61 datasets found
  1. H

    Texas Basemap - Lidar Elevation Data (DEM)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Nov 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HydroShare (2023). Texas Basemap - Lidar Elevation Data (DEM) [Dataset]. http://doi.org/10.4211/hs.af6ae321e2ad40a1bc6d0b695370fbfc
    Explore at:
    zip(5.5 GB)Available download formats
    Dataset updated
    Nov 3, 2023
    Dataset provided by
    HydroShare
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas
    Description

    This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.

    For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
    Project name: H-GAC 2008 1m Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours Points per sq meter: 1 Total area: 3678.56 sq miles Source: Houston-Galveston Area Council (H-GAC) Acquired by: Merrick, QA/QC: Merrick Catalog: houston-galveston-area-council-h-gac-2008-lidar

    References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]

  2. Galveston, Texas Coastal Digital Elevation Model

    • catalog.data.gov
    • gimi9.com
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Galveston, Texas Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/galveston-texas-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Galveston, Texas
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEM ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  3. d

    BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata:...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_FS_z15_n88g12A_mosaic_metadata: Lidar-Derived First-Surface Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014 [Dataset]. https://catalog.data.gov/dataset/lidar-derived-first-surface-digital-elevation-model-dem-mosaic-for-eaarl-b-topographybig-t
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Pine Island Bayou
    Description

    A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

  4. d

    2-meter Topographic Lidar Digital Elevation Model (DEM) of the Lower Texas...

    • search.dataone.org
    • data.griidc.org
    Updated Feb 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Subedee, Mukesh (2025). 2-meter Topographic Lidar Digital Elevation Model (DEM) of the Lower Texas Coast [Dataset]. http://doi.org/10.7266/Z7WG9EGN
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Subedee, Mukesh
    Area covered
    Texas
    Description

    This dataset contains a seamless high resolution, two-meter, topographic lidar digital elevation model (DEM) of the Lower Texas Coast. The elevations in this DEM represent the topographic bare-earth surface. The dataset is a fusion of several airborne topographic light detection and ranging (lidar) surveys acquired by various surveyors between the years 2007 – 2019 where coverage is primarily from 2018 and 2019. The landward extent of the lidar surveys selected for the creation of this DEM is determined by the boundary of the ADvanced CIRCulation (ADCIRC) TX2008_R35H computational mesh obtained from the Computational Hydraulics Group at The University of Texas at Austin. The spatial reference used for the tiles in the DEM is in Universal Transverse Mercator (UTM) Zone 14 in units of meters and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevations are referenced to the North American Datum of 1988 (NAVD88). The 2-meter DEM of the upper Texas coast is available under GRIIDC Unique Dataset Identifier (UDI): HI.x833.000:0009 (DOI: 10.7266/2MYPTJ7Y).

  5. Corpus Christi, Texas 1/3 arc-second MHW Coastal Digital Elevation Model

    • s.cnmilf.com
    • datadiscoverystudio.org
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). Corpus Christi, Texas 1/3 arc-second MHW Coastal Digital Elevation Model [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/corpus-christi-texas-1-3-arc-second-mhw-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    Corpus Christi, Texas
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).

  6. U

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • datadiscoverystudio.org
    • +4more
    Updated Jan 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2017). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:77ae0551-c61e-4979-aedd-d797abdcde0e
    Explore at:
    Dataset updated
    Jan 27, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...

  7. NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated Oct 31, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA Office for Coastal Management (Point of Contact) (2024). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Texas North 1 [Dataset]. https://catalog.data.gov/dataset/noaa-office-for-coastal-management-coastal-inundation-digital-elevation-model-texas-north-11
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Texas North 1 digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Hardin, Jasper, Jefferson, Newton, and Orange Counties. The DEM was produced from the following lidar data sets: 1. 2018 NRCS Texas - Eastern Texas Lidar 2. 2018 TNRIS Lidar: Upper Coastal Lidar 3. 2017 TNRIS Lidar: Jefferson, Liberty, and Chambers 4. 2016 FEMA Region 6 TX - Neches Basin QL2 Lidar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88, Geoid12B) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.

  8. d

    BITH2014_LowerNechesRiverCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata:...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). BITH2014_LowerNechesRiverCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Lower Neches River Corridor Unit, Texas, 2014 [Dataset]. https://catalog.data.gov/dataset/eaarl-b-topography-big-thicket-national-preserve-lower-neches-river-corridor-unit-texas-20
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Neches River, Texas
    Description

    A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

  9. South Padre Island, Texas 1/3 Arc-second MHW Coastal Digital Elevation Model...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +2more
    Updated Oct 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2024). South Padre Island, Texas 1/3 Arc-second MHW Coastal Digital Elevation Model [Dataset]. https://catalog.data.gov/dataset/south-padre-island-texas-1-3-arc-second-mhw-coastal-digital-elevation-model1
    Explore at:
    Dataset updated
    Oct 18, 2024
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    South Padre Island, Padre Island, Texas
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the Canadian Hydrographic Service (CHS), the Puget Sound Lidar Consortium (PSLC), the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), Canadian Digital Elevation Data (CDED) and other international, federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datums of Mean High Water (MHW) and North American Vertical Datum of 1988 (NAVD 88) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~30 meters).

