Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Breast Phenotype Research Group.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
TCGA Cancer Variant and Clinical Data
Dataset Description
This dataset combines genetic variant information at the protein level with clinical data from The Cancer Genome Atlas (TCGA) project, curated by the International Cancer Genome Consortium (ICGC). It provides a comprehensive view of protein-altering mutations and clinical characteristics across various cancer types.
Dataset Summary
The dataset includes:
Protein sequence data for both mutated and… See the full description on the dataset page: https://huggingface.co/datasets/hammad655/TCGA-Cancer-Variant-and-Clinical-Data.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. This dataset includes curated survival data from the Pan-cancer Atlas paper titled "An Integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics". The paper highlights four types of carefully curated survival endpoints, and recommends the use of the endpoints of OS, PFI, DFI, and DSS for each TCGA cancer type. The dataset also includes phenotypic information about KIRC. The Sample IDs are unique identifiers, which can be paired with the gene expression dataset.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The survival and phenotype data were merged into one file. Empty columns were removed. Columns with the same value for every sample were also removed.
Acknowledgments:
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8
Liu, Jianfang, Caesar-Johnson, Samantha J. et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, Volume 173, Issue 2, 400 - 416.e11. https://doi.org/10.1016/j.cell.2018.02.052
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764
U-BRITE last update: 07/13/2023
Facebook
TwitterThis dataset integrates open public data from multiple biomedical sources to provide a structured, queryable database of cancer classifications and clinical data from The Cancer Genome Atlas (TCGA).
All data are de-identified and publicly available via the U.S. National Cancer Institute (NCI) Genomic Data Commons (GDC) API, ensuring full compliance with NIH open-access guidelines.
Included Tables Table Description cancer_category Disease Ontology (DOID) categories and hierarchical labels (including English + Chinese translations). patient_tcga_clinical De-identified patient clinical records per TCGA project (demographics, stage, grade, survival, treatment). tcga_project_summary Per-project summary statistics (case counts, survival averages, tumor stage/grade coverage, and mapped cancer type).
Data source is from The Cancer Genome Atlas (TCGA).
A snapshot of clinical data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F29334708%2F0049f6224420593507bfc8072df3e0e4%2Fsample.png?generation=1760586452165254&alt=media" alt="">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. These datasets contain gene expression profiles of bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), glioblastoma multiforme (GBM), head & neck squamous cell carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC), and lower grade glioma (LGG).
The gene expression profiles for BLCA, CESC, HNSC, KIRC, and LGG were measured experimentally using the Illumina HiSeq 2000 RNA Sequencing platform by the University of North Carolina TCGA genome characterization center. The gene expression profile of the GBM dataset was measured experimentally using the Affymetrix HT Human Genome U133a microarray platform by the Broad Institute of MIT and Harvard University cancer genomic characterization center.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The log2(x+1) normalization was removed, and z-normalization was performed on the BLCA, CESC, HNSC, KIRC, and LGG datasets.
The log2(x) normalization was removed, and z-normalization was performed on the GBM dataset.
Acknowledgments:
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8.
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764.
U-BRITE last update: 07/13/2023
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. This dataset includes curated survival data from the Pan-cancer Atlas paper titled "An Integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics". The paper highlights four types of carefully curated survival endpoints, and recommends the use of the endpoints of OS, PFI, DFI, and DSS for each TCGA cancer type. The dataset also includes phenotypic information about LGG. The Sample IDs are unique identifiers, which can be paired with the gene expression dataset.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The survival and phenotype data were merged into one file. Empty columns were removed. Columns with the same value for every sample were also removed.
Acknowledgments:
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8
Liu, Jianfang, Caesar-Johnson, Samantha J. et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, Volume 173, Issue 2, 400 - 416.e11. https://doi.org/10.1016/j.cell.2018.02.052
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764
U-BRITE last update: 07/13/2023
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Lung Phenotype Research Group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. This dataset includes curated survival data from the Pan-cancer Atlas paper titled "An Integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics". The paper highlights four types of carefully curated survival endpoints, and recommends the use of the endpoints of OS, PFI, DFI, and DSS for each TCGA cancer type. The dataset also includes phenotypic information about HNSC. The Sample IDs are unique identifiers, which can be paired with the gene expression dataset.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The survival and phenotype data were merged into one file. Empty columns were removed. Columns with the same value for every sample were also removed.
