Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEM ranges from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
This dataset contains a seamless high resolution, two-meter, topographic lidar digital elevation model (DEM) of the Lower Texas Coast. The elevations in this DEM represent the topographic bare-earth surface. The dataset is a fusion of several airborne topographic light detection and ranging (lidar) surveys acquired by various surveyors between the years 2007 – 2019 where coverage is primarily from 2018 and 2019. The landward extent of the lidar surveys selected for the creation of this DEM is determined by the boundary of the ADvanced CIRCulation (ADCIRC) TX2008_R35H computational mesh obtained from the Computational Hydraulics Group at The University of Texas at Austin. The spatial reference used for the tiles in the DEM is in Universal Transverse Mercator (UTM) Zone 14 in units of meters and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevations are referenced to the North American Datum of 1988 (NAVD88). The 2-meter DEM of the upper Texas coast is available under GRIIDC Unique Dataset Identifier (UDI): HI.x833.000:0009 (DOI: 10.7266/2MYPTJ7Y).
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of Mean High Water (MHW) and horizontal datum of World Geodetic System 1984 (WGS84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~90 meters).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
These data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the Texas North 1 digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Hardin, Jasper, Jefferson, Newton, and Orange Counties. The DEM was produced from the following lidar data sets: 1. 2018 NRCS Texas - Eastern Texas Lidar 2. 2018 TNRIS Lidar: Upper Coastal Lidar 3. 2017 TNRIS Lidar: Jefferson, Liberty, and Chambers 4. 2016 FEMA Region 6 TX - Neches Basin QL2 Lidar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88, Geoid12B) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
A bare-earth topography Digital Elevation Model (DEM) mosaic for the Lower Neches River Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 11, 15, 17, 18, 19, 21, 23, 25, 27, and 29, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions. These integrated bathymetric-topographic DEMs are used to support tsunami forecasting and modeling efforts at the NOAA Center for Tsunami Research, Pacific Marine Environmental Laboratory (PMEL). The DEMs are part of the tsunami forecast system SIFT (Short-term Inundation Forecasting for Tsunamis) currently being developed by PMEL for the NOAA Tsunami Warning Centers, and are used in the MOST (Method of Splitting Tsunami) model developed by PMEL to simulate tsunami generation, propagation, and inundation. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the Canadian Hydrographic Service (CHS), the Puget Sound Lidar Consortium (PSLC), the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), Canadian Digital Elevation Data (CDED) and other international, federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datums of Mean High Water (MHW) and North American Vertical Datum of 1988 (NAVD 88) and horizontal datum of World Geodetic System 1984 (WGS 84). Grid spacings for the DEMs range from 1/3 arc-second (~10 meters) to 3 arc-seconds (~30 meters).
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes best available lidar data known to exist at the time of DEM creation that meets project specifications for those counties within the boundary of the Lake Charles, LA Weather Forecast Office (WFO), as defined by the NOAA National Weather Service. The DEM is derived from LiDAR datasets collected for the Texas Water Development Board (TWDB). LiDAR data for Orange and Jefferson counties was collected for the TWDB in 2006. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the TWDB datasets. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.
A bare-earth topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
This metadata record describes the bare-earth hydro-flattened Digital Elevation Model (DEM) for the Eastern Block of the 2017 Texas Coastal LiDAR project. The Eastern Block covers approximately 841 square miles, including the cities of Beaumont, Port Arthur, and Nederland in southeast Texas. This point cloud AOI was collected to meet the density of 4 points per meter. The DEM has 1 m horizontal...
Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is 1/3 arc-second (approximately 10 m) resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. The seamless 1/3 arc-second DEM layers are derived from diverse source data that are processed to a common coordinate system and unit of vertical measure. These data are distributed in geographic coordinates in units of decimal degrees, and in conformance with the North American Datum of 1983 (NAD 83). All elevation values are in meters and, over the continental United States, are referenced to the North American Vertical Datum of 1988 (NAVD88). The seamless ...
This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes the best available lidar data known to exist at the time of DEM creation that meets project specifications for those counties within the boundary of the Houston/Galveston TX Weather Forecast Office (WFO), as defined by the NOAA National Weather Service. The counties within this boundary are: Jackson, Matagorda, Brazoria (portion), Harris (portion), Galveston, and Chambers. For all the counties listed, except for Harris, the DEM is derived from LiDAR data sets collected for the Texas Water Development Board (TWDB) in 2006 with a point density of 1.4 m GSD. LiDAR data for Harris County was collected in October 2001 by the Harris County Flood Control District Tropical Storm Allison Recovery Project (TSARP) with a point density of 2.0 m GSD. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the data sets. The DEM is hydro flattened such that water elevations are less than or equal to 0 meters. The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.
The Geoscience Laser Altimeter System (GLAS) instrument on the Ice, Cloud, and land Elevation Satellite (ICESat) provides global measurements of elevation, and repeats measurements along nearly-identical tracks; its primary mission is to measure changes in ice volume (mass balance) over time. This digital elevation model (DEM) of Greenland is derived from GLAS/ICESat laser altimetry profile data and provides new surface elevation grids of the ice sheets and coastal areas, with greater latitudinal extent and fewer slope-related effects than radar altimetry. This DEM is generated from the first seven operational periods (from February 2003 through June 2005) of the GLAS instrument. It is provided on polar stereographic grids at 1 km grid spacing. The grid covers all of Greenland south of 83 N. Elevations are reported as centimeters above the datums, relative to both the WGS 84 ellipsoid and the EGM96 geoid, in two separate elevation data files. A data quality map of the interpolation distance is distributed in addition to the elevation data. ENVI header files are also provided. The data are in 4-byte (long) signed integer binary files (big endian byte order) and are available via FTP.
A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
Digital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height …Show full descriptionDigital Elevation Model data record the terrain height variations from the processed point-located data recorded on an airborne geophysical survey. The aircraft altimeter data records the height of the aircraft above the ground and the aircraft GPS records the height of the aircraft above the ellipsoid. Subtracting the two values enables the height of the terrain beneath the aircraft relative to the ellipsoid to be calculated. This ellipsoidal terrain height is corrected for the variation between the ellipsoid and the geoid (the n-value correction) to produce terrain heights relative to sea level.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This digital elevation model (DEM) is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Coastal Services Center's Sea Level Rise and Coastal Flooding Impacts Viewer. The DEM includes 'best available' lidar data known to exist at the time of DEM creation that meets project specifications for those Texas counties that fall within the boundary of the Lake Charles, LA Weather Forecast Office (WFO), as defined by the NOAA National Weather Service: Orange and Jefferson counties. Note that no data for any Louisiana parishes are explicitly included in this feature layer, except for those narrow portions which border the Texas counties that are included herein.The DEM is derived from LiDAR datasets collected for the Texas Water Development Board (TWDB). LiDAR data for Orange and Jefferson counties was collected for the TWDB in 2006. Hydrographic breaklines used in the creation of the DEM were delineated using LiDAR intensity imagery generated from the TWDB datasets. The DEMs are hydro flattened such that water elevations are less than or equal to 0 meters.The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 10 meters.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]