Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
The objective of the endline surveys in 2016 were to gather household, biomedical, and cognition data in order to evaluate the long-term impact of home supplementation with micronutrient powders (MNP), when combined with seasonal malaria chemoprevention (SMC) and early stimulation, delivered through community preschools and parenting sessions, on the health and cognitive development of children during the first five years of life.
The trial consisted of 3 arms. First, 60 villages with established Early Childhood Development centres (ECD) were randomised to 1 of 2 arms:
1) Children living in villages in the ECD control arm received SMC as part of national health programming and a national parenting intervention delivered by ECD center staff trained and supported by Save the Children, with ALL resident children eligible to participate in the interventions irrespective of enrolment in ECD program (ECD Control group).
2) Children living in villages in the intervention arm also received the SMC and parenting interventions described above, but additionally were eligible to receive home supplementation with micronutrient powders (MNP intervention arm).
3) Second, a third non-randomised arm was recruited comprised of children living in 30 randomly selected villages where there were no ECD centers in place and thus both the parenting interventions and MNPs were absent. These children received SMC only, as part of national health programming (non-ECD comparison arm).
Trial arm and Interventions received:
T1. MNP intervention arm: 30 villages with ECD centre (randomised); MNP-Yes, Parenting-Yes, SMC-Yes C1. ECD control arm: 30 villages with ECD centre (randomised); MNP-No, Parenting-Yes, SMC-Yes C2. Non-ECD comparison arm: 30 villages without ECD centre (not randomised); MNP-No, Parenting-No, SMC-Yes
Three cross-sectional endline surveys took place during the period May-August 2016, three years after the original MNP intervention began, and consisted of the following questionnaires and assessments in two age groups of children, 3 year olds and 5 year olds:
i) A household questionnaire was used to collect data from the primary adult caregiver of the child on home environment, exposure to the interventions, and reported practice outcomes of relevance to the parenting intervention.
ii) Biomedical outcomes were measured in children through laboratory and clinical assessment.
iii) A battery of tests were used to assess cognitive performance and school readiness in childen, using a different age-specific test battery for each age group adapted for local language and culture.
Note: Household and cognitive performance data were gathered from participants in all three arms. Biomedical data were only collected from children in the two randomised arms, to evaluate impact of MNP supplementation on anaemia (primary biomedical outcome) in children who received MNPs and those who did not, using a robust study design.
Districts (cercles) of Sikasso and Yorosso, Region of Sikasso
Individuals and communities
Random sample of target population for the intervention in the 90 communities that consented to participate in the trial, namely pre-school children 0-6 years.
Sample survey data [ssd]
The target population for the interventions comprised all children aged 3 months to 6 years, who were resident in the 90 study communities participating in the trial; the primary sampling unit is the individual child.
Sample Frame:
To identify the number of target beneficiaries, a complete census of all children of eligible age was carried out in the 90 study villages in August 2013. The census listing from 2013 thus defined the population of children who are eligible to have received the interventions every year for the three years between 2013-2016; and was used as the sampling frame of children in whom the impact after three years of implementation of the interventions was evaluated. The intention was to evaluate study outcomes in the same child one year after the start of the MNP intervention (May 2014) and again after three years of the intervention (2016).
A random sample of children was drawn from all children listed in the census for each community participating in the trial, according to the following age criteria:
Date of Birth, or Age in August 2013 (Age group in 2016 surveys) (i) Born between 1 Jan 2013 – 30 June 2013, or aged <1 year in 2013 census if DOB not known (3 years) (ii) Born between 1 May 2010 – 30 April 2011, or aged 2 years in census if DOB not known (5 years)
Thus, all children previously randomly selected and enrolled in the evaluation cohort in 2014 were, if still resident in the village and present on the day of the survey, re-surveyed in May 2016.
Sample Size:
Power analysis was undertaken for a comparison of two arms, taking account of clustering by community. Survey data on biomedical and cognitive outcomes collected in 2014 were used to inform sample size assumptions, including prevalence of primary outcomes, intraclass correlation (ICC) and number of children recruited per cluster. Prevalence of anaemia amongst 3-year old children in 2014 was found to be 61.6% and 64.0% in the intervention and control arms respectively (p=0.618) and 53.8% and 51.9% respectively amongst 5-year old children (p=0.582). The observed ICC for anaemia endpoint at baseline was 0.08 in 3-year old children and 0.06 in 5-year old children. Observed ICC for cognitive outcomes measured in 2014 was 0.09, ranging from 0.05 to 0.16 for individual tasks within the cognitive battery.
Sample Size Estimation for Health Outcomes:
Approximately 20-25 children per cluster were recruited into each age cohort in 2013. Power calculations for anaemia (primary endpoint) were undertaken for three alternative scenarios at endline: (i) to allow for the possibility of up to 20% loss to follow up between 2014 and 2016, power calculations were performed for a sample size at endline of 16 children per cluster; (ii) a smaller cluster size of 14 children sampled per village, under a scenario of 30% loss to follow-up; and (iii) unequal clusters, to allow for the possibility that variation in losses to follow-up between villages could result in an unequal number of children sampled in each village. In this case, cluster size is the mean number of children sampled per cluster.
Thus, assuming a conservative prevalence of anaemia of 50% in the control group and ICC of 0.08, a sample size of 30 communities per arm with 14-20 children sampled per community, will under all of these scenarios provide 80% power to detect a reduction in anemia of at least 28% at 5% level of significance.
Sample Size Estimation for Cognitive Outcomes:
Power calculations for cognitive outcomes explored: (i) a smaller cluster size of 14 children sampled per village, for example resulting from a higher than expected loss to follow-up of 30%; (ii) statistical analysis of differences between arms which does not adjust for baseline - a scenario which allows for the possibility to increase the sample size to compensate for losses to follow-up by increased recruitment of new children for whom no baseline data would be available; and (iii) effect of unequal clusters. Thus, for cognitive-linguistic skills, a sample size of 30 communities per arm with 14-20 children in each age cohort sampled per community will provide 80% power to detect an effect size between 0.27-0.29 at 5% level of significance, assuming an (ICC) of 0.10 and individual, household and community-level factors account for at least 25% of variation in cognitive foundation skills. Whilst for a similar sample size of 30 communities per arm with 14-20 children sampled per community and ICC of 0.10, a statistical analysis which does not adjust for baseline will provide 80% power to detect an effect size between 0.28-0.30 at 5% level of significance.
