This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).
The table Global Temperatures is part of the dataset Climate Change: Earth Surface Temperature Data, available at https://columbia.redivis.com/datasets/1e0a-f4931vvyg. It contains 3192 rows across 9 variables.
Since 1880, the annual global land temperature anomaly has fluctuated, showing an overall upward tendency. In 2024, the global land surface temperature stood at 1.98 degrees Celsius above the global average between 1901 to 2000. This was the highest annual temperature anomaly recorded during the period in consideration. Anomalies in global ocean surface temperature followed a similar trend over the same period of time. Man-made change The Earth's temperature increases naturally over time as the planet goes through cyclic changes. However, the scientific community has concluded that human interference, particularly deforestation and the consumption of fossil fuels, has acted as a catalyst in recent centuries. Increases in the unprecedented number of natural disasters in the past few decades, such as tropical cyclones, wildfires and heatwaves, have been attributed to this slight man-made increase in the Earth's surface temperature. End of an ice age? Although a one- or two-degree anomaly may not seem like a large difference, changes in the ocean and land temperatures have significant consequences for the entire planet. A five-degree drop triggered the last major ice age – the Quaternary Glaciation – over 20,000 years ago, which technically is still continuing today. This ice age is in its final interglacial period, and it will not officially end until the remnants of the final ice sheets melt, of which there are only two left today, in Antarctica and Greenland.
In 2024, the global ocean surface temperature was 0.97 degrees Celsius warmer than the 20th-century average. Oceans are responsible for absorbing over 90 percent of the Earth's excess heat from global warming. Departures from average conditions are called anomalies, and temperature anomalies result from recurring weather patterns or longer-term climate change. While the extent of these temperature anomalies fluctuates annually, an upward trend has been observed over the past several decades. Effects of climate change Since the 1980s, every region of the world has consistently recorded increases in average temperatures. These trends coincide with significant growth in the global carbon dioxide emissions, greenhouse gas, and a driver of climate change. As temperatures rise, notable decreases in the extent of arctic sea ice have been recorded. Outlook An increase in emissions from the use of fossil fuels is projected for the coming decades. Nevertheless, global investments in clean energy have increased dramatically since the early 2000s.
https://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdfhttps://object-store.os-api.cci2.ecmwf.int:443/cci2-prod-catalogue/licences/insitu-gridded-observations-global-and-regional/insitu-gridded-observations-global-and-regional_15437b363f02bf5e6f41fc2995e3d19a590eb4daff5a7ce67d1ef6c269d81d68.pdf
This dataset provides high-resolution gridded temperature and precipitation observations from a selection of sources. Additionally the dataset contains daily global average near-surface temperature anomalies. All fields are defined on either daily or monthly frequency. The datasets are regularly updated to incorporate recent observations. The included data sources are commonly known as GISTEMP, Berkeley Earth, CPC and CPC-CONUS, CHIRPS, IMERG, CMORPH, GPCC and CRU, where the abbreviations are explained below. These data have been constructed from high-quality analyses of meteorological station series and rain gauges around the world, and as such provide a reliable source for the analysis of weather extremes and climate trends. The regular update cycle makes these data suitable for a rapid study of recently occurred phenomena or events. The NASA Goddard Institute for Space Studies temperature analysis dataset (GISTEMP-v4) combines station data of the Global Historical Climatology Network (GHCN) with the Extended Reconstructed Sea Surface Temperature (ERSST) to construct a global temperature change estimate. The Berkeley Earth Foundation dataset (BERKEARTH) merges temperature records from 16 archives into a single coherent dataset. The NOAA Climate Prediction Center datasets (CPC and CPC-CONUS) define a suite of unified precipitation products with consistent quantity and improved quality by combining all information sources available at CPC and by taking advantage of the optimal interpolation (OI) objective analysis technique. The Climate Hazards Group InfraRed Precipitation with Station dataset (CHIRPS-v2) incorporates 0.05° resolution satellite imagery and in-situ station data to create gridded rainfall time series over the African continent, suitable for trend analysis and seasonal drought monitoring. The Integrated Multi-satellitE Retrievals dataset (IMERG) by NASA uses an algorithm to intercalibrate, merge, and interpolate “all'' satellite microwave precipitation estimates, together with microwave-calibrated infrared (IR) satellite estimates, precipitation gauge analyses, and potentially other precipitation estimators over the entire globe at fine time and space scales for the Tropical Rainfall Measuring Mission (TRMM) and its successor, Global Precipitation Measurement (GPM) satellite-based precipitation products. The Climate Prediction Center morphing technique dataset (CMORPH) by NOAA has been created using precipitation estimates that have been derived from low orbiter satellite microwave observations exclusively. Then, geostationary IR data are used as a means to transport the microwave-derived precipitation features during periods when microwave data are not available at a location. The Global Precipitation Climatology Centre dataset (GPCC) is a centennial product of monthly global land-surface precipitation based on the ~80,000 stations world-wide that feature record durations of 10 years or longer. The data coverage per month varies from ~6,000 (before 1900) to more than 50,000 stations. The Climatic Research Unit dataset (CRU v4) features an improved interpolation process, which delivers full traceability back to station measurements. The station measurements of temperature and precipitation are public, as well as the gridded dataset and national averages for each country. Cross-validation was performed at a station level, and the results have been published as a guide to the accuracy of the interpolation. This catalogue entry complements the E-OBS record in many aspects, as it intends to provide high-resolution gridded meteorological observations at a global rather than continental scale. These data may be suitable as a baseline for model comparisons or extreme event analysis in the CMIP5 and CMIP6 dataset.
