including home production, gifts and transfers in kind. 4. Questionnaire of main expenditure-based recall periods sufficient to enable construction of annual consumption at the household level, including home production, gifts and transfers in kind. 5. Agricultural production for all households which cultivate 10+ acres of land or who breed cattle. 6. Participation and social transfers module with detailed breakdown by programs 7. Labour Market module in line with a simplified version of the Labour Force Survey (LFS), with special additional questions to capture various informal sector activities, and providing information on earnings 8. Health with a focus on utilization of services and expenditures (including informal payments) 9. Education module, which incorporated pre-school, compulsory primary education, secondary education and university education. 10. Special income block, focusing on sources of income not covered in other parts (with a focus on remittances).

    Response rate

    During field work, interviewers kept a precise diary of interviews, recording both successful and unsuccessful visits. Particular attention was paid to reasons why some households were not interviewed. Separate marks were given for households which were not interviewed due to refusal and for cases when a given household could not be found on the territory of the chosen census block.

    In 2002 a total of 7,491 households were contacted. Of this number a total of 6,386 households in 621 census rounds were interviewed. Interviewers did not manage to collect the data for 1,106 or 14.8% of selected households. Out of this number 634 households

  5. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v43
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

  6. General Social Survey (GSS)

    • kaggle.com
    zip
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mustafa Adel Ibrahim (2024). General Social Survey (GSS) [Dataset]. https://www.kaggle.com/datasets/mustafaadelibrahim/general-social-survey-gss
    Explore at:
    zip(31242183 bytes)Available download formats
    Dataset updated
    May 2, 2024
    Authors
    Mustafa Adel Ibrahim
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    INTRODUCTION. GSS has run annually since 1972; it surveys a representative sample of the adult population in the American society; It is widely used by politicians, policy makers, and researchers. in order to monitor and explain trends and constants in attitudes, behaviors, and attributes. and asks questions about standard core of demographics, beliefs about social and political issues, behavioral, and attitudinal questions, plus topics of special interest. Among the topics covered are civil liberties, crime and violence, intergroup tolerance, morality, national spending priorities, psychological well-being, social ‎mobility, and stress and traumatic events. Altogether the GSS is the single best source for sociological and attitudinal trend data covering the United States. It allows researchers to examine the structure and functioning of society in general as well as the role played by relevant subgroups and to compare the United States to other nations. Source http://gss.norc.org/About-The-GSS About the Data The survey is conducted face-to-face with an in-person interview by National Opinion ‎Research Center (NORC) at the University of Chicago. However, participation in the study is strictly voluntary. Therefore, study based on the GSS sample data is: • generalizable to the target population if we ignore the non-response bias; • definitely not causal, because the study does not employ random assignments and is only observational.

    Research Question As for the research question, I'm interested in exploring the relationship between people's job preference and their education status, using latest data. More specifically, are people's preference in a job (like job security, high income, short working hours etc.) associated with their highest degree received? Motivation: Aside from sleeping, working is the activity that takes away the most of our lifetime hours and has a huge impact on people's well-being and happiness. I would be really interested in the factors that determines peoples' attitude toward job.

    Reading the data. The data we’ll use is from the General Social Survey (GSS). Using the GSS Data Explorer, I selected a subset of the variables in the GSS and made it available along with this notebook. The survey contains more that 5000 of variables with data on a wide range of subjects, I have selected just a few.

  7. f

    Study population characteristics and description of analytical sample.

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Jul 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khaw, Kay-Tee; Sagi-Kiss, Virag; Jackson, Kim G.; Lister, Susan J.; Kuhnle, Gunter G. C.; Tasevska, Natasha; Campbell, Rachel; di Paolo, Nick; Mindell, Jennifer S. (2017). Study population characteristics and description of analytical sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001845755
    Explore at:
    Dataset updated
    Jul 19, 2017
    Authors
    Khaw, Kay-Tee; Sagi-Kiss, Virag; Jackson, Kim G.; Lister, Susan J.; Kuhnle, Gunter G. C.; Tasevska, Natasha; Campbell, Rachel; di Paolo, Nick; Mindell, Jennifer S.
    Description

    Median and inter-quartile range or absolute number and proportion. See S1 Table for more details.