The sample at endline in May 2016 thus comprised a total of up to 600 children aged 3y and 600 children aged 5y at endline in each arm: T1 Intervention group (with ECD): 30 communities, with approx. 40 randomly selected children in each community (20 aged 3y; 20 aged 5y). C1 ECD control group (with ECD): 30 communities, with approx. 40 randomly selected children in each community (20 aged 3y; 20 aged 5y). C2 Comparison group (without ECD): 30 communities, with approx. 40 randomly selected children in each community (20 aged 3y; 20 aged 5y).
Strategy for Absent Respondents/Not Found/Refusals:
Every effort was made to trace children previously recruited into the evaluation cohort. Since some losses-to-follow-up (for example to due to child deaths, outward migration) were expected between 2014 and 2016, the primary strategy was to oversample in 2014. However, for villages where loss-to-follow-up was higher than expected and it was not possible to trace sufficient number of children remaining from the original sample to meet the required sample size per cluster, additional children were recruited into the evaluation survey in 2016. New recruits were selected at random from the children listed as resident in the village at the time of the original census in 2013. All new recruits had thus been resident in the village and exposed to the interventions throughout the three preceding years.
Face-to-face [f2f]
The questionnaires for the parent interview were structured questionnaires. A questionnaire was administered to the child’s primary caregiver
The Tanzania Demographic and Health Survey (TDHS) is a national sample survey of women of reproductive ages (15-49) and men aged 15 to 60. The survey was designed to collect data on socioeconomic characteristics, marriage patterns, birth history, breastfeeding, use of contraception, immunisation of children, accessibility to health and family planning services, treatment of children during times of illness, and the nutritional status of children and their mothers.
The primary objectives of the TDHS were to: - Collect data for the evaluation of family planning and health programmes, - Determine the contraceptive prevalence rate, which will help in the design of future national family planning programmes, and - Assess the demographic situation of the country.
The Tanzania Demographic and Health Survey (TDHS) is a national sample survey. This sample should allow for separate analyses in urban and rural areas, and for estimation of contraceptive use in each of the 20 regions located on the mainland and in Zanzibar.
Sample survey data
The principal objective of the Tanzania Demographic and Health Survey (TDHS) was to collect data on fertility, family planning, and health of the people. This survey involved randomly selected women aged 15-49 and men aged 15-60 in selected households.
Before the sampling frame was developed, two possibilities for the TDHS sample design were considered: - The 1988 Population census list of Enumeration Areas (EAs) - The National Master Sample for Tanzania created in 1986 (NMS).
The NMS was intended mainly for agricultural purposes and, at that time, only for rural areas. The NMS was based on the 1978 Census information while the urban frame was still being worked upon. Therefore, it was decided that the TDHS sample design would use the 1988 Census information as the basic sampling frame. Since the TDHS sample was to be clustered, it was necessary to have sampling units of manageable and fairly uniform size and with very well defined boundaries. The 1988 Census frame provided the list of enumeration area units (EAs) that had well defined boundaries and manageable uniform size. Therefore, EAs were used as primary sampling units (PSUs).
The target of the TDHS sample was about 7850 women age 15-49 with completed interviews. This sample should allow for separate analyses in urban and rural areas, and for estimation of contraceptive use in each of the 20 regions located on the mainland and in Zanzibar. Estimates for large domains (by combination of a group of regions) were also taken into consideration.
The TDHS used a three-stage sample. The frame was stratified by urban and rural areas. The primary sampling units in the TDHS survey were the wards/branches. The design involved the target of 350 completed interviews for each of 19 regions on the mainland and 500 in each of Dar es Salaam and Zanzibar.
In the first stage, the wards/branches were systematically selected with probability proportional to size (according to 1988 census information). In a second sampling stage, two EAs per selected rural ward/branch and one EA per selected urban ward/branch were chosen with probability proportional to size (also according to 1988 census information). In total, 357 EAs were selected for the TDHS, 95 in the urban area and 262 in the rural. A new listing of households was made shortly before the TDHS fieldwork by special teams including a total of 14 field workers. These teams visited the selected EAs all over the country to list the names of the heads of the households and obtain the population composition of each household (total number of persons in the household). In urban areas, the address of the dwelling was also recorded in order to make it easy to identify the household during the main survey. A fixed number of 30 households in each rural EA and 20 in each urban EA were selected.
About 9560 households were needed to achieve the required sample size, assuming 80 percent overall household completion rate.
See detailed sampling information in the APPENDIX B of the final 1991-1992 Tanzania Demographic and Health Survey report.
Face-to-face
The household, female, and male questionnaires were designed by following the Model Questionnaire "B" which is for low contraceptive prevalence countries. Some adaptations were made to suit the Tanzania situation, but the core questions were not changed. The original questionnaire was prepared in English and later translated into Kiswahili, the language that is widely spoken in the country. There are parts in the country where people are not very conversant with Kiswahili and would find it difficult to respond in Kiswahili but would understand when they are asked anything. The translated document was given to another translator to translate it back into English and comparisons were made to determine the differences.
PRETEST
A pretest to assess the viability of the survey instruments, particularly the questionnaires and the field organization, was carried out in Iringa Rural District, Iringa Region. It covered 16 enumeration areas with a total of 320 households. The pretest, which took a month to complete, was carded out in November/December, 1990, and covered both rural and urban EAs.
The pretest training took two weeks and consisted of classroom training and field practice in neighborhood areas. In all, 14 newly recruited interviewers and the Census staff were involved. The Census staffs who were to be transformed into the TDHS team handled the training for both the fieldwork management and the questionnaire. During the later fieldwork, they supervised the field exercise.
During the fieldwork, the administrative structure of the CCM Party, which involved the Party Branch Offices and the ten-cell leadership, were utilized in an effort to secure the maximum confidence and cooperation of the people in the areas where the team was working. At the end of the fieldwork, the interviewers and the supervisory team returned to the head office in Dares Salaam for debriefing and discussion of their field experiences, particularly those related to the questionnaires and the logistic problems that were encountered. All these experiences were used to improve upon the final version of the questionnaires and the overall logistic arrangements.