  10. d

    ScienceBase Item Summary Page

    • datadiscoverystudio.org
    Updated Feb 23, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2013). ScienceBase Item Summary Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/c91e178edb394a5db4db2c70abf3205f/html
    Explore at:
    Dataset updated
    Feb 23, 2013
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  11. d

    NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • datadiscoverystudio.org
    Updated 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Lake Charles, Texas WFONOAA/NMFS/EDM [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/eb05c768b94a44fbbd1ab638c47cb85f/html
    Explore at:
    Dataset updated
    2012
    Area covered
    Description

    This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes best available lidar data known to exist at the time of DEM creation that meets project specifications for those counties within the boundary of the Lake Charles, LA Weather Forecast Office (WFO), as defined by the NOAA National Weather Service. The DEM is derived from LiDAR datasets collected for the Texas Water Development Board (TWDB). LiDAR data for Orange and Jefferson counties was collected for the TWDB in 2006. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the TWDB datasets. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.

  12. d

    BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata:...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). BITH2014_LittlePineIslandBayouCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: Lidar-Derived Bare-Earth Digital Elevation Model (DEM) Mosaic for EAARL-B Topography—Big Thicket National Preserve: Little Pine Island Bayou Corridor Unit, Texas, 2014 [Dataset]. https://catalog.data.gov/dataset/lidar-derived-bare-earth-digital-elevation-model-dem-mosaic-for-eaarl-b-topographybig-thic
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Earth, Pine Island Bayou
    Description

    A bare-earth topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

  13. 2017 TNRIS Lidar DEM: Jefferson, Liberty and Chambers, TX (East)

    • fisheries.noaa.gov
    geotiff
    Updated Jan 1, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2017). 2017 TNRIS Lidar DEM: Jefferson, Liberty and Chambers, TX (East) [Dataset]. https://www.fisheries.noaa.gov/inport/item/59008
    Explore at:
    geotiffAvailable download formats
    Dataset updated
    Jan 1, 2017
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Feb 22, 2017 - Mar 4, 2017
    Area covered
    Description

    This metadata record describes the bare-earth hydro-flattened Digital Elevation Model (DEM) for the Eastern Block of the 2017 Texas Coastal LiDAR project. The Eastern Block covers approximately 841 square miles, including the cities of Beaumont, Port Arthur, and Nederland in southeast Texas. This point cloud AOI was collected to meet the density of 4 points per meter. The DEM has 1 m horizontal...

  14. d

    Data from: EAARL Topography-Padre Island National Seashore

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Padre Island National Seashore [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-padre-island-national-seashore
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Padre Island
    Description

    Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  15. U

    1/3rd arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • catalog.data.gov
    Updated Feb 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1/3rd arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:3a81321b-c153-416f-98b7-cc8e5f0e17c3
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless ...

  16. d

    NOAA Office for Coastal Management Coastal Inundation Digital Elevation...

    • datadiscoverystudio.org
    Updated 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). NOAA Office for Coastal Management Coastal Inundation Digital Elevation Model: Houston/Galveston, Texas Weather Forecast Office (WFO)NOAA/NMFS/EDM [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/dc51cd9672e04edc8aa9b1b0939cc259/html
    Explore at:
    Dataset updated
    2012
    Area covered
    Description

    This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes the best available lidar data known to exist at the time of DEM creation that meets project specifications for those counties within the boundary of the Houston/Galveston TX Weather Forecast Office (WFO), as defined by the NOAA National Weather Service. The counties within this boundary are: Jackson, Matagorda, Brazoria (portion), Harris (portion), Galveston, and Chambers. For all the counties listed, except for Harris, the DEM is derived from LiDAR data sets collected for the Texas Water Development Board (TWDB) in 2006 with a point density of 1.4 m GSD. LiDAR data for Harris County was collected in October 2001 by the Harris County Flood Control District Tropical Storm Allison Recovery Project (TSARP) with a point density of 2.0 m GSD. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the data sets. The DEM is hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.

  17. d

    Data from: GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of...

