19 datasets found
  1. T

    mnist

    • tensorflow.org
    • universe.roboflow.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The MNIST database of handwritten digits.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

  2. T

    cifar10

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). cifar10 [Dataset]. https://www.tensorflow.org/datasets/catalog/cifar10
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('cifar10', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/cifar10-3.0.2.png" alt="Visualization" width="500px">

  3. T

    fashion_mnist

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). fashion_mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/fashion_mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('fashion_mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">

  4. T

    imdb_reviews

    • tensorflow.org
    • kaggle.com
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). imdb_reviews [Dataset]. https://www.tensorflow.org/datasets/catalog/imdb_reviews
    Explore at:
    Dataset updated
    Sep 20, 2024
    Description

    Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('imdb_reviews', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  5. T

    oxford_iiit_pet

    • tensorflow.org
    • opendatalab.com
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). oxford_iiit_pet [Dataset]. https://www.tensorflow.org/datasets/catalog/oxford_iiit_pet
    Explore at:
    Dataset updated
    Mar 14, 2025
    Description

    The Oxford-IIIT pet dataset is a 37 category pet image dataset with roughly 200 images for each class. The images have large variations in scale, pose and lighting. All images have an associated ground truth annotation of breed and species. Additionally, head bounding boxes are provided for the training split, allowing using this dataset for simple object detection tasks. In the test split, the bounding boxes are empty.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('oxford_iiit_pet', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  6. T

    titanic

    • tensorflow.org
    Updated Feb 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). titanic [Dataset]. https://www.tensorflow.org/datasets/catalog/titanic
    Explore at:
    Dataset updated
    Feb 12, 2023
    Description

    Dataset describing the survival status of individual passengers on the Titanic. Missing values in the original dataset are represented using ?. Float and int missing values are replaced with -1, string missing values are replaced with 'Unknown'.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('titanic', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  7. T

    wider_face

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Dec 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). wider_face [Dataset]. https://www.tensorflow.org/datasets/catalog/wider_face
    Explore at:
    Dataset updated
    Dec 6, 2022
    Description

    WIDER FACE dataset is a face detection benchmark dataset, of which images are selected from the publicly available WIDER dataset. We choose 32,203 images and label 393,703 faces with a high degree of variability in scale, pose and occlusion as depicted in the sample images. WIDER FACE dataset is organized based on 61 event classes. For each event class, we randomly select 40%/10%/50% data as training, validation and testing sets. We adopt the same evaluation metric employed in the PASCAL VOC dataset. Similar to MALF and Caltech datasets, we do not release bounding box ground truth for the test images. Users are required to submit final prediction files, which we shall proceed to evaluate.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('wider_face', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/wider_face-0.1.0.png" alt="Visualization" width="500px">

  8. T

    cifar100

    • tensorflow.org
    • universe.roboflow.com
    • +4more
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). cifar100 [Dataset]. https://www.tensorflow.org/datasets/catalog/cifar100
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('cifar100', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/cifar100-3.0.2.png" alt="Visualization" width="500px">

  9. T

    caltech101

    • tensorflow.org
    • huggingface.co
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). caltech101 [Dataset]. http://doi.org/10.22002/D1.20086
    Explore at:
    Dataset updated
    Dec 19, 2023
    Description

    Caltech-101 consists of pictures of objects belonging to 101 classes, plus one background clutter class. Each image is labelled with a single object. Each class contains roughly 40 to 800 images, totalling around 9k images. Images are of variable sizes, with typical edge lengths of 200-300 pixels. This version contains image-level labels only. The original dataset also contains bounding boxes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('caltech101', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/caltech101-3.0.2.png" alt="Visualization" width="500px">

  10. T

    celeb_a

    • tensorflow.org
    • datasetninja.com
    • +3more
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). celeb_a [Dataset]. https://www.tensorflow.org/datasets/catalog/celeb_a
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including - 10,177 number of identities, - 202,599 number of face images, and - 5 landmark locations, 40 binary attributes annotations per image.

    The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, and landmark (or facial part) localization.

