Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global website visitor tracking software market is experiencing robust growth, driven by the increasing need for businesses to understand online customer behavior and optimize their digital strategies. The market, estimated at $5 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $15 billion by 2033. This expansion is fueled by several key factors, including the rising adoption of digital marketing strategies, the growing importance of data-driven decision-making, and the increasing sophistication of website visitor tracking tools. Cloud-based solutions dominate the market due to their scalability, accessibility, and cost-effectiveness, particularly appealing to Small and Medium-sized Enterprises (SMEs). However, large enterprises continue to invest significantly in on-premise solutions for enhanced data security and control. The market is highly competitive, with numerous established players and emerging startups offering a range of features and functionalities. Technological advancements, such as AI-powered analytics and enhanced integration with other marketing tools, are shaping the future of the market. The market's geographical distribution reflects the global digital landscape. North America, with its mature digital economy and high adoption rates, holds a significant market share. However, regions like Asia-Pacific are showing rapid growth, driven by increasing internet penetration and digitalization across various industries. Despite the overall positive outlook, challenges such as data privacy regulations and the increasing complexity of website tracking technology are influencing market dynamics. The ongoing competition among vendors necessitates continuous innovation and the development of more user-friendly and insightful tools. The future growth of the website visitor tracking software market is promising, fueled by the continuing importance of data-driven decision-making within marketing and business strategies. A key factor will be the ongoing adaptation to evolving privacy regulations and user expectations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Only Test Site Korean Traffic Light 2 is a dataset for object detection tasks - it contains Green Red Left PZAm annotations for 2,038 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Between July and September 2022, BYJU's emerged as the top Ed Tech platform for K12 and test preparation In India. It recorded approximately 330 million website visits. Following closely behind was Toppr.com, with around 250 million visits during the same period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This traffic dataset contains a balance size of encrypted malicious and legitimate traffic for encrypted malicious traffic detection and analysis. The dataset is a secondary csv feature data that is composed of six public traffic datasets.
Our dataset is curated based on two criteria: The first criterion is to combine widely considered public datasets which contain enough encrypted malicious or encrypted legitimate traffic in existing works, such as Malware Capture Facility Project datasets. The second criterion is to ensure the final dataset balance of encrypted malicious and legitimate network traffic.
Based on the criteria, 6 public datasets are selected. After data pre-processing, details of each selected public dataset and the size of different encrypted traffic are shown in the “Dataset Statistic Analysis Document”. The document summarized the malicious and legitimate traffic size we selected from each selected public dataset, the traffic size of each malicious traffic type, and the total traffic size of the composed dataset. From the table, we are able to observe that encrypted malicious and legitimate traffic equally contributes to approximately 50% of the final composed dataset.
The datasets now made available were prepared to aim at encrypted malicious traffic detection. Since the dataset is used for machine learning or deep learning model training, a sample of train and test sets are also provided. The train and test datasets are separated based on 1:4. Such datasets can be used for machine learning or deep learning model training and testing based on selected features or after processing further data pre-processing.
Road Test Locations for all DMV Road Test Types mandated by NYS Vehicle and Traffic Law.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset represents synthetic traffic data for a certain location over a one-year period. It includes information about the traffic volume, weather conditions, and special events that may affect traffic.
Features:
Timestamp: The date and time of the observation.Weather: The weather condition at the time of the observation (e.g., Clear, Cloudy, Rain, Snow).
Events: A binary variable indicating whether there was a special event affecting traffic at the time of the observation (True or False).
Traffic Volume: The volume of traffic at the location at the time of the observation.