Out of the 9282 households selected for interview, 8561 households could be located and 8327 were actually interviewed. The shortfall between selected and interviewed households was largely due to the fact that many dwellings were either vacant or destroyed or no competent respondents were present at the time of the interview. A total of 9647 eligible women (i.e., women age 15-49 who spent the night before the interview in a sampled household) were identified for interview, and 9238 women were actually interviewed (96 percent response rate). The main reason for non-interview was absence from the home or incapacitation.
The Tanzania DHS male survey covered men aged between 15 and 60 years who were living in selected households (every fourth household of the female survey). The results of the survey show that 2392 eligible men were identified and 2114 men were interviewed (88 percent response rate). Men were generally not interviewed because they were either incapacitated or not at home during the time of the survey.
The results from sample surveys are affected by two types of errors, non-sampling error and sampling error. Non-sampling error is due to mistakes made in carrying out field activities, such as failure to locate and interview the correct household, errors in the way the questions are asked, misunderstanding on the part of either the interviewer or the respondent, and data entry errors. Although efforts were made to minimize this type of error during the design and implementation of the TDHS, non-sampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be measured statistically. The sample of women selected in the TDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each one would have yielded results that differed somewhat from the actual sample selected. The sampling error is a measure of the variability between all possible samples; although it is not known exactly, it can be estimated from the survey results.
Sampling error is usually measured in terms of standard error of a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which one can be reasonably assured that, apart from non-sampling errors, the true value of the variable for the whole population falls. For example, for any given statistic calculated from a sample survey, the value of that same statistic as measured in 95 percent of all possible samples with the same design (and expected size) will fall within a range of plus or minus two times the standard error of that statistic.
If the sample of women had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the Tanzania DHS sample designs depended on stratification, stages, and clusters. Consequently, it was necessary to utilize more complex formulas. The computer package CLUSTERS, developed by the International Statistical
[1] The Progress by Population Group analysis is a component of the Healthy People 2020 (HP2020) Final Review. The analysis included subsets of the 1,111 measurable HP2020 objectives that have data available for any of six broad population characteristics: sex, race and ethnicity, educational attainment, family income, disability status, and geographic location. Progress toward meeting HP2020 targets is presented for up to 24 population groups within these characteristics, based on objective data aggregated across HP2020 topic areas. The Progress by Population Group data are also available at the individual objective level in the downloadable data set. [2] The final value was generally based on data available on the HP2020 website as of January 2020. For objectives that are continuing into HP2030, more recent data will be included on the HP2030 website as it becomes available: https://health.gov/healthypeople. [3] For more information on the HP2020 methodology for measuring progress toward target attainment and the elimination of health disparities, see: Healthy People Statistical Notes, no 27; available from: https://www.cdc.gov/nchs/data/statnt/statnt27.pdf. [4] Status for objectives included in the HP2020 Progress by Population Group analysis was determined using the baseline, final, and target value. The progress status categories used in HP2020 were: a. Target met or exceeded—One of the following applies: (i) At baseline, the target was not met or exceeded, and the most recent value was equal to or exceeded the target (the percentage of targeted change achieved was equal to or greater than 100%); (ii) The baseline and most recent values were equal to or exceeded the target (the percentage of targeted change achieved was not assessed). b. Improved—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved 10% or more of the targeted change. c. Little or no detectable change—One of the following applies: (i) Movement was toward the target, standard errors were available, and the percentage of targeted change achieved was not statistically significant; (ii) Movement was toward the target, standard errors were not available, and the objective had achieved less than 10% of the targeted change; (iii) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was not statistically significant; (iv) Movement was away from the baseline and target, standard errors were not available, and the objective had moved less than 10% relative to the baseline; (v) No change was observed between the baseline and the final data point. d. Got worse—One of the following applies: (i) Movement was away from the baseline and target, standard errors were available, and the percent change relative to the baseline was statistically significant; (ii) Movement was away from the baseline and target, standard errors were not available, and the objective had moved 10% or more relative to the baseline. NOTE: Measurable objectives had baseline data. SOURCE: National Center for Health Statistics, Healthy People 2020 Progress by Population Group database.
IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.
The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.
National coverage
Dwelling
UNITS IDENTIFIED: - Dwellings: No - Households: Yes - Individuals: Yes - Group quarters: Yes
UNIT DESCRIPTIONS: - Group quarters: A collective household is a group of persons that does not live in an ordinary household, but lives in a collective establishment, sharing meal times.
Residents of France, of any nationality. Does not include French citizens living in other countries, foreign tourists, or people passing through.
Census/enumeration data [cen]
SAMPLE DESIGN: Systematic manual sorting into lots with different sample units according to target population. Lots divide the population into different samples (1/4 and 3/4). 1/20 sample is selected from 1/4 sample.
SAMPLE UNIT: Private dwellings and individuals for group quarters and compte a part
SAMPLE FRACTION: 5%
SAMPLE UNIVERSE: The microdata sample includes mainland France.
SAMPLE SIZE (person records): 2,631,713
Face-to-face [f2f]
Separate forms for buildings, group quarters (collective households), group quarters (compte a part), private households, and boats. Four forms for individuals (living in group quarters and private dwellings; two different forms for people compte a part; living in boats).
Of the surveyed U.S. mobile health clinics that reported on the specific groups they target, the two most common responses were the uninsured and those with low income. This statistic shows the percentage of mobile health clinics in the United States that target specific populations, in the period 2007 to 2017.
The main objectives of the study were to assess the knowledge and beliefs of high-risk groups about STI and HIV, determine the prevalence of HIV infection and syphilis among these groups and obtain baseline data that will permit comparisons of risk behaviours, HIV infection and syphilis over time.
Six selected states
State, group, individual
The Integrated Biological and Behavioural Surveillance Survey 2007 covered only males and females aged up to 15-49 years among seven sub-populations at risk of HIV in six selected states of Nigeria, namely Female Sex Workers (both brothel- and non-brothel-based), men who have sex with men (MSM), injecting drug users (IDU), members of the armed forces, police, and transport workers (TW).