    Note: CelebA dataset may contain potential bias. The fairness indicators example goes into detail about several considerations to keep in mind while using the CelebA dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('celeb_a', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/celeb_a-2.1.0.png" alt="Visualization" width="500px">

  11. T

    moving_mnist

    • tensorflow.org
    • opendatalab.com
    • +2more
    Updated Nov 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). moving_mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/moving_mnist
    Explore at:
    Dataset updated
    Nov 23, 2022
    Description

    Moving variant of MNIST database of handwritten digits. This is the data used by the authors for reporting model performance. See tfds.video.moving_mnist.image_as_moving_sequence for generating training/validation data from the MNIST dataset.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('moving_mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  12. T

    d4rl_adroit_pen

    • tensorflow.org
    Updated May 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). d4rl_adroit_pen [Dataset]. https://www.tensorflow.org/datasets/catalog/d4rl_adroit_pen
    Explore at:
    Dataset updated
    May 8, 2024
    Description

    D4RL is an open-source benchmark for offline reinforcement learning. It provides standardized environments and datasets for training and benchmarking algorithms.

    The datasets follow the RLDS format to represent steps and episodes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('d4rl_adroit_pen', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  13. w

    Dataset of books called Hands-on image generation with TensorFlow : a...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Hands-on image generation with TensorFlow : a practical guide to generating images and videos using deep learning [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Hands-on+image+generation+with+TensorFlow+%3A+a+practical+guide+to+generating+images+and+videos+using+deep+learning
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Hands-on image generation with TensorFlow : a practical guide to generating images and videos using deep learning. It features 7 columns including author, publication date, language, and book publisher.

  14. T

    berkeley_autolab_ur5

    • tensorflow.org
    • huggingface.co
    Updated Sep 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). berkeley_autolab_ur5 [Dataset]. https://www.tensorflow.org/datasets/catalog/berkeley_autolab_ur5
    Explore at:
    Dataset updated
    Sep 3, 2024
    Description

    UR5 performing cloth manipulation, pick place etc tasks

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('berkeley_autolab_ur5', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  15. T

    fuss

    • tensorflow.org
    Updated Dec 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). fuss [Dataset]. https://www.tensorflow.org/datasets/catalog/fuss
    Explore at:
    Dataset updated
    Dec 6, 2022
    Description

    The Free Universal Sound Separation (FUSS) Dataset is a database of arbitrary sound mixtures and source-level references, for use in experiments on arbitrary sound separation.

    This is the official sound separation data for the DCASE2020 Challenge Task 4: Sound Event Detection and Separation in Domestic Environments.

    Overview: FUSS audio data is sourced from a pre-release of Freesound dataset known as (FSD50k), a sound event dataset composed of Freesound content annotated with labels from the AudioSet Ontology. Using the FSD50K labels, these source files have been screened such that they likely only contain a single type of sound. Labels are not provided for these source files, and are not considered part of the challenge. For the purpose of the DCASE Task4 Sound Separation and Event Detection challenge, systems should not use FSD50K labels, even though they may become available upon FSD50K release.

    To create mixtures, 10 second clips of sources are convolved with simulated room impulse responses and added together. Each 10 second mixture contains between 1 and 4 sources. Source files longer than 10 seconds are considered "background" sources. Every mixture contains one background source, which is active for the entire duration. We provide: a software recipe to create the dataset, the room impulse responses, and the original source audio.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('fuss', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  16. T

    pet_finder

    • tensorflow.org
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). pet_finder [Dataset]. https://www.tensorflow.org/datasets/catalog/pet_finder
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Dataset with images from 5 classes (see config name for information on the specific class)

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('pet_finder', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/pet_finder-1.0.0.png" alt="Visualization" width="500px">

  17. T

    openbookqa

    • tensorflow.org
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). openbookqa [Dataset]. https://www.tensorflow.org/datasets/catalog/openbookqa
    Explore at:
    Dataset updated
    Dec 15, 2022
    Description

    The dataset contains 5,957 4-way multiple choice questions. Additionally, they provide 5,167 crowd-sourced common knowledge facts, and an expanded version of the train/dev/test questions where each question is associated with its originating core fact, a human accuracy score, a clarity score, and an anonymized crowd-worker ID.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('openbookqa', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

  18. T

    voc

    • tensorflow.org
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). voc [Dataset]. https://www.tensorflow.org/datasets/catalog/voc
    Explore at:
    Dataset updated
    Jun 3, 2025
    Description

    This dataset contains the data from the PASCAL Visual Object Classes Challenge, corresponding to the Classification and Detection competitions.