Acknowledgments:
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8
Liu, Jianfang, Caesar-Johnson, Samantha J. et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, Volume 173, Issue 2, 400 - 416.e11. https://doi.org/10.1016/j.cell.2018.02.052
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764
U-BRITE last update: 07/13/2023
Facebook
TwitterThe GDC Data Portal is a robust data-driven platform that allows cancer researchers and bioinformaticians to search and download cancer data for analysis. This dataset is a filtered search result in the GDC Data Portal for TCGA Project, Adenocarcinoma, Whole Genome Sequencing Reads. It consists of 196 BAM files and 99 cases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. This dataset includes curated survival data from the Pan-cancer Atlas paper titled "An Integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics". The paper highlights four types of carefully curated survival endpoints, and recommends the use of the endpoints of OS, PFI, DFI, and DSS for each TCGA cancer type. The dataset also includes phenotypic information about CESC. The Sample IDs are unique identifiers, which can be paired with the gene expression dataset.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The survival and phenotype data were merged into one file.
Acknowledgments:
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8
Liu, Jianfang, Caesar-Johnson, Samantha J. et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, Volume 173, Issue 2, 400 - 416.e11. https://doi.org/10.1016/j.cell.2018.02.052
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764
U-BRITE last update: 07/13/2023
Facebook
TwitterDataset Card for TCGA-PAAD Clinical Data
Dataset Summary
The TCGA-PAAD (The Cancer Genome Atlas - Pancreatic Adenocarcinoma) clinical dataset contains clinical data related to pancreatic adenocarcinoma patients. This dataset is part of the broader TCGA project, aimed at providing comprehensive genomic and clinical data for various types of cancer. The clinical data includes information such as patient demographics, treatment history, survival data, and other clinical… See the full description on the dataset page: https://huggingface.co/datasets/HLMCC/TCGA-PAAD.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Ovarian Phenotype Research Group.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract:
The Cancer Genome Atlas (TCGA) was a large-scale collaborative project initiated by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI). It aimed to comprehensively characterize the genomic and molecular landscape of various cancer types. This dataset includes curated survival data from the Pan-cancer Atlas paper titled "An Integrated TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR) to drive high quality survival outcome analytics". The paper highlights four types of carefully curated survival endpoints, and recommends the use of the endpoints of OS, PFI, DFI, and DSS for each TCGA cancer type. The dataset also includes phenotypic information about BLCA. The Sample IDs are unique identifiers, which can be paired with the gene expression dataset.
Inspiration:
This dataset was uploaded to UBRITE for GTKB project.
Instruction:
The survival and phenotype data were merged into one file.
Acknowledgments:
Liu, Jianfang, Caesar-Johnson, Samantha J. et al. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, Volume 173, Issue 2, 400 - 416.e11. https://doi.org/10.1016/j.cell.2018.02.052
Goldman, M.J., Craft, B., Hastie, M. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol (2020). https://doi.org/10.1038/s41587-020-0546-8
The Cancer Genome Atlas Research Network., Weinstein, J., Collisson, E. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45, 1113–1120 (2013). https://doi.org/10.1038/ng.2764
U-BRITE last update: 07/13/2023
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
TCGA Expedition Modules and associated TCGA Datatypes managed.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The following datasets were created for Project Cognoma:expression-matrix.tsv.bz2 is a sample × gene matrix indicating a gene's expression level for a given sample. This dataset will be the feature/x/predictor for Project Cognoma.mutation-matrix.tsv.bz2 is a sample × gene matrix indicating whether a gene is mutated for a given sample. Select columns (or unions of several columns) in this dataset will be the status/y/outcome for Project Cognoma.These are preliminary datasets for development use and machine learning. The data was retrieved from the UCSC Xena Browser. All original work in the data is released under CC0. However, the license of TCGA and Xena data is currently unclear.These two datasets are from this GitHub directory linked to below, although they were not tracked due to large file size.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
the dataset contains multiomics data from 32 TCGA pancan projects and controls data. Each case has RNA-seq, DNA methylation, and miRNA expression; all the data is in parquet format. The data was collected from the GDC portal. Annotations include cancer type, tumor subtype, and tissue sites. The annotations were collected from cbioportal, and tissue site data was cleaned. The starter notebook shows how to get started with the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Following the same steps that we used in the previous course we downloaded the TCGA-BRCA using R and Bioconductor and in particular the TCGABiolinks package. We downloaded transcriptome profiling of gene expression quantification where the experimental strategy is (RNAseq) and the workflow type is HTSeq-FPKM-UQ and only primary solid tumor data of the affymetrix GPL86 profile and clinical data.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Glioma Phenotype Research Group.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Sarcoma (TCGA-SARC) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.
Facebook
Twitterhttps://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).
Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.
Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Breast Phenotype Research Group.