Sample survey data [ssd]
In order to reach a representative sample of all groups involved in the 2007 IBBSS, a number of different sampling techniques were used depending on the group in question, including simple random sampling (SRS), cluster sampling (probability proportionate to size (PPS) for fixed populations), time-location sampling (TLS) and respondent-driven sampling (RDS). For MSM and IDU, the RDS method was used, while a TLS technique was used to select non-brothel-based FSW and TW. The brothel-based FSW, armed forces, and police were selected using a two-stage cluster sampling technique. The take all (TA) sampling method was used when the desired sample size was not attainable based on the results of target population mapping.
ITLS is a form of cluster sampling that contains both time and location dimensions. TLS provides the opportunity to reach members of a target population who access certain locations at any point in time. The process starts by creating time * location PSU (PSU that have both a time and a location dimensions) from which a random sample is selected. At the second stage all or a sub-sample of randomly selected population members who appear at the site during a designated time interval of fixed length, for example 4 hours, are interviewed. To the extent that all members of a target population access the locations at some point in time, TLS is a probability sampling method because: (i) all population members have a non-zero chance of selection as long as the TLS frame is complete; and (ii) the selection probabilities can be calculated by taking the time dimension as well as the space dimension into account.
RDS is a method that combines "snowball sampling" with a mathematical model that weights the sample to compensate for the fact that the sample was collected in a non-random way. Characterized by long referral chains (to ensure that all members of the target population can be reached) and a statistical theory of the sampling process which controls for bias including the effects of choice of seeds and differences in network size, RDS overcomes the shortcomings of institutional sampling (coverage) and snow-ball type methods (statistical validity). By making chain-referral into a probability sampling method and consequently resolving the dilemma of a choice between coverage and statistical validity, RDS has become the most appropriate method for reaching the hard-to-reach population groups. The RDS process starts with the recruitment of the initial seeds each of whom recruits a maximum of two to three members from their population group.
Cluster samples were chosen randomly based on sampling frames developed through the mapping process. This process was to identify places where potential subjects could be reached and sampled. Field work for the mapping exercise was performed over one week. Due to the limited period some hidden populations may not be adequately represented in sampling frames.
Face-to-face [f2f]
The questionnaire was designed in collaboration with FMOH, SFH, CDC, WHO, UNAIDS and other stakeholders. At both central- and state-level trainings, each question in the questionnaire was reviewed and role-played and possible challenges were identified and addressed. The questionnaire of Integrated Biological and Behavioural Surveillance Survey 2007 was grouped into fifteen sections
Section 0: Identification particularsBackground characteristics Section 1: Background characteristics Section 2: Marriage and partnerships Section 3: Sexual history numbers and types of partners Section 4: Sexual history-regular partners (for those with spouse/live-in sexual partners only; for MSM, female spouse/live-in sexual partners only) Section 5: Sexual history-boy friends/girl friends (for those with boy friends/girl friends sexual partners only; for MSM, female boy friends/girl friends sexual partners only) Section 6: Sexual history-purchasing sex (male only) (for those with commercial sex partners only; for MSM, female commercial sex partners only) Section 7: Sexual history-casual-non regular non-paying sexual partners (for those with casual sexual partners only; for MSM, female casual sexual partners only) Section 8: Selling sex (for female populatios only) Section 9: Social habits (all groups) Section 10: Dru use/needle sharing (all population reporting drug injection in the past 12 months) Section 11: MSM-men who have sex with men (ask all respondents) Section 12: STIs (ask all respondents) Section 13: Knowledge, opinions, and attitudes towards HIV/AIDS (ask all respondents) Section 12: Exposure to interventions
After data entry, the data was cleaned using STATA 10. Frequency counts were carried out to check consistency and assess cleaniness of the database. The data cleaning also included the following:
Searching for ages outside the age range criteria; Cross-checking all corresponding skips to the questionnaire; Reviewing the cluster allocations; Cross-checking the questionnaire completion responses from the interviewers in the database with the records in the supervisors log to ensure they matched; Tallying the supervisors log of blood samples collected to ensure that recorded numbers of samples collected matched the results recorded in the database; and Consistency checks involving cross-checking answers to related questions.
There were 11,175 individuals selected for this study out of whom 0.8% and 8.1% refused to participate in behavioural and biological componenets of the study respectively.
Non-brothel based FSW had the highest refusal rate of 2.7% and 19.4% for behavioural and biological components respectively, followed by brothel-based FSW at 2.2% and 13.1% respectively. Refusal rates for the behavioural component were less than 0.5% for other groups.
For the biological component, refusal rates were 3% for police, 0.8% for the armed forces, 1 .2% for TW, 4.6% for MSM, and 3.3% for IDU.
No sampling error estimate
A template for the questionnaire was designed with pre-programmed consistency checks for cross-checking answers, including skips and eligibility criteria. Laboratory data forms were collected on a periodic basis from the central laboratories and brought to the same centralized location for data entry. At least 25% of the questionnaires entered daily by each data entry clerk had the behaviour and other non-biological data entered, while 100% double-data entry was achieved for the biological data for quality control purposes. The data entry clerks were supervised by three supervisors who reviewed and validated all questionnaires entered.
This statistic shows the distribution of target populations of online education programs in the United States in 2019. In 2019, ** percent of respondents stated that their online education programs were aimed at adult students returning to school after an absence.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic distribution of the target population and the study sample.
In 2009, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway and Switzerland. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2009 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
This is a mixed-methods data collection. This study used Respondent Driven Sampling (RDS) methodology, which is a sampling method designed to generate unbiased estimates of population characteristics for populations where a sampling frame is not available. It is a form of snowball or link-tracing sampling, where respondents are given coupons to recruit other members of the target population, and where respondents are rewarded for both participating and for recruiting others. In addition to variables of interest, data are collected on the number of members of the target population each participant knows. Estimation methods are then applied to account for the non-random sample selection in an attempt to generate unbiased estimates for the target population.