  8. t

    Data from: Data set for the population survey “attitudes towards big data...

    • service.tib.eu
    • radar-service.eu
    • +1more
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Data set for the population survey “attitudes towards big data practices and the institutional framework of privacy and data protection” [Dataset]. https://service.tib.eu/ldmservice/dataset/rdr-doi-10-35097-1151
    Explore at:
    Dataset updated
    Nov 28, 2024
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de

  9. f

    Characteristics of the study and population samples.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Feb 24, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chu, Tanya; Sham, Pak Chung; Hur, Yoon-Mi; Thomas, Neil G.; Fang, Yu Jing; Tang, Clara S.; Guo, Youling; Gui, Hongsheng; Yip, Benjamin H.; Lam, Tai Hing; Cherny, Stacey S.; Tomlinson, Brian (2012). Characteristics of the study and population samples. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001161657
    Explore at:
    Dataset updated
    Feb 24, 2012
    Authors
    Chu, Tanya; Sham, Pak Chung; Hur, Yoon-Mi; Thomas, Neil G.; Fang, Yu Jing; Tang, Clara S.; Guo, Youling; Gui, Hongsheng; Yip, Benjamin H.; Lam, Tai Hing; Cherny, Stacey S.; Tomlinson, Brian
    Description

    Characteristics of the study and population samples.

  10. f

    Characteristics of the study population at the first cell sample.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nonboe, Mette Hartmann; Christiansen, Sanne; Napolitano, George Maria; Kann, Caroline; Salmani, Rouzbeh; Lynge, Elsebeth; Bennetsen, Mary Holten; Frandsen, Anna Poulsgaard; Schroll, Jeppe Bennekou; Andersen, Berit; Rygaard, Carsten (2024). Characteristics of the study population at the first cell sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001462733
    Explore at:
    Dataset updated
    Jun 25, 2024
    Authors
    Nonboe, Mette Hartmann; Christiansen, Sanne; Napolitano, George Maria; Kann, Caroline; Salmani, Rouzbeh; Lynge, Elsebeth; Bennetsen, Mary Holten; Frandsen, Anna Poulsgaard; Schroll, Jeppe Bennekou; Andersen, Berit; Rygaard, Carsten
    Description

    The cohort consist of Danish women born in 1994. They were all offered free HPV vaccination at age 14 and invited to cytology screening at age 23.

  11. d

    HSRC Master Sample II - Dataset - B2FIND

    • demo-b2find.dkrz.de
    Updated Sep 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). HSRC Master Sample II - Dataset - B2FIND [Dataset]. http://demo-b2find.dkrz.de/dataset/e34fc48c-0f01-51a9-bf21-93dc96b59013
    Explore at:
    Dataset updated
    Sep 27, 2025
    Description