The dataset is intended for use in analyzing traffic patterns and trends, as well as for developing and testing models related to traffic prediction and management.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ASNM datasets include records consisting of many features
This data set was acquired by the USDOT Data Capture and Management program. The purpose of the data set is to provide multi-modal data and contextual information (weather and incidents) that can be used to research and develop applications. Contains one full year (January – December 2010) of raw 30-second data for over 3,000 traffic detectors deployed along 1,250 lane miles of monitored roadway in San Diego. Cleaned and geographically referenced data for over 1,500 incidents and lane closures for the two sections of I-5 that experienced the greatest number of incidents during 2010. Complete trip (origin-to-destination) GPS “breadcrumbs” collected by ALK Techonologies, containing latitude/longitude, vehicle heading and speed data, and time for individual in-vehicles devices updated at 3-second intervals for over 10,000 trips taken during 2010. A digital map shape file containing ALK’s street-level network data for the San Diego Metropolitan area. And San Diego Weather data for 2010. This legacy dataset was created before data.transportation.gov and is only currently available via the attached file(s). Please contact the dataset owner if there is a need for users to work with this data using the data.transportation.gov analysis features (online viewing, API, graphing, etc.) and the USDOT will consider modifying the dataset to fully integrate in data.transportation.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Untreated data (raw data) as provided by sensor manufacturers. They can be used to derive the measurement uncertainties of the sensors. In addition, traffic data in the form of traffic volume and speed separated by lane and class (cars and trucks) are provided for analysis. The data is updated daily. Data from five compiled street weather stations (SWS) with plausible measured values. The plausibility check is carried out according to the rules from the FGSV note paper H PEB SWIS. The data from these stations will be made available to the DWD for predictions as part of the road condition and weather information system SWIS Info. The predictions can be viewed there with the appropriate access authorization. The data is updated daily. Dataset description: Information about the Open Data data format (PDF) Note: The sensors are regularly serviced by the manufacturers. There is no permanent control by the BASt. High measurement tolerances or sensor errors can only be assessed by means of the plausibility checks shown or by means of photos. No sensor currently serves as a reference for a parameter. In addition to manufacturing-related measurement tolerances, differences between the measured values for a parameter may also be due to the design or location of a sensor in the test field. The latter relates only to the parameters of the roadway. Here, the position of the sensor in the cross-section of the road must be taken into account. In the longitudinal direction of a cross-section, no significant differences could be found in the short test field section. No different influences are seen in the atmospheric parameters. With the exception of precipitation sensors, they measure at a height of about 4 meters above the ground.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Traffic count and speed data collected from the several Wavetronix radar sensors deployed by the City of Austin.
The Travel Sensor dataset ( https://data.austintexas.gov/Transportation-and-Mobility/Travel-Sensors/6yd9-yz29 ) is related to this dataset using the 'KITS ID' field. The Travel Sensors dataset provides more information on sensor location and status.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Real-Time DDoS Traffic Dataset for ML is designed to support the development, testing, and validation of machine learning models focused on detecting Distributed Denial of Service (DDoS) attacks in real-time. As cybersecurity threats evolve, particularly in the realm of network traffic anomalies like DDoS, having access to labeled data that mirrors real-world attack scenarios is essential. This dataset aims to bridge this gap by providing comprehensive, structured network traffic data that includes both normal and DDoS attack instances, facilitating machine learning research and experimentation in DDoS detection and prevention.
The dataset is compiled from network traffic that either replicates real-time conditions or is simulated under carefully controlled network configurations to generate authentic DDoS attack traffic. This data encompasses variations in packet transmission and byte flow, which are key indicators in distinguishing between typical network behavior and DDoS attack patterns. The primary motivation behind this dataset is to aid machine learning practitioners and cybersecurity experts in training models that can effectively differentiate between benign and malicious traffic, even under high-stress network conditions.
Data Source and Collection: Include information on how the data was collected, whether it was simulated or recorded from real systems, and any specific tools or configurations used.
Dataset Structure: List and explain the features or columns in the dataset. For instance, you might describe columns such as:
This dataset is ideal for a range of applications in cybersecurity and machine learning:
1.Training DDoS Detection Models: The dataset is specifically structured for use in supervised learning models that aim to identify DDoS attacks in real time. Researchers and developers can train and test models using the labeled data provided.