The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in 1895. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.
The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a monthly global merged land-ocean surface temperature analysis product that is derived from two independent analyses. The first is the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the second is a land surface air temperature (LSAT) analysis that uses the Global Historical Climatology Network - Monthly (GHCN-M) temperature database. The NOAAGlobalTemp data set contains global surface temperatures in gridded (5° × 5°) and monthly resolution time series (from 1850 to present time) data files. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. This version, v6.0, an updated version to the current operational release v5.1, is implemented by an Artificial Neural Network method to improve the surface temperature reconstruction over the land.
Since the 1980s, the annual temperature departure from the average has been consistently positive. In 2024, the global land and ocean surface temperature anomaly stood at 1.29 degrees Celsius above the 20th-century average, the largest recorded across the displayed period. What are temperature anomalies? Temperature anomalies represent the difference from an average or baseline temperature. Positive anomalies show that the observed temperature was warmer than the baseline, whereas a negative anomaly indicates that the observed temperature was lower than the baseline. Land surface temperature anomalies are generally higher than ocean anomalies, although the exact reasons behind this phenomenon are still under debate. Temperature anomalies are generally more important in the study of climate change than absolute temperature, as they are less affected by factors such as station location and elevation. A warming planet The warmest years have been recorded over the past decade, with the highest anomaly in 2024. Global warming has been greatly driven by increased emissions of carbon dioxide and other greenhouse gases into the atmosphere. Climate change is also evident in the declining extent of sea ice in the Northern Hemisphere. Weather dynamics can affect regional temperatures, and therefore, the level of warming can vary around the world. For instance, warming trends and ice loss are most obvious in the Arctic region compared to Antarctica.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in Iran increased to 19.62 celsius in 2023 from 19.32 celsius in 2022. This dataset includes a chart with historical data for Iran Average Temperature.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains daily-averaged ocean potential temperature and salinity interpolated to a regular 0.5-degree grid from the ECCO Version 4 revision 4 (V4r4) ocean and sea-ice state estimate. Estimating the Circulation and Climate of the Ocean (ECCO) ocean and sea-ice state estimates are dynamically and kinematically-consistent reconstructions of the three-dimensional, time-evolving ocean, sea-ice, and surface atmospheric states. ECCO V4r4 is a free-running solution of the 1-degree global configuration of the MIT general circulation model (MITgcm) that has been fit to observations in a least-squares sense. Observational data constraints used in V4r4 include sea surface height (SSH) from satellite altimeters [ERS-1/2, TOPEX/Poseidon, GFO, ENVISAT, Jason-1,2,3, CryoSat-2, and SARAL/AltiKa]; sea surface temperature (SST) from satellite radiometers [AVHRR], sea surface salinity (SSS) from the Aquarius satellite radiometer/scatterometer, ocean bottom pressure (OBP) from the GRACE satellite gravimeter; sea ice concentration from satellite radiometers [SSM/I and SSMIS], and in-situ ocean temperature and salinity measured with conductivity-temperature-depth (CTD) sensors and expendable bathythermographs (XBTs) from several programs [e.g., WOCE, GO-SHIP, Argo, and others] and platforms [e.g.,research vessels, gliders, moorings, ice-tethered profilers, and instrumented pinnipeds]. V4r4 covers the period 1992-01-01T12:00:00 to 2018-01-01T00:00:00.
