Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Consumer Price Index in the United States increased 0.10 percent in May of 2025 over the previous month. This dataset provides - United States Inflation Rate MoM - actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description: This dataset provides a comprehensive overview of monthly inflation rates in Nigeria from March 2003 to June 2024, alongside key economic indicators such as crude oil prices, production levels, and various Consumer Price Index (CPI) components. The data captures important economic trends and is suitable for time series analysis, forecasting, and economic modeling.
The dataset includes the following features:
Inflation Rate: The monthly inflation rate in Nigeria, reflecting the change in consumer prices.
Crude Oil Price: The monthly average price of crude oil, which plays a significant role in Nigeria's economy.
Production and Export: Monthly crude oil production and export figures, representing key components of Nigeria's GDP.
CPI Components: Detailed breakdown of the Consumer Price Index, including food, energy, health, transport, communication, and education.
This dataset is ideal for economists, data scientists, and analysts interested in exploring the dynamics of inflation in a developing economy heavily influenced by oil prices and production. Potential applications include inflation forecasting, economic policy analysis, and studying the impact of global oil prices on domestic inflation.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Inflation, consumer prices for the United States (FPCPITOTLZGUSA) from 1960 to 2024 about consumer, CPI, inflation, price index, indexes, price, and USA.
When inflation occurs in a country, the value of the currency decreases. That means that the purchasing power consumers have with a fixed amount of money decreases. Wages, especially lower and middle class wages, usually increase at a MUCH slower rate than prices of consumer goods; so consumers are likely to make the same wage, but are not able to buy the same amount of goods and services. Consumers in countries with hyperinflation suffer greatly because of this economic phenomenon.
Data was downloaded from: Link
For notes/metadata regarding the definition, measurement, or data collection for a certain country or group can be found by downloading the excel file from the linked webpage.
Original data provider: International Monetary Fund, World Development Indicators. License : CC BY-4.0.
INDICATOR_CODE: FP.CPI.TOTL.ZG
INDICATOR_NAME: Inflation, consumer prices (annual %)
SOURCE_NOTE: Inflation as measured by the consumer price index reflects the annual percentage change in the cost to the average consumer of acquiring a basket of goods and services that may be fixed or changed at specified intervals, such as yearly.
The Laspeyres formula is generally used.
Years included: 1960-2016
The following countries have no values for any year:
Somalia
Puerto Rico
Guam
US Virgin Islands
The dataset also conains some records that refer to groups of countries, which may be useful for those with no recorded values. Some of those groups are:
Fragile and conflict affected situations
Heavily indebted poor countries (HIPC)
Caribbean small states
Latin America & Caribbean (excluding high income)
Latin America & the Caribbean (IDA & IBRD countries)
East Asia & Pacific (excluding high income)
East Asia & Pacific (IDA & IBRD countries)
Least developed countries: UN classification
Middle East & North Africa (IDA & IBRD countries)
If this data is being used for the Kiva Crowdfunding Data Science for Good event; The following countries (as they are named in this dataset), are named slightly differently in the Kiva dataset (to the best of my knowledge). For example, West Bank in Gaza is referred to as Palestine in the Kiva Dataset.
Congo, Dem. Rep.
Congo, Rep.
Kyrgyz Republic
Lao PDR
Myanmar
West Bank and Gaza
St. Vincent and the Grenadines
Virgin Islands (U.S.)
Yemen, Rep.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Historical (real-time) releases of the measures of core inflation, with data from 1989 (not all combinations necessarily have data for all years). Data are presented for the current release and previous four releases. Users can select other releases that are of interest to them.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 11 series, with data from 1949 (not all combinations necessarily have data for all years). Data are presented for the current month and previous four months. Users can select other time periods that are of interest to them.
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Ouaddai, Salamat, Wadi Fira, Sila, Ennedi Est, Batha, Tibesti, Logone Oriental, Logone Occidental, Guera, Hadjer Lamis, Lac, Mayo Kebbi Est, Chari Baguirmi, Ennedi Ouest, Borkou, Tandjile, Mandoul, Moyen Chari, Mayo Kebbi Ouest, Kanem, Barh El Gazal, Ndjaména, Market Average
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This Dataset contains state, month,item group, sub-group and its description- wise CPI inflation rates (base 2012=100)
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Global Economic, Environmental, Health, and Social indicators Ready for Analysis
This comprehensive dataset merges global economic, environmental, technological, and human development indicators from 2000 to 2020. Sourced and transformed from multiple public datasets via Google BigQuery, it is designed for advanced exploratory data analysis, machine learning, policy modeling, and sustainability research.
Curated by combining and transforming data from the Google BigQuery Public Data program, this dataset offers a harmonized view of global development across more than 40 key indicators spanning over two decades (2000–2020). It supports research across multiple domains such as:
Includes calculated features:
years_since_2000
years_since_century
is_pandemic_period
(binary indicator for pandemic periods)Economic Indicators:
Environmental Indicators:
Technology & Connectivity:
Health & Education:
Governance & Resilience:
Approximately 18% of the entries in the region
and income_group
columns are null. This is primarily due to the inclusion of aggregate regions (e.g., Arab World, East Asia & Pacific, Africa Eastern and Southern) and non-country classifications (e.g., Early-demographic dividend, Central Europe and the Baltics). These entries represent groups of countries with diverse income levels and geographic characteristics, making it inappropriate or misleading to assign a single region or income classification. In some cases, the data source may have intentionally left these fields blank to avoid oversimplification or due to a lack of standardized classification.