    Description: The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, the SANHANES study in 2012 and SASAS 2007-2010 (adjacent EAs) to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. Abstract: A sample can be defined as a subset containing the characteristics of a larger population. Samples are used in statistical testing when population sizes are too large for the test to include all possible members or observations. A sample should represent the whole population and not reflect bias toward a specific attribute.[1] One of the most crucial aspects of sample design in household surveys is its frame. The sampling frame has significant implications on the cost and the quality of any survey, household or otherwise.[2] The sampling frame .... in a household survey must cover the entire target population. When that frame is used for multiple surveys or multiple rounds of the same survey it is known as a master sample frame or .... master sample.[3] A master sample is a sample drawn from a population for use on a number of future occasions, so as to avoid ad hoc sampling on each occasion. Sometimes the master sample is large and subsequent inquiries are based on a sub-sample from it.[4] The HSRC compiles master samples in order to construct samples for various HSRC research studies. The 2005 HSRC Master Sample was used for SABSSM 2008 and 2012, SASAS 2007-2010 and the SANHANES study in 2012 to obtain an understanding of geographical spread of HIV/AIDS, perceptions and attitudes of people and other health related studies over time. The 2005 HSRC Master Sample was created in the following way: South Africa was delineated into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. An Enumeration area (EA) is the smallest geographical unit (piece of land) into which the country is divided for census or survey enumeration.[5] The concepts and definitions of terms used for Census 2001 comply in most instances with United Nations standards for censuses. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped using aerial photography to develop an HSRC master sample for selecting households. The ideal frame would be complete with respect to the target population if all of its members (the universe) are covered by the frame. Ideal characteristics of a master sample: The master frame should be as complete, accurate and current as practicable. A master sample frame for household surveys is typically developed from the most recent census, just as a regular sample frame is. Because the master frame may be used during an entire intercensal (between census) period, however, it will usually require periodic and regular updating such as every 2-3 years. This is in contrast to a regular frame which is more likely to be up-dated on an ad hoc basis and only when a particular survey is being planned[6] [1] http://www.investopedia.com/terms/s/sample.asp [2] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [3] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf [4] A Dictionary of Statistical Terms, 5th edition, prepared for the International Statistical Institute by F.H.C. Marriott. Published for the International Statistical Institute by Longman Scientific and Technical. http://stats.oecd.org/glossary/detail.asp?ID=3708 [5] http://africageodownloads.info/128_mokgokolo.pdf [6] http://unstats.un.org/unsd/demographic/meetings/egm/sampling_1203/docs/no_3.pdf All enumeration areas (80 787 EAs) within the South African borders during the 2001 Census. The whole country was delimited into EAs according to municipality and province. Municipal boundaries were obtained from the Municipal Demarcation Board. A total of 1,000 census enumeration areas (EAs) from the 2001 population census were randomly selected using probability proportional to size and stratified by province, locality type and race in urban areas from a database of 80 787 EAs that were mapped in all surveys using aerial photography to develop all HSRC master sample for selecting households. The first digit represents the province The second and third digits represent the municipality

  12. Co-Creation Methods Inventory 2.0: Expanded Insights on 248 Methods Sourced...

    • data.europa.eu
    unknown
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2025). Co-Creation Methods Inventory 2.0: Expanded Insights on 248 Methods Sourced from Academic Literature [Dataset]. https://data.europa.eu/data/datasets/oai-zenodo-org-14503330?locale=pt
    Explore at:
    unknown(462785)Available download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Co-Creation Methods Inventory 2.0. A comprehensive open-access resource based on a systematic review of co-creation methods published in academic literature from 1998 to 2022. This dataset includes 248 distinct methods, categorized and detailed to support researchers and practitioners in planning, conducting, and evaluating co-creation projects in public health and beyond. The methods are drawn from 266 academic articles and represent over two decades of development in collaborative problem-solving. Each method is characterised by descriptive steps, its target population, benefits, challenges, example applications, and much more! The dataset reflects co-creation practices across 40 different population groups, including children, adults, and marginalized populations. This dataset is the result of the scoping review titled "Co-creation methods for public health research — characteristics, benefits, and challenges: a Health CASCADE scoping review," which is published in BMC Medical Research Methodology: https://doi.org/10.1186/s12874-025-02514-4 ----------------Reach Out: For any inquiries or further information about the dataset, please feel free to reach out to the lead researcher, Danielle Marie Agnello at danielle.agnello@gcu.ac.uk. Additionally, join the conversation and stay updated on her work by following her on Twitter: https://twitter.com/DannyAgnello_GH. Co-Creation Resources: Looking for more methods, then take a look at the Co-Creation Method Inventory 1.0: https://www.i-jmr.org/2024/1/e59772 and the dataset here: https://zenodo.org/records/8014373. Additionally, engage with critical questions about method selection through my Methods Selector Infographic at: https://doi.org/10.5281/zenodo.7414470. For insights into how these methods align with co-creation principles, please refer to the pre-print manuscript on the Co-Creation Rainbow framework: https://zenodo.org/records/10391410. For additional support in utilizing these co-creation methods in a co-creation process, explore our Draft Evidence-based Co-Creation Guideline: PRODUCES+ at: https://zenodo.org/records/8379784. If you're needing support in evaluating your co-creation process, then access our Observation Guide: Evaluating a Co-Creation Workshop: https://zenodo.org/records/14228909. You can also conduct your study in the Health CASCADE Co-Creation Database: https://doi.org/10.2196/45059. Unlock the potential of co-creation and embark on a collaborative research journey with confidence, creativity, and innovation!