In 2010, the researchers conducted an RDS study in a rural Ugandan population where total population data were available. The aim of this study was to evaluate whether RDS could generate representative data on a rural Ugandan population by comparing estimates from an RDS survey with total-population data. The data used to define the target population (male household heads) were available from an ongoing general population cohort of 25 villages in rural Masaka, Uganda covering an area of approximately 38km. Annually, households in the study villages are mapped and after obtaining consent, a total-population household census and an individual questionnaire are administered and blood taken for HIV-1 testing. A random sample of eligible men in the target population who were not recruited during the RDS study were also interviewed, using the same RDS questionnaire. Finally, 49 qualitative interviews (of which summaries have been deposited) were conducted with a range of people (men and women) including RDS participants and non-participants, and RDS interviewers. These data can be used to evaluate the RDS sampling method, and to test new RDS estimators.
Further information may be found in the documentation and in the journal articles listed in the Publications section.
Special Licence access and geographic data
This data collection is subject to Special Licence access conditions (see Access section for details). Data are analysable at individual village level, and GPS point data are available for the villages and interview sites. Finer detail geographic variables may be available for certain research questions. If these are required, users should request this when making their Special Licence application.
The PIRLS 2006 aimed to generate a database of student achievement data in addition to information on student, parent, teacher, and school background data for the 47 areas that participated in PIRLS 2006.
Nationally representative
Units of analysis in the study are schools, students, parents and teachers.
PIRLS is a study of student achievement in reading comprehension in primary school, and is targeted at the grade level in which students are at the transition from learning to read to reading to learn, which is the fourth grade in most countries. The formal definition of the PIRLS target population makes use of UNESCO's International Standard Classification of Education (ISCED) in identifying the appropriate target grade:
"…all students enrolled in the grade that represents four years of schooling, counting from the first year of ISCED Level 1, providing the mean age at the time of testing is at least 9.5 years. For most countries, the target grade should be the fourth grade, or its national equivalent."
ISCED Level 1 corresponds to primary education or the first stage of basic education, and should mark the beginning of "systematic apprenticeship of reading, writing, and mathematics" (UNESCO, 1999). By the fourth year of Level 1, students have had 4 years of formal instruction in reading, and are in the process of becoming independent readers. In IEA studies, the above definition corresponds to what is known as the international desired target population. Each participating country was expected to define its national desired population to correspond as closely as possible to this definition (i.e., its fourth grade of primary school). In order to measure trends, it was critical that countries that participated in PIRLS 2001, the previous cycle of PIRLS, choose the same target grade for PIRLS 2006 that was used in PIRLS 2001. Information about the target grade in each country is provided in Chapter 9 of the PIRLS 2006 Technical Report.
Although countries were expected to include all students in the target grade in their definition of the population, sometimes it was not possible to include all students who fell under the definition of the international desired target population. Consequently, occasionally a country's national desired target population excluded some section of the population, based on geographic or linguistic constraints. For example, Lithuania's national desired target population included only students in Lithuanian-speaking schools, representing approximately 93 percent of the international desired population of students in the country. PIRLS participants were expected to ensure that the national defined population included at least 95 percent of the national desired population of students. Exclusions (which had to be kept to a minimum) could occur at the school level, within the sampled schools, or both. Although countries were expected to do everything possible to maximize coverage of the national desired population, school-level exclusions sometimes were necessary. Keeping within the 95 percent limit, school-level exclusions could include schools that:
The difference between these school-level exclusions and those at the previous level is that these schools were included as part of the sampling frame (i.e., the list of schools to be sampled). Th ey then were eliminated on an individual basis if it was not feasible to include them in the testing.
In many education systems, students with special educational needs are included in ordinary classes. Due to this fact, another level of exclusions is necessary to reach an eff ective target population-the population of students who ultimately will be tested. These are called within-school exclusions and pertain to students who are unable to be tested for a particular reason but are part of a regular classroom. There are three types of within-school exclusions.
Students eligible for within-school exclusion were identified by staff at the schools and could still be administered the test if the school did not want the student to feel out of place during the assessment (though the data from these students were not included in any analyses). Again, it was important to ensure that this population was as close to the national desired target population as possible. If combined, school-level and within-school exclusions exceeded 5 percent of the national desired target population, results were annotated in the PIRLS 2006 International Report (Mullis, Martin, Kennedy, & Foy, 2007). Target population coverage and exclusion rates are displayed for each country in Chapter 9 of the PIRLS 2006 Technical Report. Descriptions of the countries' school-level and within-school exclusions can be found in Appendix B of the PIRLS 2006 Technical Report.
Sample survey data [ssd]
The basic sample design used in PIRLS 2006 is known as a two-stage stratified cluster design, with the first stage consisting of a sample of schools, and the second stage consisting of a sample of intact classrooms from the target grade in the sampled schools. While all participants adopted this basic two-stage design, four countries, with approval from the PIRLS sampling consultants, added an extra sampling stage. The Russian Federation and the United States introduced a preliminary sampling stage, (first sampling regions in the case of the Russian Federation and primary sampling units consisting of metropolitan areas and counties in the case of the United States). Morocco and Singapore also added a third sampling stage; in these cases, sub-sampling students within classrooms rather than selecting intact classes.
For countries participating in PIRLS 2006, school stratification was used to enhance the precision of the survey results. Many participants employed explicit stratification, where the complete school sampling frame was divided into smaller sampling frames according to some criterion, such as region, to ensurea predetermined number of schools sampled for each stratum. For example, Austria divided its sampling frame into nine regions to ensure proportional representation by region (see Appendix B for stratification information for each country). Stratification also could be done implicitly, a procedure by which schools in a sampling frame were sorted according to a set of stratification variables prior to sampling. For example, Austria employed implicit stratification by district and school size within each regional stratum. Regardless of the other stratification variables used, all countries used implicit stratification by a measure of size (MOS) of the school.
All countries used a systematic (random start, fixed interval) probability proportional-to-size (PPS) sampling approach to sample schools. Note that when this method is combined with an implicit stratification procedure, the allocation of schools in the sample is proportional to the size of the implicit strata. Within the sampled schools, classes were sampled using a systematic random method in all countries except Morocco and Singapore, where classes were sampled with probability proportional to size, and students within classes sampled with equal probability. The PIRLS 2006 sample designs were implemented in an acceptable manner by all participants.