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: SULAWESI UTARA, SUMATERA UTARA, KALIMANTAN UTARA, JAWA BARAT, NUSA TENGGARA BARAT, NUSA TENGGARA TIMUR, SULAWESI SELATAN, JAMBI, JAWA TIMUR, KALIMANTAN SELATAN, BALI, BANTEN, JAWA TENGAH, RIAU, SUMATERA BARAT, KEPULAUAN RIAU, PAPUA, SULAWESI BARAT, BENGKULU, MALUKU UTARA, DAERAH ISTIMEWA YOGYAKARTA, KALIMANTAN BARAT, KALIMANTAN TENGAH, PAPUA BARAT, SUMATERA SELATAN, MALUKU, KEPULAUAN BANGKA BELITUNG, ACEH, DKI JAKARTA, SULAWESI TENGGARA, KALIMANTAN TIMUR, LAMPUNG, GORONTALO, SULAWESI TENGAH, Market Average
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: North Darfur, Blue Nile, Northern, Nile, Eastern Darfur, West Kordofan, Gedaref, West Darfur, North Kordofan, South Kordofan, Kassala, Khartoum, White Nile, South Darfur, Red Sea, Sennar, Al Gezira, Central Darfur, Market Average
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Armavir, Ararat, Aragatsotn, Tavush, Gegharkunik, Shirak, Kotayk, Syunik, Lori, Vayotz Dzor, Yerevan, Market Average
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Ouaka, Mbomou, Bangui, Nana-Mambéré, Ouham, Sangha-Mbaéré, Ombella M'Poko, Mambéré-Kadéï, Vakaga, Ouham Pendé, Lobaye, Haute-Kotto, Kémo, Nana-Gribizi, Bamingui-Bangoran, Haut-Mbomou, Market Average
Food price inflation is an important metric to inform economic policy but traditional sources of consumer prices are often produced with delay during crises and only at an aggregate level. This may poorly reflect the actual price trends in rural or poverty-stricken areas, where large populations reside in fragile situations. This data set includes food price estimates and is intended to help gain insight in price developments beyond what can be formally measured by traditional methods. The estimates are generated using a machine-learning approach that imputes ongoing subnational price surveys, often with accuracy similar to direct measurement of prices. The data set provides new opportunities to investigate local price dynamics in areas where populations are sensitive to localized price shocks and where traditional data are not available.
A dataset of monthly food price inflation estimates (aggregated for all food products available in the data) is also available for all countries covered by this modeling exercise.
The data cover the following sub-national areas: Bafata, Tombali, Cacheu, Sector Autonomo De Bissau, Biombo, Oio, Gabu, Bolama, Quinara, Market Average
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Regional Price Index contrasts the cost of a common basket of goods and services at a number of regional locations to the Perth metropolitan area. The RPIs were commissioned to assist with the calculation of the Western Australian State Government’s regional district allowance, and it has been used to assist in policy decision-making. Show full description
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Historical (real-time) releases of the measures of core inflation, with data from 1989 (not all combinations necessarily have data for all years). Data are presented for the current release and previous four releases. Users can select other releases that are of interest to them.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 11 series, with data from 1949 (not all combinations necessarily have data for all years). Data are presented for the current month and previous four months. Users can select other time periods that are of interest to them.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
View data of PCE, an index that measures monthly changes in the price of consumer goods and services as a means of analyzing inflation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Respiratory support is critically important for survival of newborns who fail to breathe spontaneously at birth. Although there is no internationally accepted definition of a sustained inflation (SI), it has commonly been defined as a positive pressure inflation designed to establish functional residual capacity and applied over a longer time period than normally used in standard respiratory support (SRS). Outcomes vary distinctly between studies and to date there has been no comprehensive investigation of differences in SI approach and study outcome in both pre-clinical and clinical studies. A systematic literature search was performed and, after screening, identified 17 animal studies and 17 clinical studies evaluating use of a SI in newborns compared to SRS during neonatal resuscitation. Study demographics including gestational age, SI parameters (length, repetitions, pressure, method of delivery) and study outcomes were compared. Animal studies provide mechanistic understanding of a SI on the physiology underpinning the cardiorespiratory transition at birth. In clinical studies, there is considerable difference in study quality, delivery of SIs (number, pressure, length) and timing of primary outcome evaluation which limits direct comparison between studies. The largest difference is method of delivery, where the role of a SI has been observed in intubated animals, as the inflation pressure is directly applied to the lung, bypassing the obstructed upper airway in an apnoeic state. This highlights a potential limitation in clinical use of a SI applied non-invasively. Further research is required to identify if a SI may have greater benefits in subpopulations of newborns.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Consumer Price Index in the United States increased 0.10 percent in May of 2025 over the previous month. This dataset provides - United States Inflation Rate MoM - actual values, historical data, forecast, chart, statistics, economic calendar and news.