  13. d

    Sea turtle population study in the coastal waters of North Carolina from...

    • catalog.data.gov
    • dataone.org
    • +6more
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). Sea turtle population study in the coastal waters of North Carolina from 1988-06-07 to 2015-09-22 (NCEI Accession 0162846) [Dataset]. https://catalog.data.gov/dataset/sea-turtle-population-study-in-the-coastal-waters-of-north-carolina-from-1988-06-07-to-2015-09-
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Area covered
    North Carolina
    Description

    This data set contains sea turtle length and weight measurements, sex ratios, species composition, capture and release locations, tagging information, and information on biological samples collected for loggerhead, green, and Kemp's Ridley sea turtle populations in the coastal waters of North Carolina. Sea turtles were double-tagged with Inconel Style 681 tags (National Band and Tag Company, Newport, Kentucky, USA) applied to the trailing edge of each rear flipper. Beginning in 1995, all turtles were additionally tagged with 125 kHz unencrypted Passive Integrated Transponder (PIT) tags (Destron-Fearing Corp., South St. Paul, Minnesota, USA), injected subcutaneously above the second-most proximal scale of the trailing margin of the left front flipper to ensure identification of the turtle in the event that both Inconel tags were lost. SCL and CCL (notch-to-tip and notch-to-notch) along with SCW and CCW were measured and recorded to the nearest 0.1 cm. Blood samples were collected from the dorsal cervical sinus of the turtle, and skin samples were collected from the trailing edge of the rear flippers. Scute scrapings were collected from the edge of the carapace

  14. 2

    UKHLS

    • datacatalogue.ukdataservice.ac.uk
    Updated Jul 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Essex, Institute for Social and Economic Research (2025). UKHLS [Dataset]. http://doi.org/10.5255/UKDA-SN-9333-1
    Explore at:
    Dataset updated
    Jul 21, 2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    University of Essex, Institute for Social and Economic Research
    Area covered
    United Kingdom
    Description

    Understanding Society, (UK Household Longitudinal Study), which began in 2009, is conducted by the Institute for Social and Economic Research (ISER) at the University of Essex and the survey research organisations Verian Group (formerly Kantar Public) and NatCen. It builds on and incorporates, the British Household Panel Survey (BHPS), which began in 1991.

    The Understanding Society: Calendar Year Dataset, 2022, is designed for analysts to conduct cross-sectional analysis for the 2022 calendar year. The Calendar Year datasets combine data collected in a specific year from across multiple waves and these are released as separate calendar year studies, with appropriate analysis weights, starting with the 2020 Calendar Year dataset. Each subsequent year, an additional yearly study is released.

    The Calendar Year data is designed to enable timely cross-sectional analysis of individuals and households in a calendar year. Such analysis can, however, only involve variables that are collected in every wave (excluding rotating content, which is only collected in some of the waves). Due to overlapping fieldwork, the data files combine data collected in the three waves that make up a calendar year. Analysis cannot be restricted to data collected in one wave during a calendar year, as this subset will not be representative of the population. Further details and guidance on this study can be found in the document 9333_main_survey_calendar_year_user_guide_2022.

    These calendar year datasets should be used for cross-sectional analysis only. For those interested in longitudinal analyses using Understanding Society please access the main survey datasets: End User Licence version or Special Licence version.

    Understanding Society: the UK Household Longitudinal Study, started in 2009 with a general population sample (GPS) of UK residents living in private households of around 26,000 households and an ethnic minority boost sample (EMBS) of 4,000 households. All members of these responding households and their descendants became part of the core sample who were eligible to be interviewed every year. Anyone who joined these households after this initial wave was also interviewed as long as they lived with these core sample members to provide the household context. At each annual interview, some basic demographic information was collected about every household member, information about the household is collected from one household member, all 16+-year-old household members are eligible for adult interviews, 10-15-year-old household members are eligible for youth interviews, and some information is collected about 0-9 year-olds from their parents or guardians. Since 1991 until 2008/9 a similar survey, the British Household Panel Survey (BHPS), was fielded. The surviving members of this survey sample were incorporated into Understanding Society in 2010. In 2015, an immigrant and ethnic minority boost sample (IEMBS) of around 2,500 households was added. In 2022, a GPS boost sample (GPS2) of around 5,700 households was added. To know more about the sample design, following rules, interview modes, incentives, consent, and questionnaire content, please see the study overview and user guide.

