2 datasets found
  1. DICOM converted Slide Microscopy images for the TCGA-READ collection

    • zenodo.org
    bin
    Updated Aug 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the TCGA-READ collection [Dataset]. http://doi.org/10.5281/zenodo.12689999
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-READ. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

    Collection description

    The Cancer Genome Atlas-Rectum Adenocarcinoma (TCGA-READ) data collection is part of a larger effort to enhance the TCGA http://cancergenome.nih.gov/ data set with characterized radiological images. The Cancer Imaging Program (CIP), with the cooperation of several TCGA tissue-contributing institutions, has archived a large portion of the radiological images of the genetically-analyzed READ cases.


    Please see the TCGA-READ wiki page to learn more about the images and to obtain any supporting metadata for this collection.

    Files included

    A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

    1. tcga_read-idc_v8-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
    2. tcga_read-idc_v8-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
    3. tcga_read-idc_v8-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

    Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

    Download instructions

    Each of the manifests include instructions in the header on how to download the included files.

    To download the files using .s5cmd manifests:

    1. install idc-index package: pip install --upgrade idc-index
    2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

    To download the files using .dcf manifest, see manifest header.

    Acknowledgments

    Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

    References

    [1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

  2. Additional file 2 of CICERO: a versatile method for detecting complex and...

    • springernature.figshare.com
    xlsx
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liqing Tian; Yongjin Li; Michael N. Edmonson; Xin Zhou; Scott Newman; Clay McLeod; Andrew Thrasher; Yu Liu; Bo Tang; Michael C. Rusch; John Easton; Jing Ma; Eric Davis; Austyn Trull; J. Robert Michael; Karol Szlachta; Charles Mullighan; Suzanne J. Baker; James R. Downing; David W. Ellison; Jinghui Zhang (2024). Additional file 2 of CICERO: a versatile method for detecting complex and diverse driver fusions using cancer RNA sequencing data [Dataset]. http://doi.org/10.6084/m9.figshare.12502682.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 28, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Liqing Tian; Yongjin Li; Michael N. Edmonson; Xin Zhou; Scott Newman; Clay McLeod; Andrew Thrasher; Yu Liu; Bo Tang; Michael C. Rusch; John Easton; Jing Ma; Eric Davis; Austyn Trull; J. Robert Michael; Karol Szlachta; Charles Mullighan; Suzanne J. Baker; James R. Downing; David W. Ellison; Jinghui Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 2. Additional tables. This file contains information about benchmark samples (tab 1), performance evaluation of benchmark samples by different algorithms (tab 2), sample information about TCGA GBM cohort (tab 3), cancer gene fusions identified in TCGA GBM cohort (tab 4 & 5) and reference files used in CICERO analysis (tab 6).

  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim (2024). DICOM converted Slide Microscopy images for the TCGA-READ collection [Dataset]. http://doi.org/10.5281/zenodo.12689999
Organization logo

DICOM converted Slide Microscopy images for the TCGA-READ collection

Related Article
Explore at:
binAvailable download formats
Dataset updated
Aug 20, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
David Clunie; David Clunie; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim; Andrey Fedorov; Andrey Fedorov; William Clifford; David Pot; Ulrike Wagner; Keyvan Farahani; Erika Kim
License

Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically

Description

This dataset corresponds to a collection of images and/or image-derived data available from National Cancer Institute Imaging Data Commons (IDC) [1]. This dataset was converted into DICOM representation and ingested by the IDC team. You can explore and visualize the corresponding images using IDC Portal here: TCGA-READ. You can use the manifests included in this Zenodo record to download the content of the collection following the Download instructions below.

Collection description

The Cancer Genome Atlas-Rectum Adenocarcinoma (TCGA-READ) data collection is part of a larger effort to enhance the TCGA http://cancergenome.nih.gov/ data set with characterized radiological images. The Cancer Imaging Program (CIP), with the cooperation of several TCGA tissue-contributing institutions, has archived a large portion of the radiological images of the genetically-analyzed READ cases.


Please see the TCGA-READ wiki page to learn more about the images and to obtain any supporting metadata for this collection.

Files included

A manifest file's name indicates the IDC data release in which a version of collection data was first introduced. For example, collection_id-idc_v8-aws.s5cmd corresponds to the contents of the collection_id collection introduced in IDC data release v8. If there is a subsequent version of this Zenodo page, it will indicate when a subsequent version of the corresponding collection was introduced.

  1. tcga_read-idc_v8-aws.s5cmd: manifest of files available for download from public IDC Amazon Web Services buckets
  2. tcga_read-idc_v8-gcs.s5cmd: manifest of files available for download from public IDC Google Cloud Storage buckets
  3. tcga_read-idc_v8-dcf.dcf: Gen3 manifest (for details see https://learn.canceridc.dev/data/organization-of-data/guids-and-uuids)

Note that manifest files that end in -aws.s5cmd reference files stored in Amazon Web Services (AWS) buckets, while -gcs.s5cmd reference files in Google Cloud Storage. The actual files are identical and are mirrored between AWS and GCP.

Download instructions

Each of the manifests include instructions in the header on how to download the included files.

To download the files using .s5cmd manifests:

  1. install idc-index package: pip install --upgrade idc-index
  2. download the files referenced by manifests included in this dataset by passing the .s5cmd manifest file: idc download manifest.s5cmd.

To download the files using .dcf manifest, see manifest header.

Acknowledgments

Imaging Data Commons team has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Task Order No. HHSN26110071 under Contract No. HHSN261201500003l.

References

[1] Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. RadioGraphics (2023). https://doi.org/10.1148/rg.230180

Search
Clear search
Close search
Google apps
Main menu