This dataset provides a gridded analysis of daily surface air temperature over global land areas, including daily maximum (Tmax), minimum (Tmin) temperatures. Spanning from 1979 to the present, the data is presented on 0.5-degree latitude/longitude grids, aligning with the resolution of CPC's gauge-based global daily precipitation analysis. The construction of this dataset considers orographic effects. Its primary purpose is to support climate monitoring and forecast verification activities. Input data originates from the CPC archive of GTS (Global Telecommunication System) daily reports, incorporating Tmax and Tmin data from approximately 6,000 to 7,000 global stations. Refer this for technical documentation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: Where was the monthly temperature warmer or cooler than usual? A: Colors show where average monthly temperature was above or below its 1991-2020 average. Blue areas experienced cooler-than-usual temperatures while areas shown in red were warmer than usual. The darker the color, the larger the difference from the long-term average temperature. Q: Where do these measurements come from? A: Weather stations on every continent record temperatures over land, and ocean surface temperatures come from measurements made by ships and buoys. NOAA scientists merge the readings from land and ocean into a single dataset. To calculate difference-from-average temperatures—also called temperature anomalies—scientists calculate the average monthly temperature across hundreds of small regions, and then subtract each region’s 1991-2020 average for the same month. If the result is a positive number, the region was warmer than the long-term average. A negative result from the subtraction means the region was cooler than usual. To generate the source images, visualizers apply a mathematical filter to the results to produce a map that has smooth color transitions and no gaps. Q: What do the colors mean? A: Shades of red show where average monthly temperature was warmer than the 1991-2020 average for the same month. Shades of blue show where the monthly average was cooler than the long-term average. The darker the color, the larger the difference from average temperature. White and very light areas were close to their long-term average temperature. Gray areas near the North and South Poles show where no data are available. Q: Why do these data matter? A: Over time, these data give us a planet-wide picture of how climate varies over months and years and changes over decades. Each month, some areas are cooler than the long-term average and some areas are warmer. Though we don’t see an increase in temperature at every location every month, the long-term trend shows a growing portion of Earth’s surface is warmer than it was during the base period. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the source images for the Difference from Average Temperature – Monthly maps. To produce our images, we run a set of scripts that access the source images, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Source images available through NOAA's Environmental Visualization Lab (NNVL) are interpolated from data originally provided by the National Center for Environmental Information (NCEI) - Weather and Climate. NNVL images are based on NOAA Merged Land Ocean Global Surface Temperature Analysis data (NOAAGlobalTemp, formerly known as MLOST). References NCEI Monthly Global Analysis NOAA View Temperature Anomaly Merged Land Ocean Global Surface Temperature Analysis Global Surface Temperature Anomalies Climate at a Glance - Data Information Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...This upload includes two additional files:* Temperature - Global Monthly, Difference from Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.
Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.
Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Q: What's the temperature of water at the ocean's surface? A: Colors on the map show the temperature of water right at the ocean’s surface. The darkest blue shows the coldest water: floating sea ice is usually present in these areas. Lighter shades of blue show temperatures of up to 80°F. White and orange areas show where surface temperatures are higher than 80°F, warm enough to fuel tropical cyclones or hurricanes. Q: Where do these measurements come from? A: Satellite instruments measure sea surface temperature—often abbreviated as SST—by checking how much energy comes off the ocean at different wavelengths. Computer programs merge sea surface temperatures from ships and buoys with the satellite data, and incorporate information from maps of sea ice. To produce the daily maps, programs invoke mathematical filters to combine and smooth data from all three sources. Q: What do the colors mean? A: The darkest blue areas show sea surface temperatures as low as 28°F. Sea ice, which can look like anything from a slushy mix of floating ice crystals to a solid surface of white, is usually present in these areas. Progressively lighter shades of blue show increasingly warmer temperatures, up to 80°F. White and orange areas on the map show where the surface temperature is above 80°F. Tropical storms that cross these areas can strengthen to form cyclones and hurricanes. Q: Why do these data matter? A: While heat energy is stored and mixed throughout the depth of the ocean, the temperature of water right at the sea's surface—where the ocean is in direct contact with the atmosphere—plays a significant role in weather and short-term climate. Where sea surface temperatures are high, relatively large amounts of heat energy and moisture enter the atmosphere, sometimes producing powerful, drenching storms downwind. Conversely, lower sea surface temperatures mean less evaporation. Global patterns of sea surface temperatures are an important factor for weather forecasts and climate outlooks. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Climate Data Records Program produces the Opitimum Interpolated Sea Surface Temperature files. To produce our images, we run a set of scripts that access the source files, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Various scientific groups have produced datasets showing Sea Surface Temperature. The images in Data Snapshots represent the AVHRR-only 1/4° daily OISST dataset. Data snapshots presents just one daily OISST image every seven days References Optimum Interpolation Sea Surface Temperature Technical Notes [pdf] Climate Data Record (CDR) Program Climate Algorithm Theoretical Basis Document (C-ATBD) Daily 1/4° Optimum Interpolation Sea Surface Temperature (OISST) Richard W. Reynolds, Thomas M. Smith, Chunying Liu, Dudley B. Chelton, Kenneth S. Casey, and Michael G. Schlax, 2007: Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Climate, 20, 5473–5496. doi: http://dx.doi.org/10.1175/2007JCLI1824.1 Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1 About Optimum Interpolation Sea Surface Temperature (OISST) v2.1 Source: https://www.climate.gov/maps-data/data-snapshots/data-source/sst-sea-surface-temperature This upload includes two additional files:* SST - Sea Surface Temperature _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/sst-sea-surface-temperature)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.