    Co-funders

    In addition to the Economic and Social Research Council, co-funders for the study included the Department of Work and Pensions, the Department for Education, the Department for Transport, the Department of Culture, Media and Sport, the Department for Community and Local Government, the Department of Health, the Scottish Government, the Welsh Assembly Government, the Northern Ireland Executive, the Department of Environment and Rural Affairs, and the Food Standards Agency.

    End User Licence and Special Licence versions:

    There are two versions of the Calendar Year 2022 data. One is available under the standard End User Licence (EUL) agreement (SN 9333), and the other is a Special Licence (SL) version (SN 9334). The SL version contains month and year of birth variables instead of just age, more detailed country and occupation coding for a number of variables and various income variables have not been top-coded (see document 9333_eul_vs_sl_variable_differences for more details). Users are advised first to obtain the standard EUL version of the data to see if they are sufficient for their research requirements. The SL data have more restrictive access conditions; prospective users of the SL version will need to complete an extra application form and demonstrate to the data owners exactly why they need access to the additional variables in order to get permission to use that version. The main longitudinal versions of the Understanding Society study may be found under SNs 6614 (EUL) and 6931 (SL).

    Low- and Medium-level geographical identifiers produced for the mainstage longitudinal dataset can be used with this Calendar Year 2022 dataset, subject to SL access conditions. See the User Guide for further details.

    Suitable data analysis software

    These data are provided by the depositor in Stata format. Users are strongly advised to analyse them in Stata. Transfer to other formats may result in unforeseen issues. Stata SE or MP software is needed to analyse the larger files, which contain about 1,800 variables.

  15. d

    National Longitudinal Mortality Study

    • dknet.org
    • rrid.site
    • +2more
    Updated Jul 2, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). National Longitudinal Mortality Study [Dataset]. http://identifiers.org/RRID:SCR_008946
    Explore at:
    Dataset updated
    Jul 2, 2011
    Description

    A database based on a random sample of the noninstitutionalized population of the United States, developed for the purpose of studying the effects of demographic and socio-economic characteristics on differentials in mortality rates. It consists of data from 26 U.S. Current Population Surveys (CPS) cohorts, annual Social and Economic Supplements, and the 1980 Census cohort, combined with death certificate information to identify mortality status and cause of death covering the time interval, 1979 to 1998. The Current Population Surveys are March Supplements selected from the time period from March 1973 to March 1998. The NLMS routinely links geographical and demographic information from Census Bureau surveys and censuses to the NLMS database, and other available sources upon request. The Census Bureau and CMS have approved the linkage protocol and data acquisition is currently underway. The plan for the NLMS is to link information on mortality to the NLMS every two years from 1998 through 2006 with research on the resulting database to continue, at least, through 2009. The NLMS will continue to incorporate data from the yearly Annual Social and Economic Supplement into the study as the data become available. Based on the expected size of the Annual Social and Economic Supplements to be conducted, the expected number of deaths to be added to the NLMS through the updating process will increase the mortality content of the study to nearly 500,000 cases out of a total number of approximately 3.3 million records. This effort would also include expanding the NLMS population base by incorporating new March Supplement Current Population Survey data into the study as they become available. Linkages to the SEER and CMS datasets are also available. Data Availability: Due to the confidential nature of the data used in the NLMS, the public use dataset consists of a reduced number of CPS cohorts with a fixed follow-up period of five years. NIA does not make the data available directly. Research access to the entire NLMS database can be obtained through the NIA program contact listed. Interested investigators should email the NIA contact and send in a one page prospectus of the proposed project. NIA will approve projects based on their relevance to NIA/BSR''s areas of emphasis. Approved projects are then assigned to NLMS statisticians at the Census Bureau who work directly with the researcher to interface with the database. A modified version of the public use data files is available also through the Census restricted Data Centers. However, since the database is quite complex, many investigators have found that the most efficient way to access it is through the Census programmers. * Dates of Study: 1973-2009 * Study Features: Longitudinal * Sample Size: ~3.3 Million Link: *ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00134