    • datadiscoverystudio.org
    Updated Jun 21, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2007). GLAS/ICESat 1 km Laser Altimetry Digital Elevation Model of Greenland, Version 1 [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/ea11ffcb946d479ca85d40f787ff44d7/html
    Explore at:
    Dataset updated
    Jun 21, 2007
    Area covered
    Description

    The Geoscience Laser Altimeter System (GLAS) instrument on the Ice, Cloud, and land Elevation Satellite (ICESat) provides global measurements of elevation, and repeats measurements along nearly-identical tracks; its primary mission is to measure changes in ice volume (mass balance) over time. This digital elevation model (DEM) of Greenland is derived from GLAS/ICESat laser altimetry profile data and provides new surface elevation grids of the ice sheets and coastal areas, with greater latitudinal extent and fewer slope-related effects than radar altimetry. This DEM is generated from the first seven operational periods (from February 2003 through June 2005) of the GLAS instrument. It is provided on polar stereographic grids at 1 km grid spacing. The grid covers all of Greenland south of 83 N. Elevations are reported as centimeters above the datums, relative to both the WGS 84 ellipsoid and the EGM96 geoid, in two separate elevation data files. A data quality map of the interpolation distance is distributed in addition to the elevation data. ENVI header files are also provided. The data are in 4-byte (long) signed integer binary files (big endian byte order) and are available via FTP.

  18. d

    BITH2014_MenardCreekCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata:...

    • catalog.data.gov
    • data.usgs.gov
    Updated Oct 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). BITH2014_MenardCreekCorridorUnit_EAARLB_BE_z15_n88g12A_mosaic_metadata: EAARL-B Topography-Big Thicket National Preserve: Menard Creek Corridor Unit, Texas, 2014 [Dataset]. https://catalog.data.gov/dataset/eaarl-b-topography-big-thicket-national-preserve-menard-creek-corridor-unit-texas-2014-48828
    Explore at:
    Dataset updated
    Oct 5, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Menard Creek, Texas
    Description

    A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.

  19. GSQ Texas Qld elevation line data

    • data.gov.au
    esri mapserver
    Updated Jan 1, 1996
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geoscience Australia (1996). GSQ Texas Qld elevation line data [Dataset]. https://data.gov.au/dataset/ds-ga-221dcfd8-00f5-5083-e053-10a3070a64e3
    Explore at:
    esri mapserverAvailable download formats
    Dataset updated
    Jan 1, 1996
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Texas, Queensland
    Description

    Digital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height …Show full descriptionDigital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height of the aircraft above the ground and the aircraft GPS records the height of the aircraft above the ellipsoid. Subtracting the two values enables the height of the terrain beneath the aircraft relative to the ellipsoid to be calculated. This ellipsoidal terrain height is corrected for the variation between the ellipsoid and the geoid (the n-value correction) to produce terrain heights relative to sea level.

  20. a

    Beaumont and Port Arthur, Texas 10-meter Bathymetry - Gulf of Mexico (GCOOS)...

    • hub.arcgis.com
    Updated Oct 1, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jeradk18@tamu.edu_tamu (2019). Beaumont and Port Arthur, Texas 10-meter Bathymetry - Gulf of Mexico (GCOOS) [Dataset]. https://hub.arcgis.com/maps/0c778ff3830a40b3bb9f2c93bdda39bb
    Explore at:
    Dataset updated
    Oct 1, 2019
    Dataset authored and provided by
    jeradk18@tamu.edu_tamu
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Coastal Services Center's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes 'best available' lidar data known to exist at the time of DEM creation that meets project specifications for those Texas counties that fall within the boundary of the Lake Charles, LA Weather Forecast Office (WFO), as defined by the NOAA National Weather Service: Orange and Jefferson counties. Note that no data for any Louisiana parishes are explicitly included in this feature layer, except for those narrow portions which border the Texas counties that are included herein.The DEM is derived from LiDAR datasets collected for the Texas Water Development Board (TWDB). LiDAR data for Orange and Jefferson counties was collected for the TWDB in 2006. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the TWDB datasets. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters.The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HydroShare (2023). Texas Basemap - Lidar Elevation Data (DEM) [Dataset]. http://doi.org/10.4211/hs.af6ae321e2ad40a1bc6d0b695370fbfc

Texas Basemap - Lidar Elevation Data (DEM)

Related Article
Explore at:
zip(5.5 GB)Available download formats
Dataset updated
Nov 3, 2023
Dataset provided by
HydroShare
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Texas
Description

This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.

For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours Points per sq meter: 1 Total area: 3678.56 sq miles Source: Houston-Galveston Area Council (H-GAC) Acquired by: Merrick, QA/QC: Merrick Catalog: houston-galveston-area-council-h-gac-2008-lidar

References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]

Search
Clear search
Close search
Google apps
Main menu