Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
Layers of geospatial data include contours, boundaries, land cover, hydrography, roads, transportation, geographic names, structures, and other selected map features.
description: This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps; abstract: topography, topographic, land cover, physical, TOPO!imageryBaseMapsEarthCover (Imagery, basemaps, and land cover)USA Topo Maps
USGS Historical Quadrangle in GeoPDF. The USGS Historical Topographic Map Collection (HTMC) is scanning all scales and all editions of topographic maps published by the U.S. Geological Survey (USGS) since the inception of the topographic mapping program in 1884.
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This digital terrain model represents historical elevations along the valley of the North Fork Toutle River upstream of its confluence with the Green River in Cowlitz and Skamania Counties, Washington. Most elevations were derived from U.S. Geological Survey 1:62,500 scale topographic quadrangle maps published from 1953 to 1958 that were derived from aerial photographs taken in 1951 and 1952. Elevations representing the bed of Spirit Lake, at the head of the valley, were derived from a bathymetric map based on survey data from 1974. Elevations are in units of meters and have been adjusted to the North American Vertical Datum of 1988.
7.5 Minute Digital Elevation Model for the state of Arizona. Digital Elevation Model (DEM) is the terminology adopted by the USGS to describe terrain elevation data sets in a digital raster form. The standard DEM consists of a regular array of elevations cast on a designated coordinate projection system. The DEM data are stored as a series of profiles in which the spacing of the elevations along and between each profile is in regular whole number intervals. The normal orientation of data is by columns and rows. Each column contains a series of elevations ordered from south to north with the order of the columns from west to east. The DEM is formatted as one ASCII header record (A-record), followed by a series of profile records (B-records) each of which include a short B-record header followed by a series of ASCII integer elevations per each profile. The last physical record of the DEM is an accuracy record (C-record). The DEM for 7.5-minute units correspond to the USGS 1:24000 scale topographic quadrangle map series for all of the United States and its territories. Each 7.5 minute DEM is based on 30- by 30-meter data spacing with Universal Transverse Mercator(UTM) projection. Each 7.5- by 7.5-minute block provides the same coverage as the standard USGS 7.5-minute map series.
Culminating more than four years of processing data, NASA and the National Geospatial-Intelligence Agency (NGA) have completed Earth's most extensive global topographic map. The mission is a collaboration among NASA, NGA, and the German and Italian space agencies. For 11 days in February 2000, the space shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM) using C-Band and X-Band interferometric synthetic aperture radars to acquire topographic data over 80% of the Earth's land mass, creating the first-ever near-global data set of land elevations. This data was used to produce topographic maps (digital elevation maps) 30 times as precise as the best global maps used today. The SRTM system gathered data at the rate of 40,000 per minute over land. They reveal for the first time large, detailed swaths of Earth's topography previously obscured by persistent cloudiness. The data will benefit scientists, engineers, government agencies and the public with an ever-growing array of uses. The SRTM radar system mapped Earth from 56 degrees south to 60 degrees north of the equator. The resolution of the publicly available data is three arc-seconds (1/1,200th of a degree of latitude and longitude, about 295 feet, at Earth's equator). The final data release covers Australia and New Zealand in unprecedented uniform detail. It also covers more than 1,000 islands comprising much of Polynesia and Melanesia in the South Pacific, as well as islands in the South Indian and Atlantic oceans. SRTM data are being used for applications ranging from land use planning to "virtual" Earth exploration. Currently, the mission's homepage "http://www.jpl.nasa.gov/srtm" provides direct access to recently obtained earth images. The Shuttle Radar Topography Mission C-band data for North America and South America are available to the public. A list of complete public data set is available at "http://www2.jpl.nasa.gov/srtm/dataprod.htm" The data specifications are within the following parameters: 30-meter X 30-meter spatial sampling with 16 meter absolute vertical height accuracy, 10-meter relative vertical height accuracy, and 20-meter absolute horizontal circular accuracy. From the JPL Mission Products Summary, "http://www.jpl.nasa.gov/srtm/dataprelimdescriptions.html". The primary products of the SRTM mission are the digital elevation maps of most of the Earth's surface. Visualized images of these maps are available for viewing online. Below you will find descriptions of the types of images that are being generated:
The SRTM radar contained two types of antenna panels, C-band and X-band. The near-global topographic maps of Earth called Digital Elevation Models (DEMs) are made from the C-band radar data. These data were processed at the Jet Propulsion Laboratory and are being distributed through the United States Geological Survey's EROS Data Center. Data from the X-band radar are used to create slightly higher resolution DEMs but without the global coverage of the C-band radar. The SRTM X-band radar data are being processed and distributed by the German Aerospace Center, DLR.