  16. Enrollment characteristics of study population at date of sample collection....

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pauline Levinson; Robert Y. Choi; Amy L. Cole; Taha Hirbod; Samuel Rhedin; Barbara Payne; Brandon L. Guthrie; Rose Bosire; Alexander M. Cole; Carey Farquhar; Kristina Broliden (2023). Enrollment characteristics of study population at date of sample collection. [Dataset]. http://doi.org/10.1371/journal.pone.0031996.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pauline Levinson; Robert Y. Choi; Amy L. Cole; Taha Hirbod; Samuel Rhedin; Barbara Payne; Brandon L. Guthrie; Rose Bosire; Alexander M. Cole; Carey Farquhar; Kristina Broliden
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    a–cHIV seropositive (HIV pos) and HIV seronegative (HESN) women and their HIV serodiscordant male partners were evaluated for demographic data and sexual risk-taking profiles. In addition, HIV seronegative women (Low-risk) living with an HIV seronegative male partner were included (male participants in the Low-risk study group were not assessed for demographic parameters). In total, complete demographic data sets were available from 288 of the 300 women whose CVS samples were assessed for immunological parameters.dSTIs: sexually transmitted infections.ePSA: Prostate-specific antigen (>1 ug/ml of CVS) as a sign of recent unprotected sexual intercourse.

  17. E

    SweGen whole-genome sequencing from the Northern Sweden Population Health...

    • ega-archive.org
    • researchdata.se
    • +1more
    Updated Apr 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). SweGen whole-genome sequencing from the Northern Sweden Population Health Study [Dataset]. https://ega-archive.org/datasets/EGAD50000001325
    Explore at:
    Dataset updated
    Apr 4, 2025
    License

    https://ega-archive.org/dacs/EGAC50000000433https://ega-archive.org/dacs/EGAC50000000433

    Description

    The dataset contains whole-genome sequencing data (aligned read files) in CRAM-format (lossless compression) for a total of 58 DNA samples originating from the Northern Sweden Population Health Study (NSPHS). For each of the 58 individuals, DNA was extracted from a blood sample and subject to whole genome sequencing (WGS). The WGS was performed using 2x150 bp paired-end chemistry on Illumina HiSeq X Ten instrumentation at the SciLifeLab National Genomics Infrastructure (NGI) in Stockholm and Uppsala. FASTQ files generated by WGS were analyzed using the nf-core pipeline Sarek, which includes pre-processing, alignment to the human GRCh38 reference genome, and germline variant calling. The NSPHS study was approved by the local ethics committee at the University of Uppsala (Regionala Etikprövningsnämnden, Uppsala, 2005:325 and 2016-03-09). All participants gave their written informed consent to the study including the examination of environmental and genetic causes of disease in compliance with the Declaration of Helsinki.

  18. w

    Schooling, Income, and Health Risk Impact Evaluation Household Survey...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Sep 26, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Craig McIntosh (2013). Schooling, Income, and Health Risk Impact Evaluation Household Survey 2007-2008, Round I (Baseline) - Malawi [Dataset]. https://microdata.worldbank.org/index.php/catalog/1005
    Explore at:
    Dataset updated
    Sep 26, 2013
    Dataset provided by
    Craig McIntosh
    Berk Özler
    Sarah Baird
    Time period covered
    2007 - 2008
    Area covered
    Malawi
    Description

    Abstract

    Malawi Conditional Cash Transfer Program (CCT) is a randomized cash transfer intervention targeting young women in Zomba region. The program provides incentives to current schoolgirls and recent dropouts to stay in or return to school. The incentives include average payment of US$10 a month conditional on satisfactory school attendance and direct payment of secondary school fees.

    The CCT program started at the beginning of the Malawian school year in January 2008 and continued until November 2009. The impact evaluation study was designed to evaluate the impact of the program on various demographic and health outcomes of its target population, such as nutritional health, sexual behavior, fertility, and subsequent HIV risk.