2.Real-Time Anomaly Detection: Beyond DDoS detection, the dataset can serve as a foundation for models focused on broader anomaly detection tasks in network traffic monitoring.
3.Benchmarking and Comparative Studies: By providing data for both normal and attack traffic, this dataset is suitable for benchmarking various algorithms, allowing comparisons across different detection methods and approaches.
4.Cybersecurity Education: The dataset can also be used in educational contexts, allowing students and professionals to gain hands-on experience with real-world data, fostering deeper understanding of network anomalies and cybersecurity threats.
Limitations and Considerations While the dataset provides realistic DDoS patterns, it is essential to note a few limitations:
Data Origin: The dataset may contain simulated attack patterns, which could differ from real-world DDoS attack traffic in more complex network environments.
Sampling Bias: Certain features or types of attacks may be overrepresented due to the specific network setup used during data collection. Users should consider this when generalizing their models to other environments.
Ethical Considerations: This dataset is intended for educational and research purposes only and should be used responsibly to enhance network security.
Acknowledgments This dataset is an open-source contribution to the cybersecurity and machine learning communities, and it is designed to empower researchers, educators, and industry professionals in developing stronger defenses against DDoS attacks.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This set of data houses a test set of 1000 graphs with locally skewed traffic at a rate of gamma=0.2. The throughput labels are calculated with the same methodology as the other beta sets just subjected to different traffic conditions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This set of data houses a test set of 1000 graphs with locally skewed traffic at a rate of gamma=0.6. The throughput labels are calculated with the same methodology as the other beta sets just subjected to different traffic conditions.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global website speed and performance test tool market size was valued at USD 1.84 billion in 2022 and is projected to reach USD 5.52 billion by 2033, exhibiting a CAGR of 12.0% during the forecast period. The escalating demand for website performance optimization services, the surge in website traffic, and the proliferation of mobile devices drive market growth. Moreover, the growing adoption of cloud-based solutions and the increasing preference for online shopping fuel market expansion. Key players in the website speed and performance test tool market include Pingdom, Yellow Lab Tools, Alerta, Sematext, Domsignal, Dareboost, New Relic, Google PageSpeed Insights, KeyCDN Website Speed Test, Yslow, Uptrends, GTmetrix, Site24x7, Datadog, Catchpoint WebPageTest, Dotcom-Monitor, Lighthouse, WebPagetest, and Load Impact. These companies are focusing on offering advanced features and enhancing the capabilities of their tools to gain a competitive edge. The market is fragmented, with several players offering a wide range of solutions catering to different customer needs and industries.
We have for the Internet environment: 01 Switch, 01 IP camera, 01 server for monitoring, 01 server for honeypot and no firewall. This environment is directly connected to the Internet. We installed a server, functioning as a Monitoring Environment. The network traffic was obtained via Port Mirroring on the switch to the Monitoring Environment server. The results were obtained from Suricata and Telegraf collections from the TICK stack. All evidence was performed by queries via EveBox, which received data from Suricata, Grafana or graphics with information extracted from the InfluxDB (Grafana) and PostgreSQL (EveBox) databases. events.csv.gz - Suricata / Evebox collections net.csv.gz - Telegraf collections from the TICK stack netstat.csv.gz - Telegraf collections from the TICK stack For correlation purposes, use the events.csv.gz file as a basis. The key to correlation is the 'timestamp' column events.csv.gz with the 'time' column in the net.csv.gz and netstat.csv.gz files. The interval between collections, non-consecutive, was from 2018-08-28 to 2019-11-14
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
For the purpose of research on data intermediaries and data anonymisation, it is necessary to test these processes with realistic video data containing personal data. For this purpose, the Treumoda project, funded by the German Federal Ministry of Education and Research (BMBF), has created a dataset of different traffic scenes containing identifiable persons.
This video data was collected at the Autonomous Driving Test Area Baden-Württemberg. On the one hand, it should be possible to recognise people in traffic, including their line of sight. On the other hand, it should be usable for the demonstration and evaluation of anonymisation techniques.