A nationwide listing of known publicly available high-accuracy topographic and bathymetric source elevation data for the United States and its territories. The inventory provides a single resource for information about all known completed and in-progress broad-area public domain elevation data. The information provided for each elevation dataset includes many attributes such as vertical accuracy, point spacing, and date of collection. A direct link to access the data or information about the contact organization is also available through the inventory. The United States Interagency Elevation Inventory raises awareness of and increases access to existing elevation data, thereby reducing data duplication efforts. It helps to identify data gaps and informs and encourages collaboration on future data collection efforts. The inventory displays data set boundaries and provides information about the elevation data but does not host the data itself. If available, links to access the data, metadata, and reports are included. The inventory viewer uses map services from multiple sources to provide information both topography and bathymetry. Map services from NOAA NCEI display the footprints and attribute information for the NOAA Hydrographic Surveys, Multibeam Bathymetry, and Trackline Surveys. A map service from USACE provides the USACE Hydrographic Surveys. Map services from NOAA Office for Coastal Management provide the bulk of the topographic and bathymetric lidar information. The NOAA NCEI and USACE service are updated regularly as new data in ingested. The data supporting the NOAA OCM hosted services are maintained by a partnership of federal agencies and supports the federal elevation theme. The agencies include NOAA, the U.S. Geological Survey, the Federal Emergency Management Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service and the U.S. Army Corps of Engineers. This service is updated quarterly through an active process of data discovery and validation.
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/9 arc-second (approximately 3 m) resolution.The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/9 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless 1/9 arc-second DEM layer project-based coverage for portions of the conterminous United States, limited areas of Alaska, and Guam. The seamless 1/9 arc-second NED layer is available as pre-staged products tiled in 15 minute blocks in Erdas .img format. Since 2015, the seamless 1/9 arc-second DEM layer is no longer being updated. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include one-meter DEMs produced exclusively from high resolution light detection and ranging (lidar) source data and five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The Color Landform Atlas of the United States, Version 2 may be accessed on the World Wide Web at: 'http://fermi.jhuapl.edu/states/states.html'
The following information was abstracted from: 'http://fermi.jhuapl.edu/states/about.html'. Please visit this page for additional information.
Currently the following maps are available for each state (except Alaska and Hawaii, they are coming sometime):
A topographic map optimized to show the
landforms. The same color shading is used
across the country.
A map showing counties in a state. The
background topography has been somewhat
suppressed to allow the county boundaries to
show well.
Satellite images of the state. These have been
obtained here directly from the NOAA weather
satellites and use the AVHRR image data.
An 1895 map of each state. These are from an old
Rand McNally Atlas of the World. Not yet all
available, still scanning
A PostScript map of counties in the state.
These are intended for download and printing on a
PostScript printer.
The first two maps all have the same maximum image length (900 pixels) so the actually scale varies from state to state. Long narrow states also have more detailed subsections available. More maps will be added later.
The elevation key is intended for the topographic maps. The county maps use the same colors but with less contrast. It may be convenient to start another browser window and view the elevation key image at the same time as the map of interest.
The same data and coloring is used for the state maps as for the previous JHU/APL Digital Relief Map of the U.S. which covers the U.S. at a uniform scale in 60 GIF images.
Even though the same color scheme is used as for earlier maps a new coloring algorithm is in use. The coloring for some maps is improved, for others it is not as good. The old coloring algorithm used a median cut technique which did not handle small areas of elevation extremes well. An example problem area is Mt. Washington in New Hampshire, it was miscolored on the previous maps. The new algorithm does a better overall job but has occasional problems along the coast.