    Baseline data collection was administered from September 2007 to January 2008. The research targeted girls and young women, between the ages of 13 and 22, who were never married. Overall, 3,810 girls and young women were surveyed in the first round. The follow-up survey was carried out from October 2008 to February 2009. The third round was conducted between March and September 2010, after Malawi Conditional Cash Transfer Program was completed. The fourth round started in April 2012 and will continue until September 2012.

    Datasets from the baseline round are documented here.

    Enumeration Areas (EAs) in the study district of Zomba were selected from the universe of EAs produced by the National Statistics Office of Malawi from the 1998 Census. 176 enumeration areas were randomly sampled out of a total of 550 EAs using three strata: urban areas, rural areas near Zomba Town, and rural areas far from Zomba Town.

    Baseline schoolgirls in treatment enumeration areas were randomly assigned to receive either conditional or unconditional transfers, or no transfers at all. A multi-topic questionnaire was administered to the heads of households, where the selected sample respondents resided, as well as to girls and young women.

    Geographic coverage

    Zomba district.

    Zomba district in the Southern region was chosen as the site for this study for several reasons. First, it has a large enough population within a small enough geographic area rendering field work logistics easier and keeping transport costs lower. Zomba is a highly populated district, but distances from the district capital (Zomba Town) are relatively small. Second, characteristic of Southern Malawi, Zomba has a high rate of school dropouts and low educational attainment. Third, unlike many other districts, Zomba has the advantage of having a true urban center as well as rural areas. As the study sample was stratified to get representative samples from urban areas (Zomba town), rural areas near Zomba town, and distant rural areas in the district, we can analyze the heterogeneity of the impacts by urban/rural areas. Finally, while Southern Malawi, which includes Zomba, is poorer, has lower levels of education, and higher rates of HIV than Central and Northern Malawi, these differences are relative considering that Malawi is one of the poorest countries in the world with one of the highest rates of HIV prevalence.

    Analysis unit

    • Households;
    • Girls and young women.

    Universe

    The survey covers never married girls and young women between the ages of 13 and 22 in Zomba district.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    First, 176 enumeration areas (EA) were randomly sampled out of a total of 550 EAs using three strata in the study district of Zomba. Each of these 176 EAs were then randomly assigned treatment or control status. The three strata are urban, rural areas near Zomba Town, and rural areas far from Zomba Town. Rural areas were defined as being near if they were within a 16-kilometer radius of Zomba Town. Researchers did not sample any EAs in TA Mbiza due to safety concerns (112 EAs).

    Enumeration areas (EAs) in Zomba were selected from the universe of EAs produced by the National Statistics Office of Malawi from the 1998 Census. The sample of EAs was stratified by distance to the nearest township or trading centre. Of the 550 EAs in Zomba, 50 are in Zomba town and an additional 30 are classified as urban (township or trading center), while the remaining 470 are rural (population areas, or PAs). The stratified random sample of 176 EAs consisted of 29 EAs in Zomba town, eight trading centers in Zomba rural, 111 population areas within 16 kilometers of Zomba town, and 28 EAs more than 16 kilometers from Zomba town.

    After selecting sample EAs, all households were listed in the 176 sample EAs using a short two-stage listing procedure. The first form, Form A, asked each household the following question: "Are there any never-married girls in this household who are between the ages of 13 and 22?" This form allowed the field teams to quickly identify households with members fitting into the sampling frame, thus significantly reducing the costs of listing. If the answer received on Form A was a "yes", then Form B was filled to list members of the household to collect data on age, marital status, current schooling status, etc.

    From this researchers could categorize the target population into two main groups: those who were out of school at baseline (baseline dropouts) and those who were in school at baseline (baseline schoolgirls). These two groups comprise the basis of our sampling frame. In each EA, enumerators sampled all eligible dropouts and 75%-100% of all eligible school girls, where the percentage depended on the age of the baseline schoolgirl. This sampling procedure led to a total sample size of 3,810 (in the first round, and 3,805 in follow-up rounds) with an average of 5.1 dropouts and 16.7 schoolgirls per EA.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The annual household survey consists of a multi-topic questionnaire administered to the households in which the selected sample respondents reside. The survey consists of two parts: one that is administered to the head of the household and another that is administered to the core respondent - the sampled girl from the target population. The former collects information on the household roster, dwelling characteristics, household assets and durables, shocks and consumption. The core respondent survey provides information about her family background, her education and labor market participation, her health, her dating patterns, sexual behavior, marital expectations, knowledge of HIV/AIDS, her social networks, as well as her own consumption of girl-specific goods (such as soaps, mobile phone airtime, clothing, braids, sodas and alcoholic drinks, etc.).

