Investors believed the stock price of two large U.S. tech companies in particular would grow by between 2020 and 2025. According to a survey conducted in ************, Tesla especially was believed to witness a stock growth. Nearly half of all respondents selected Tesla, close to double the number of respondents who selected the next-most popular option, Amazon. The source used a large definition of "tech", as the survey included companies that are active in different categories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for US 100 Tech Index including live quotes, historical charts and news. US 100 Tech Index was last updated by Trading Economics this July 30 of 2025.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains the historical stock prices and related financial information for five major technology companies: Apple (AAPL), Microsoft (MSFT), Amazon (AMZN), Google (GOOGL), and Tesla (TSLA). The dataset spans a five-year period from January 1, 2019, to January 1, 2024. It includes key stock metrics such as Open, High, Low, Close, Adjusted Close, and Volume for each trading day.
The data was sourced using the yfinance library in Python, which provides convenient access to historical market data from Yahoo Finance.
The dataset contains the following columns:
Date: The trading date. Open: The opening price of the stock on that date. High: The highest price of the stock on that date. Low: The lowest price of the stock on that date. Close: The closing price of the stock on that date. Adj Close: The adjusted closing price, accounting for dividends and splits. Volume: The number of shares traded on that date. Ticker: The stock ticker symbol representing each company.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for US Tech Composite Index including live quotes, historical charts and news. US Tech Composite Index was last updated by Trading Economics this July 31 of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
As of May 23, 2025, Microsoft was the leading tech company by market capitalization globally at 3.38 trillion U.S. dollars. Nvidia ranked second at 3.24 trillion U.S. dollars. Tech company stocks were impacted through 2025 as a result of various global tariff threats by the United States government. Apple among the leaders Since its foundation in a Californian garage in 1976, Apple has expanded massively, becoming one of the most valuable companies in the world. The company started its origins in the PC industry with the Macintosh, but soon entered other segments of the consumer electronics market. Today, the iPhone is the most popular Apple product, although Mac, iPad, wearables, and services also contribute to its high revenues. Aiming at innovation, Apple invests every year in research and development, spanning a wide array of technologies from AI through to extended reality. Nvidia's immense growth With a focus that began with origins in gaming, Nvidia's business strategy has been transformed by demand from data centers that sit at the heart of the AI boom. The company's chips have been favored to support in the training and running of a range of large language models, most notably in the development of OpenAI's ChatGPT.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
Dow Jones U.S. Technology index is predicted to experience a moderate bullish trend with potential for notable gains. The index may face resistance around key technical levels, but overall sentiment remains positive with ample opportunities for investors seeking growth and diversification. However, investors should be aware of potential risks such as market volatility, geopolitical uncertainties, and changes in the technology sector.
A dataset of mentions, growth rate, and total volume of the keyphrase 'Tech Stocks' over time.
This statistic shows the stock price development of selected companies in the technology industry from January 6, 2020 to February 3, 2025. During this period, stock prices of most of the tech companies have increased. Out of all companies shown here, stock values of **** saw the most substantial increase between January and October 2020. In February 3, 2025, ***** stock prices increased more than others with over an increase of *** index points.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
As of February 2025, ************************************************ was the leading technology company listed on the London Stock Exchange (LSE), in terms of market capitalization. The corporation was valued at around ** billion British pounds. It was followed in the ranking by ********** and *****************, which reached market values of ** and ***** billion British pounds, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks. It has 1 row and is filtered where the company is Tech Long. It features 8 columns including stock name, company, exchange, and exchange symbol.
The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about stocks. It has 1 row and is filtered where the company is TS Tech. It features 8 columns including stock name, company, exchange, and exchange symbol.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Discover how the evolution of artificial intelligence is impacting market dynamics and prompting a shift from tech dominance to diversified investments.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Marvell Technology stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
The dataset consists of 5,001,460 daily Tweets crawled from Twitter's streaming API between April 1, 2011 and May 31, 2011, focusing on sentiment features related to four tech companies to predict their stock price movements.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.
The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.
You can read the definition of each sector here.
The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.
In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.
To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.
Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.
In total there are 107 files in csv format. They are composed as follows:
Every company and index file has the same structure with the same columns:
Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.
The two other files have different columns names:
List of S&P 500 companies
Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.
Technology Sector Companies List
Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.
SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...
This statistic presents a ranking of the market capitalization of selected U.S. tech and internet companies in 2006, and from 2014 to 2020. Apple's market cap soared from ****** billion U.S. dollars in 2014 to **** trillion dollars in 2020. Apple's market cap pushed the company ahead of last year's leader Microsoft.
Public offerings of tech and internet companies
A public offering is the offering of securities of a company or a similar corporation to the public. Generally, the securities are to be listed on a stock exchange. The initial public offering (IPO) of a company occurs when a company offers its shares for the first time for public ownership and trading.
Hardware companies such as Apple or IBM have been traded publicly for a while but younger, online-based companies such as Google or most notably Facebook and most recently, Snap Inc. have been generating a lot of buzz surrounding their IPOs and subsequent stock prices. Facebook’s initial public offering was intensely hyped over months with projections of a 100 billion US dollar valuation but it dwindled down to a range of ** to ** billion US dollars prior to the listing.
Other tech stock performances have been more stable – both online retailer Amazon and search and digital advertising giant Google’s - now Alphabet's - shares have been on a more upwards trend. The most impressive development however came from Apple which totally changed its stock performance after the 2008 introduction of the iPhone. Since then, the company has been catapulted to the top of the smartphone market, multiplying its market capitalization as well as regularly being ranked as one of the most valuable brands worldwide.
Investors believed the stock price of two large U.S. tech companies in particular would grow by between 2020 and 2025. According to a survey conducted in ************, Tesla especially was believed to witness a stock growth. Nearly half of all respondents selected Tesla, close to double the number of respondents who selected the next-most popular option, Amazon. The source used a large definition of "tech", as the survey included companies that are active in different categories.