The legal basis for the publication of this data set the consent given by the participants as documented in the file Consent.pdf (all purposes) in accordance with Art. 6 1 (a) and Art. 9 2 (a) GDPR. Any further processing is subject to the GDPR.
We make this dataset available for non-commercial purposes such as teaching, research and scientific communication. Please note that this licence is limited by the provisions of the GDPR. Anyone downloading this data will become an independent controller of the data. This data has been collected with the consent of the identifiable individuals depicted.
Any consensual use must take into account the purposes mentioned in the uploaded consent forms and in the privacy terms and conditions provided to the participants (see Consent.pdf). All participants consented to all three purposes, and no consent was withdrawn at the time of publication. KIT is unable to provide you with contact details for any of the participants, as we have removed all links to personal data other than that contained in the published images.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Web Performance Testing Market size was valued at USD 3.22 Billion in 2024 and is projected to reach USD 8.14 Billion by 2031, growing at a CAGR of 8.72% during the forecast period 2024-2031.
Global Web Performance Testing Market Drivers
The market drivers for the Web Performance Testing Market can be influenced by various factors. These may include:
Increased Internet and Mobile Usage: The proliferation of internet users globally and the surge in mobile device usage means that more people are accessing websites and web applications through various devices and networks. This diversity necessitates robust performance testing to ensure a consistent user experience across all platforms. Rising E-commerce and Online Services: The growth of e-commerce and online services demands that websites perform optimally at all times. Slow load times or downtime can directly translate to lost revenue and poor customer satisfaction. Hence, businesses must continuously test and optimize their web performance to remain competitive. User Experience (UX) Focus: Companies are increasingly prioritizing user experience as a key differentiator. A smooth, responsive, and fast website is essential for retaining visitors and enhancing user satisfaction. Performance testing helps in identifying and resolving issues that could hinder UX. SEO and Digital Marketing: Search engines like Google consider page load times and overall web performance as critical factors in their ranking algorithms. Websites that load faster are more likely to rank higher, driving organic traffic and improving visibility. Performance testing ensures websites meet these criteria. Complex Web Applications: Modern web applications often involve complex interactions, real-time updates, and integrations with other services. Ensuring these applications function correctly under various conditions requires comprehensive performance testing. Regulatory Requirements: Several industries are subject to regulatory requirements that mandate specific performance standards for websites, particularly for accessibility and user data protection. Compliance necessitates regular performance testing. Competitive Pressure: In a crowded digital marketplace, even minor performance improvements can provide a competitive edge. Companies invest in performance testing to stay ahead of or keep up with competitors. Technology Advancements: Innovations in web technologies (like Progressive Web Apps, Single Page Applications, etc.) necessitate new and improved testing methodologies. The adoption of these new technologies requires businesses to adapt and enhance their performance testing strategies. Cloud Adoption: The increasing use of cloud services and decentralized architectures facilitates scalability but also introduces performance variability. Cloud-based web performance testing tools are essential to monitor and optimize performance in such environments. Customer Expectations: The modern consumer expects instantaneous access to information and services. Even slight delays can result in frustration and abandonment. Meeting these heightened customer expectations is a major driver for continuous web performance testing. A/B Testing and Optimization: Businesses frequently use A/B testing to optimize website elements for conversion improvements. Performance testing ensures that these optimizations do not negatively impact load times or responsiveness. Emerging Markets and Global Reach: As businesses expand globally, they must ensure their websites perform well across different geographies, which may have varied network conditions and device usage patterns. Performance testing is crucial for maintaining a global online presence.
CaualRL/traffic-video-test dataset hosted on Hugging Face and contributed by the HF Datasets community
Listen to this episode: About This Episode: Most business leaders understand that you need a significant amount of traffic to run an optimization program that gets results. However, having 100,000+ sessions per month doesn’t necessarily mean that your site is ready to optimize with 100% confidence. Not all traffic is created equal, and you have […]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.