  19. Population by Sex and Age (by Beltline Study Area) 2019

    • arc-garc.opendata.arcgis.com
    • gisdata.fultoncountyga.gov
    • +2more
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population by Sex and Age (by Beltline Study Area) 2019 [Dataset]. https://arc-garc.opendata.arcgis.com/datasets/population-by-sex-and-age-by-beltline-study-area-2019
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

  20. n

    Nihon University Japanese Longitudinal Study of Aging

    • neuinfo.org
    • rrid.site
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Nihon University Japanese Longitudinal Study of Aging [Dataset]. http://identifiers.org/RRID:SCR_008974
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    Longitudinal data set of a nationally representative sample of the population aged 65 and over in Japan, comparable to that collected in the US and other countries. The first two waves of data are now available to the international research community. The sample is refreshed with younger members at each wave so it remains representative of the population at each wave. The study was designed primarily to investigate health status of the Japanese elderly and changes in health status over time. An additional aim is to investigate the impact of long-term care insurance system on the use of services by the Japanese elderly and to investigate the relationship between co-residence and the use of long term care. While the focus of the survey is health and health service utilization, other topics relevant to the aging experience are included such as intergenerational exchange, living arrangements, caregiving, and labor force participation. The initial questionnaire was designed to be comparable to the (US) Longitudinal Study of Aging II (LSOAII), and to the Asset and Health Dynamics Among the Oldest Old (AHEAD, a pre-1924 birth cohort) sample of the Health and Retirement Study (HRS), which has now been merged with the HRS. The sample was selected using a multistage stratified sampling method to generate 340 primary sampling units (PSUs). The sample of individuals was selected for the most part by using the National Residents Registry System, considered to be universal and accurate because it is a legal requirement to report any move to local authorities within two weeks. From each of the 340 PSUs, 6-11 persons aged 65-74 were selected and 8-12 persons aged 75+ were sampled. The population 75+ was oversampled by a factor of 2. Weights have been developed for respondents to the first wave of the survey to reflect sampling probabilities. Weights for the second wave are under development. With these weights, the sample should be representative of the 65+ Japanese population. In fall 1999, 4,997 respondents aged 65+ were interviewed, 74.6 percent of the initial target. Twelve percent of responses were provided by proxies, because of physical or mental health problems. The second wave of data was collected in November 2001. The third wave was collected in November 2003. Questionnaire topics include family structure, and living arrangements; subjects'''' parents/spouse''''s parents/children; socioeconomic status; intergenerational exchange; health behaviors, chronic conditions, physical functioning; activities of daily living and instrumental activities of daily living; functioning in the community; mental health depression measures; vision and hearing; dental health; health care and other service utilization. A CD is available which include the codebook and data files for the first and second waves of the national sample. The third wave of data will be released at a later date. * Dates of Study: 1999-2003 * Study Features: Longitudinal, International * Sample Size: ** 4,997 Nov/Dec 1999 Wave 1 ** 3,992 Nov 2001 Wave 2 ** Nov 2003 Wave 3 Link: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/00156

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kungu, Stella; Musyimi, Robert; Tigoi, Caroline C.; Scott, J. Anthony G.; Abdullahi, Osman; Mugo, Daisy; Karani, Angela; Jomo, Jane; Wanjiru, Eva; Lipsitch, Marc (2012). Demographic distribution of the target population and the study sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001156064

Demographic distribution of the target population and the study sample.

Explore at:
Dataset updated
Feb 20, 2012
Authors
Kungu, Stella; Musyimi, Robert; Tigoi, Caroline C.; Scott, J. Anthony G.; Abdullahi, Osman; Mugo, Daisy; Karani, Angela; Jomo, Jane; Wanjiru, Eva; Lipsitch, Marc
Description

Demographic distribution of the target population and the study sample.

Search
Clear search
Close search
Google apps
Main menu