8 National Research Coordinators (NRCs) encountered organizational constraints in their systems that necessitated deviations from the sample design. In each case, the Statistics Canada sampling expert was consulted to ensure that the altered design remained compatible with the PIRLS standards.
These country specific deviations from sample design are detailed in Appendix B of the PIRLS 2006 Technical Report (page 231) attached as Related Material.
Face-to-face [f2f]
PIRLS Background Questionnaires By gathering information about children’s experiences together with reading achievement on the PIRLS test, it is possible to identify the factors or combinations of factors that relate to high reading literacy. An important part of the PIRLS design is a set of questionnaires targeting factors related to reading literacy. PIRLS administered four questionnaires: to the tested students, to their parents, to their reading teachers, and to their school principals.
Student Questionnaire Each student taking the PIRLS reading assessment completes the student questionnaire. The questionnaire asks about aspects of students’ home and school experiences - including instructional experiences and reading for homework, self-perceptions and attitudes towards reading, out-of-school reading habits, computer use, home literacy resources, and basic demographic information.
Learning to Read (Home) Survey The learning to read survey is completed by the parents or primary caregivers of each student taking the PIRLS reading assessment. It addresses child-parent literacy interactions, home literacy resources, parents’ reading habits and attitudes, homeschool connections, and basic demographic and socioeconomic indicators.
Teacher Questionnaire The reading teacher of each fourth-grade class sampled for PIRLS completes a questionnaire designed to gather information about classroom contexts for developing reading literacy. This questionnaire
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Population, Enrollment, and Personal Income: U.S. and State: 2012 - 2023.Table ID.GOVSTIMESERIES.GS00SS16.Survey/Program.Public Sector.Year.2024.Dataset.PUB Public Sector Annual Surveys and Census of Governments.Source.U.S. Census Bureau, Public Sector.Release Date.2025-05-01.Release Schedule.The Annual Survey of School System Finances occurs every year. Data are typically released in early May. There are approximately two years between the reference period and data release..Dataset Universe.Census of Governments - Organization (CG):The universe of this file is all federal, state, and local government units in the United States. In addition to the federal government and the 50 state governments, the Census Bureau recognizes five basic types of local governments. The government types are: County, Municipal, Township, Special District, and School District. Of these five types, three are categorized as General Purpose governments: County, municipal, and township governments are readily recognized and generally present no serious problem of classification. However, legislative provisions for school district and special district governments are diverse. These two types are categorized as Special Purpose governments. Numerous single-function and multiple-function districts, authorities, commissions, boards, and other entities, which have varying degrees of autonomy, exist in the United States. The basic pattern of these entities varies widely from state to state. Moreover, various classes of local governments within a particular state also differ in their characteristics. Refer to the Individual State Descriptions report for an overview of all government entities authorized by state.The Public Use File provides a listing of all independent government units, and dependent school districts active as of fiscal year ending June 30, 2024. The Annual Surveys of Public Employment & Payroll (EP) and State and Local Government Finances (LF):The target population consists of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Survey of Public Pensions (PP):The target population consists of state- and locally-administered defined benefit funds and systems of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Surveys of State Government Finance (SG) and State Government Tax Collections (TC):The target population consists of all 50 state governments. No local governments are included. For the purpose of Census Bureau statistics, the term "state government" refers not only to the executive, legislative, and judicial branches of a given state, but it also includes agencies, institutions, commissions, and public authorities that operate separately or somewhat autonomously from the central state government but where the state government maintains administrative or fiscal control over their activities as defined by the Census Bureau. Additional details are available in the survey methodology description.The Annual Survey of School System Finances (SS):The Annual Survey of School System Finances targets all public school systems providing elementary and/or secondary education in all 50 states and the District of Columbia..Methodology.Data Items and Other Identifying Records.State population (in thousands)Fall enrollmentPersonal income (prior calendar year, in million dollars)Definitions can be found by clicking on the column header in the table or by accessing the Glossary.For detailed information, see Government Finance and Employment Classification Manual..Unit(s) of Observation.The basic reporting unit is the governmental unit, defined as an organized entity which in addition to having governmental character, has sufficient discretion in the management of its own affairs to distinguish it as separate from the administrative structure of any other governmental unit.The reporting units for the Annual Survey of School System Finances are public school systems that provide elementary and/or secondary education. The term "public school systems" includes two types of government entities with responsibility for providing education services: (1) school districts that are administratively and fiscally independent of any other government and are counted as separate governments; and (2) public school system...
Most countries collect official statistics on energy use due to its vital role in the infrastructure, economy and living standards.
In Palestine, additional attention is warranted for energy statistics due to a scarcity of natural resources, the high cost of energy and high population density. These factors demand comprehensive and high quality statistics.
In this contest PCBS decided to conduct a special Energy Consumption in Transport Survey to provide high quality data about energy consumption by type, expenditure on maintenance and insurance for vehicles, and questions on vehicles motor capacity and year of production.
The survey aimed to provide data on energy consumption by transport sector and also on the energy consumption by the type of vehicles and its motor capacity and year of production.
Palestine
Vehicles
All the operating vehicles in Palestine in 2014.
Sample survey data [ssd]
Target Population: All the operating vehicles in Palestine in 2014.
2.1Sample Frame A list of the number of the operating vehicles in Palestine in 2014, they are broken down by governorates and vehicle types, this list was obtained from Ministry of transport.
2.2.1 Sample size The sample size is 6,974 vehicles.
2.2.2 Sampling Design it is stratified random sample, and in some of the small size strata the quota sample was used to cover them.
The method of reaching the vehicles sample was through : 1-reaching to all the dynamometers (the centers for testing the vehicles) 2-selecting a random sample of vehicles by type of vehicle, model, fuel type and engine capacity
Face-to-face [f2f]
The design of the questionnaire was based on the experiences of other similar countries in energy statistics subject to cover the most important indicators for energy statistics in transport sector, taking into account Palestine's particular situation.
The data processing stage consisted of the following operations: Editing and coding prior to data entry: all questionnaires were edited and coded in the office using the same instructions adopted for editing in the field.