The color shaded relief map of the conterminous U.S. was created from 15 arc-second digital elevation model (DEM) data. The data set traces its origins back to the early 1960's when .01 inch scans of 1:250,000 USGS topographic sheets were produced by the Defense Mapping Agency and converted to 3 second data by the USGS National Cartographic Information Center. The 15 second grid cell data (Michael Webring, written communication) used in this report dates from the mid-1980's with occasional local and regional updates. The 3 second grid nodes were averaged with a 6x6 operator and decimated to 15 second grid cells which is about the resolution of the original .01 inch data set. The 3 second data is available as 950 separate 1x1 degree quadrangles from the USGS EROS Data Center.
Additional information available at "http://pubs.usgs.gov/of/of99-011/1readme.html"
[Summary provided by the USGS.]
.
This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps
The Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) is an ongoing multiinstitutional, international effort addressing the response of biogeography and biogeochemistry to environmental variability in climate and other drivers in both space and time domains. The objectives of VEMAP are the intercomparison of biogeochemistry models and vegetationtype distribution models (biogeography models) and determination of their sensitivity to changing climate, elevated atmospheric carbon dioxide concentrations, and other sources of altered forcing. The VEMAP data set includes three georeferencing and three cell area variables. Data Citation: This data set should be cited as follows: Kittel, T. G. F., N. A. Rosenbloom, T. H. Painter, D. S. Schimel, H. H. Fisher, A. Grimsdell, VEMAP Participants, C. Daly, and E. R. Hunt, Jr. 2002. VEMAP Phase I Database, revised. Available on-line from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.
The USGS Elevation Contours service from The National Map displays contours generated for the United States at various scales. Small-scale contours were created by USGS TNM from 1 arc-second data with 100-meter contours, and are visible at 1:600,000 and smaller scales. Medium-scale contours were created by USGS EROS from 1/3-arc-second data with 100-foot intervals, and are visible between 1:150,000 and 1:600,000. Additional medium-scale contours were created by USGS EROS from 1/3-arc-second data with 50-foot intervals, and are visible between 1:50,000 and 1:150,000. Large scale contours are updated every quarter, and are created by USGS TNM for the 7.5' 1:24,000-scale US Topo digital map series. These contours are derived from 1/3 arc-second or better resolution data, and are visible at scales 1:50,000 and larger. Large scale contour intervals are variable across the United States depending on complexity of topography, and as contours are generated per US Topo quadrangle, lines may not match across quad boundaries. The National Map download client allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to https://www.usgs.gov/3d-elevation-program. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
Source: https://carto.nationalmap.gov/arcgis/rest/services/contours/MapServerThe USGS Elevation Contours service from The National Map displays contours generated for the United States at various scales. Small-scale contours were created by USGS TNM from 1 arc-second data with 100-meter contours, and are visible at 1:600,000 and smaller scales. Medium-scale contours were created by USGS EROS from 1/3-arc-second data with 100-foot intervals, and are visible between 1:150,000 and 1:600,000. Additional medium-scale contours were created by USGS EROS from 1/3-arc-second data with 50-foot intervals, and are visible between 1:50,000 and 1:150,000. Large scale contours are updated every quarter, and are created by USGS TNM for the 7.5' 1:24,000-scale US Topo digital map series. These contours are derived from 1/3 arc-second or better resolution data, and are visible at scales 1:50,000 and larger. Large scale contour intervals are variable across the United States depending on complexity of topography, and as contours are generated per US Topo quadrangle, lines may not match across quad boundaries. The National Map download client allows free downloads of public domain contour data in either Esri File Geodatabase or Shapefile formats. The 3D Elevation Program (3DEP) provides elevation data for The National Map and basic elevation information for earth science studies and mapping applications. Scientists and resource managers use elevation data for global change research, hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. For additional information on 3DEP, go to https://www.usgs.gov/3d-elevation-program. See https://apps.nationalmap.gov/help for assistance with The National Map viewer, download client, services, or metadata.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York