    In the Classification competition, the goal is to predict the set of labels contained in the image, while in the Detection competition the goal is to predict the bounding box and label of each individual object. WARNING: As per the official dataset, the test set of VOC2012 does not contain annotations.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('voc', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/voc-2007-5.0.0.png" alt="Visualization" width="500px">

  19. Z

    Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang Guizhou (2024). Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A Spatial-Temporal Approach and Dataset" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8419699
    Explore at:
    Dataset updated
    Feb 4, 2024
    Dataset provided by
    He Guojin
    Long Tengfei
    Jiao Weili
    Wang Guizhou
    Gong Chengjuan
    Yin Ranyu
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is built for time-series Sentinel-2 cloud detection and stored in Tensorflow TFRecord (refer to https://www.tensorflow.org/tutorials/load_data/tfrecord).

    Each file is compressed in 7z format and can be decompressed using Bandzip or 7-zip software.

    Dataset Structure:

    Each filename can be split into three parts using underscores. The first part indicates whether it is designated for training or validation ('train' or 'val'); the second part indicates the Sentinel-2 tile name, and the last part indicates the number of samples in this file.

    For each sample, it includes:

    Sample ID;

    Array of time series 4 band image patches in 10m resolution, shaped as (n_timestamps, 4, 42, 42);

    Label list indicating cloud cover status for the center (6\times6) pixels of each timestamp;

    Ordinal list for each timestamp;

    Sample weight list (reserved);

    Here is a demonstration function for parsing the TFRecord file:

    import tensorflow as tf

    init Tensorflow Dataset from file name

    def parseRecordDirect(fname): sep = '/' parts = tf.strings.split(fname,sep) tn = tf.strings.split(parts[-1],sep='_')[-2] nn = tf.strings.to_number(tf.strings.split(parts[-1],sep='_')[-1],tf.dtypes.int64) t = tf.data.Dataset.from_tensors(tn).repeat().take(nn) t1 = tf.data.TFRecordDataset(fname) ds = tf.data.Dataset.zip((t, t1)) return ds

    keys_to_features_direct = { 'localid': tf.io.FixedLenFeature([], tf.int64, -1), 'image_raw_ldseries': tf.io.FixedLenFeature((), tf.string, ''), 'labels': tf.io.FixedLenFeature((), tf.string, ''), 'dates': tf.io.FixedLenFeature((), tf.string, ''), 'weights': tf.io.FixedLenFeature((), tf.string, '') }

    The Decoder (Optional)

    class SeriesClassificationDirectDecorder(decoder.Decoder): """A tf.Example decoder for tfds classification datasets.""" def init(self) -> None: super()._init_()

    def decode(self, tid, ds): parsed = tf.io.parse_single_example(ds, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) sample_dict = { 'tid': tid, # tile ID 'dates': dates, # Date list 'localid': parsed['localid'], # sample ID 'imgs': decoded, # image array 'labels': label, # label list 'weights': weight } return sample_dict

    simple function

    def preprocessDirect(tid, record): parsed = tf.io.parse_single_example(record, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) return tid, dates, parsed['localid'], decoded, label, weight

    t1 = parseRecordDirect('filename here') dataset = t1.map(preprocessDirect, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    #

    Class Definition:

    0: clear

    1: opaque cloud

    2: thin cloud

    3: haze

    4: cloud shadow

    5: snow

    Dataset Construction:

    First, we randomly generate 500 points for each tile, and all these points are aligned to the pixel grid center of the subdatasets in 60m resolution (eg. B10) for consistence when comparing with other products. It is because that other cloud detection method may use the cirrus band as features, which is in 60m resolution.

    Then, the time series image patches of two shapes are cropped with each point as the center.The patches of shape (42 \times 42) are cropped from the bands in 10m resolution (B2, B3, B4, B8) and are used to construct this dataset.And the patches of shape (348 \times 348) are cropped from the True Colour Image (TCI, details see sentinel-2 user guide) file and are used to interpreting class labels.

    The samples with a large number of timestamps could be time-consuming in the IO stage, thus the time series patches are divided into different groups with timestamps not exceeding 100 for every group.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist

mnist

Explore at:
76 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 1, 2024
Description

The MNIST database of handwritten digits.

To use this dataset:

import tensorflow_datasets as tfds

ds = tfds.load('mnist', split='train')
for ex in ds.take(4):
 print(ex)

See the guide for more informations on tensorflow_datasets.

https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

Search
Clear search
Close search
Google apps
Main menu