Data entry: The survey questionnaire was uploaded on office computers. At this stage, data were entered into the computer using a data entry template developed in Access Database. The data entry program was prepared to satisfy a number of requirements: ·To prevent the duplication of questionnaires during data entry. ·To apply checks on the integrity and consistency of entered data. ·To handle errors in a user friendly manner. ·The ability to transfer captured data to another format for data analysis using statistical analysis software such as SPSS. Audit after data entered at this stage is data entered scrutiny by pulling the data entered file periodically and review the data and examination of abnormal values and check consistency between the different questions in the questionnaire, and if there are any errors in the data entered to be the withdrawal of the questionnaire and make sure this data and adjusted, even been getting the final data file that is the final extract data from it. Extraction Results: The extract final results of the report by using the SPSS program, and then display the results through tables to Excel format.
80.7%
Data of this survey may be affected by sampling errors due to use of a sample and not a complete enumeration. Therefore, certain differences are anticipated in comparison with the real values obtained through censuses. The variance was calculated for the most important indicators: the variance table is attached with the final report. There is no problem in the dissemination of results at national and regional level (North, Middle, South of West Bank, Gaza Strip).
The survey sample consisted of around 6,974 vehicles, of which 5,631 vehicles completed the questionnaire, 3,652 vehicles from the West Bank and 1,979 vehicles in Gaza Strip.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Baseline characteristics distributions in the target population, (not) preselected women, (not) included women, and women retained in the study, FemCure.
To improve the situation the PCBS has decided to undertake a fairly large demographic survey The main purpose of this survey is to provide basic demographic estimates at both the national and district level filling important gaps in existing statistics and reducing uncertainties surrounding the utility of available data Specifically, the survey provides detailed data on the following topics Population structure Female fertility Fertility preference Infant and child mortality Maternal and adult mortality Internal and international migration Marriage Family and household composition Educational attainmentHousing conditions
The target population consists of all Palestinian households that usually reside in the West Bank and Gaza Strip
individual/ Household
The target population in this sample survey comprises all households living in West Bank and Gaza Strip excluding institutional population and nomads
Sample survey data [ssd]
A sampling strategy comprises two main elements: a sample design describing the scheme by which the sample of survey units is selected, and the estimators by which survey results can be computed from sample data. The two elements are usually closely interrelated, and determine the quality or reliability of survey estimates. In this section both elements will be described briefly. A more detailed description is provided in a separate working paper (Abu Hassan and Tamsfoss 1995).
The sample design adopted is a stratified three stage design for selection of households to be surveyed. At the first stage a sample of localities was selected. The sample localities have been subdivided into cells of approximately equal size, and a number of cells were selected randomly from each of the sample localities at the second stage. At the third and final stage, a sample of households was selected from the sample cells. For all the demographic variables included in the survey, records were taken for all members of the sample household.
Although a two-stage design would have been preferable, the present, more complex one is partly an outcome of limited availability of data on which sample designing usually is based, specifically data on the population size of various small area units, e.g. cells. The sample designing was undertaken in parallel with the updating of maps for the localities in the West Bank and Gaza Strip during the winter and spring 1995 - another ongoing PCBS project. Due to the limited time available, the design had to be completed before a complete set of updated locality maps was ready, implying the small area information needed was available for only a limited number of localities. However, the map updating was coordinated with the sample designing in such a way that once the first stage sample of localities was selected, mapping of these localities was given highest priority, thus offering an opportunity to subdivide sample localities into cells with a known measure of (population) size.
The present design is based on listings of localities provided by Barghouti and Daibas (1993) for the West Bank, and Abdeen and Abu-Libdeh (1993) for the Gaza Strip. Even though the population figures are rough estimates as per 1992-93, produced mainly by questioning local administration informants (e.g. Mukhtars) about the number of families in the locality, or projected estimates, they appear to be fairly well attuned with other sources (e.g. Benvenisti and Khayat 1988). Furthermore, the listings applied as a frame comprise more localities than previous ones, and should thus be more complete. However, the coverage may still be less than - although close to - 100% in terms of areas.
The first stage comprises the assigning of localities (as listed by Barghouti and Daibas 1993; Abdeen and Abu Libdeh 1993) to be the Primary Sampling Units (PSUs), the stratification of the PSUs, and the selection of sample PSUs from each stratum. The stratification is a subdivision of the PSUs according to district, administrative status of the locality, and estimated population (households) size. The PSUs were selected independently for each stratum, and with probability proportionate to estimated population size. In the Gaza Strip all localities were selected. The same applies to the district capitals, municipal localities and refugee camps in the West Bank, except in two strata in A Ramallah district. Whenever all PSUs in a stratum are selected, the design is a two stage one, and each single PSU is to be regarded as a separate substratum. The two stage design also applies for several of the small villages (single cell localities). As a matter of fact, the major parts of the sample is selected in two stages only, contributing favorably to smaller sampling error as compared to a strict three stage design.
The second stage subdivision of sample PSUs into cells (or Secondary Sampling Units - SSUs) was done on maps indicating location of buildings and a rough estimate of the number of dwelling in each building. Thus, for each sample PSU or locality as a whole, there are two size measures available; the estimated number of households, and the roughly estimated number of dwelling units. Although these sets of measures proved to be positively correlated, they departed significantly in most cases. However, for the cells, the number of dwelling units were the only measure of size available. Therefore, when selecting the sample cells from each sample PSU with probability proportionate to size, the size in terms of dwelling units had to be applied, i.e. a conceptually different size measure than the one applied at the first stage of selection (households).
For each sample cell the population has been listed by enumeration of buildings (map reference), and dwelling units. It should be noted that the number of dwelling units in each building was assessed by listers from outside no thorough inquiries were made as to whether they were inhabited or not. It was thus expected that errors would occur rather frequently - a problem which is to be evaluated separately on the basis of data collected during the survey. The listing of dwelling units constitutes the Sampling Frame from which the household sample was selected at a third stage by systematic sampling.
The planned sample size was 15,000 households. However, due to the sampling frame imperfections which were envisaged (several non-eligible units included), oversampling was carried out at a rate of approximately 30%, i.e. the gross sample selected at the outset comprised around 20,000 dwelling units.