The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land&ocean surface temperature analysis (formerly known as MLOST) It is a spatially gridded (5° - 5°) global surface temperature dataset, with monthly resolution from January 1880 to present. We combine a global sea surface (water) temperature (SST) dataset with a global land surface air temperature dataset into this merged dataset of both the Earth's and land's and ocean surface temperatures. The SST dataset is the Extended Reconstructed Sea Surface Temperature (ERSST) version 5. The land surface air temperature dataset is similar to ERSST but uses data from the Global Historical Climatology Network Monthly (GHCN-M) database, version 4.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United States increased to 10.25 celsius in 2023 from 9.74 celsius in 2022. This dataset includes a chart with historical data for the United States Average Temperature.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.09°C.]What does the data show? This dataset shows the change in summer average temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. Note, as the values in this dataset are averaged over a season they do not represent possible extreme conditions.The dataset uses projections of daily average air temperature from UKCP18 which are averaged over the summer period to give values for the 1981-2000 baseline, the recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer average temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Average Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Average Temperature Change, an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tas summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tas summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tas summer change 2.0 median' is named 'tas_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Average Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
https://data.mfe.govt.nz/license/attribution-4-0-international/https://data.mfe.govt.nz/license/attribution-4-0-international/
We provide temperature and anomaly data alongside Intergovernmental Panel on Climate Change (IPCC) global land temperature anomalies against the 1961 to 1990, and 1991 to 2020 baseline periods.
Global average temperatures have increased by around 1 degree Celsius in the last century, almost certainly a result of high levels of atmospheric greenhouse gases emitted from human activities. While this change may seem small, relatively small changes in our climate can have big effects on our environment (Ministry for the Environment [MfE] & Stats NZ, 2019).
Temperature change can have a significant effect on agriculture, energy demand, ecosystems, and recreation. Climate change projections for New Zealand suggest the greatest warming will be in summer/autumn and the least in winter and spring (MfE, 2018).
Temperature is also influenced by natural processes such as climate oscillations like the El Niño Southern Oscillation (ENSO). However, ENSO does not affect the long-term warming trend of the national temperature time series (World Meteorological Organization [WMO], 2014).
Variables: year: Year. temperature: Temperature in degrees Celsius. data_released: Year the data was released. source: Source of data. anomaly: Anomaly against the average temperature of a given reference period. reference_period: Reference period.
References: Ministry for the Environment. (2018). Climate Change Projections for New Zealand: Atmosphere Projections Based on Simulations from the IPCC Fifth Assessment, 2nd Edition (Publication No. ME 1385). https://www.mfe.govt.nz/publications/climate-change/climate-change-projections-new-zealand Ministry for the Environment & Stats NZ. (2019). New Zealand’s Environmental Reporting Series: Environment Aotearoa 2019 (Publication No. ME 1416). https://www.mfe.govt.nz/publications/environmental-reporting/environment-aotearoa-2019 World Meteorological Organization. (2014). El Niño/Southern Oscillation. WMO. (WMO-No. 1145). https://library.wmo.int/records/item/53800-el-nino-southern-oscillation
This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI. The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a blended product from two independent analysis products: the Extended Reconstructed Sea Surface Temperature (ERSST) analysis and the land surface temperature (LST) analysis using the Global Historical Climatology Network (GHCN) temperature database. The data is merged into a monthly global surface temperature dataset dating back from 1880 to the present. The monthly product output is in gridded (5 degree x 5 degree) and time series formats. The product is used in climate monitoring assessments of near-surface temperatures on a global scale. The changes from version 4 to version 5 include an update to the primary input datasets: ERSST version 5 (updated from v4), and GHCN-M version 4 (updated from v3.3.3). Version 5 updates also include a new netCDF file format with CF conventions. This dataset is formerly known as Merged Land-Ocean Surface Temperature (MLOST).