The sampling design and sample allocation yield a household sample with varying inclusion probabilities. In order to have unbiased results, it is thus recommended that all estimates are based on weighed observations, the weights being the inverse of the respective inclusion probabilities.
All households in a cell have the same probability of being selected, however varying from cell to cell. It should be noted that non-eligible dwelling units (i.e. units which are not inhabited by households) have been removed from the sample. This does not affect the inclusion probabilities or the weights . The actual values of the weights are in the range 0.3 to 3.0. However, 80 % of the weights are in the range 0.7 to 1.4. Only a very few (small) cells are near the extremes.
Since the sampling design is a complex multi-stage one, variance must be calculated with other methods than those applicable to simple random sampling. In order to carry out the calculations, the software CENVAR (US Bureau of the Census 1993) has been used.
Face-to-face [f2f]
e Demographic Survey questionnaire consists of seven main parts Control Sheet which includes items related to quality control sample identification interview schedule and interview results Household Roster which includes questions related to the demographic and socio-economic characteristics of persons Household Mortality Schedule which includes questions related to deaths in the household during the past 24 months. Housing Schedule which includes questions on housing and housing conditions Relatives Abroad Schedule which includes questions on the number and the demographic characteristics of close relatives residing abroad Women's Schedule which includes questions mainly related to ever married women age 14-54 years Birth History which includes questions related to the characteristics of all births occurring to ever married women eligible for interview Answers to the first five parts of the questionnaires were obtained by interviewing the household head or any adult member of the household in cases where the head was not present during enumeration The last two sections of the questionnaire were completed by interviewing all eligible women The questionnaire was worded in colloquial Arabic Questions were written in full on the questionnaire and strict instructions were given to interviewers to read all questions verbatim during the interviews
A data entry template was designed to reflect an exact image of the questionnaire, and included various electronic checks logical check range checks consisting checks and cross-validation Weekly thorough checks on the overall consistency of the data files and sample allocation were also performed after data entry Questionnaire containing field-related errors were sent back to the field for corrections EPI-INFO Version 6.02 supported with NAFITHA-Version 4.00 (Arabization program) was used
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Population of Subcounty General-Purpose Governments by Population-Size Group: U.S. and State: 2012 - 2022.Table ID.GOVSTIMESERIES.CG00ORG07.Survey/Program.Public Sector.Year.2024.Dataset.PUB Public Sector Annual Surveys and Census of Governments.Source.U.S. Census Bureau, Public Sector.Release Date.2023-08-24.Release Schedule.For information about Census of Governments planned data product releases, see https://www.census.gov/programs-surveys/gus/newsroom/updates.html.Dataset Universe.Census of Governments - Organization (CG):The universe of this file is all federal, state, and local government units in the United States. In addition to the federal government and the 50 state governments, the Census Bureau recognizes five basic types of local governments. The government types are: County, Municipal, Township, Special District, and School District. Of these five types, three are categorized as General Purpose governments: County, municipal, and township governments are readily recognized and generally present no serious problem of classification. However, legislative provisions for school district and special district governments are diverse. These two types are categorized as Special Purpose governments. Numerous single-function and multiple-function districts, authorities, commissions, boards, and other entities, which have varying degrees of autonomy, exist in the United States. The basic pattern of these entities varies widely from state to state. Moreover, various classes of local governments within a particular state also differ in their characteristics. Refer to the Individual State Descriptions report for an overview of all government entities authorized by state.The Public Use File provides a listing of all independent government units, and dependent school districts active as of fiscal year ending June 30, 2024. The Annual Surveys of Public Employment & Payroll (EP) and State and Local Government Finances (LF):The target population consists of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Survey of Public Pensions (PP):The target population consists of state- and locally-administered defined benefit funds and systems of all 50 state governments, the District of Columbia, and a sample of local governmental units (counties, cities, townships, special districts, school districts). In years ending in '2' and '7' the entire universe is canvassed. In intervening years, a sample of the target population is surveyed. Additional details on sampling are available in the survey methodology descriptions for those years.The Annual Surveys of State Government Finance (SG) and State Government Tax Collections (TC):The target population consists of all 50 state governments. No local governments are included. For the purpose of Census Bureau statistics, the term "state government" refers not only to the executive, legislative, and judicial branches of a given state, but it also includes agencies, institutions, commissions, and public authorities that operate separately or somewhat autonomously from the central state government but where the state government maintains administrative or fiscal control over their activities as defined by the Census Bureau. Additional details are available in the survey methodology description.The Annual Survey of School System Finances (SS):The Annual Survey of School System Finances targets all public school systems providing elementary and/or secondary education in all 50 states and the District of Columbia..Methodology.Data Items and Other Identifying Records.Percent of population in areas with municipal governmentsPercent of population in areas with township governmentsPopulation-size group - Municipal Governments - Less than 1,000 - PopulationPopulation-size group - Municipal Governments - 1,000 to 2,499 - PopulationPopulation-size group - Municipal Governments - 2,500 to 4,999 - PopulationPopulation-size group - Municipal Governments - 5,000 to 9,999 - PopulationPopulation-size group - Municipal Governments - 10,000 to 24,999 - PopulationPopulation-size group - Municipal Governments - 25,000 to 49,999 - PopulationPopulation-size group - Municipal Governments - 50,000 to 99,999 - PopulationPopulation-size group - Municipal Governments - 100,000 to 199,999 - PopulationPopulation-size group - Municipal Governments - 200,000 to 299,999 - PopulationPopulation-size group - Municipal Governments - 300,000 or more - PopulationPopulation-size group - Township Governments - Less than 1,000 - PopulationPopulation-size group - Township Governments - 1,000 to 2,499 - PopulationPopulation-size group - ...
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which
Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.
The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.
The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.
The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.
The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.
There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.
Households and individuals
The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.
If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.
The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.
Sample survey data [ssd]
SAMPLING GUIDELINES FOR WHS
Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.
The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.
The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.
All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO
STRATIFICATION
Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.
Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).
Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.
MULTI-STAGE CLUSTER SELECTION
A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.
In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.
In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.
It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which