The Texas Water Development Board (TWDB) in cooperation with their project partners tasked Fugro Geospatial, Inc. (Fugro) under the Department of Information Resources (DIR) Geographic Information Systems (GIS) Hardware, Software and Services contract also known as the Texas Strategic Mapping (StratMap) Contract to acquire high resolution elevation data and associated products from airborne lid...
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2008 USGS Post-Hurricane Ike Texas lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
This dataset contains a seamless high resolution, two-meter, topographic lidar digital elevation model (DEM) of the Lower Texas Coast. The elevations in this DEM represent the topographic bare-earth surface. The dataset is a fusion of several airborne topographic light detection and ranging (lidar) surveys acquired by various surveyors between the years 2007 – 2019 where coverage is primarily from 2018 and 2019. The landward extent of the lidar surveys selected for the creation of this DEM is determined by the boundary of the ADvanced CIRCulation (ADCIRC) TX2008_R35H computational mesh obtained from the Computational Hydraulics Group at The University of Texas at Austin. The spatial reference used for the tiles in the DEM is in Universal Transverse Mercator (UTM) Zone 14 in units of meters and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevations are referenced to the North American Datum of 1988 (NAVD88). The 2-meter DEM of the upper Texas coast is available under GRIIDC Unique Dataset Identifier (UDI): HI.x833.000:0009 (DOI: 10.7266/2MYPTJ7Y).
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe, and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high-water shoreline derived from the 2018 United States Geological Survey (USGS) and National Oceanic Atmospheric Administration (NOAA) South Texas lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
Product: This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, breaklines, digital elevation models (DEMs), and intensity imagery. Geographic Extent: The South Texas 2018 LiDAR AOI includes 30 counties in Texas, covering approximately 22,229 total square miles. Dataset Description: The South Texas 2018 LiDAR project called for the planning, acquisition, proc...
A first-surface topography Digital Elevation Model (DEM) mosaic for the Little Pine Island Bayou Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 15, 21, 22, 26, and 30, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
description: This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como quarter-quadrangle on Galveston Island Texas. The geographic extent of the data set is equivalent to the quarter-quadrangle plus 30 meters of overedge. The data is created by combining data collected using an Optech Inc. Airborne Laser Terrain Mapper (ALTM) 1225 in combination with geodetic quality Global Positioning System (GPS) airborne and ground-based receivers. The Bureau of Economic Geology, the University of Texas at Austin owns and operates an ALTM 1225 system (serial number 99d118). This system is installed in a single engine Cessna 206 (tail number N4589U) owned and operated by the Texas State Aircraft Pooling Board. The lidar data described by this document was collected on 18 September 2002 (26102) between 20:34 and 00:08 UTC (actual data collection). Conditions on that day were low clouds at 335m Above Ground Level (AGL), haze, and occasional showers. 99d118 instrument settings for this flight were; laser pulse rate: 25kHz, scanner rate: 26Hz, scan angle: +/-20deg, beam divergence: wide, altitude: 300-490m AGL, and ground speed: 70-106kts. Three GPS base stations, 2 Ashtech and 1 Trimble 4000SSI receivers (backup), were operating during the survey. The three base stations were at the following locations: one 3.5km south of San Luis Pass, one at the Scholes International Airport Galveston, and one on the seawall at Rollover Pass. This data set consists of 1687100 records of x,y, and z values. The data set was generated from a larger data set and includes all valid points within the requested geographic bounds.; abstract: This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como quarter-quadrangle on Galveston Island Texas. The geographic extent of the data set is equivalent to the quarter-quadrangle plus 30 meters of overedge. The data is created by combining data collected using an Optech Inc. Airborne Laser Terrain Mapper (ALTM) 1225 in combination with geodetic quality Global Positioning System (GPS) airborne and ground-based receivers. The Bureau of Economic Geology, the University of Texas at Austin owns and operates an ALTM 1225 system (serial number 99d118). This system is installed in a single engine Cessna 206 (tail number N4589U) owned and operated by the Texas State Aircraft Pooling Board. The lidar data described by this document was collected on 18 September 2002 (26102) between 20:34 and 00:08 UTC (actual data collection). Conditions on that day were low clouds at 335m Above Ground Level (AGL), haze, and occasional showers. 99d118 instrument settings for this flight were; laser pulse rate: 25kHz, scanner rate: 26Hz, scan angle: +/-20deg, beam divergence: wide, altitude: 300-490m AGL, and ground speed: 70-106kts. Three GPS base stations, 2 Ashtech and 1 Trimble 4000SSI receivers (backup), were operating during the survey. The three base stations were at the following locations: one 3.5km south of San Luis Pass, one at the Scholes International Airport Galveston, and one on the seawall at Rollover Pass. This data set consists of 1687100 records of x,y, and z values. The data set was generated from a larger data set and includes all valid points within the requested geographic bounds.
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 University of Texas Post-Fay lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
These data were collected by Leading Edge Geomatics using a Leica Chiroptera II Bathymetric & Topographic Sensor. The data were acquired from October 22, 2018 through May 31, 2019. The data include topobathy data in LAS 1.4 format classified as created, unclassified (1); ground (2); noise (low or high) (7); bathymetric bottom (40); water surface (41); derived water surface (42); submerged...
description: This data set was received by the NOAA Office for Coastal Management from the Texas Natural Resources Information System. The data was collected in October of 2001 by Terrapoint USA, Inc. using an Airborne LIDAR Topographic Mapping System (ALTMS). Flight altitude was approximately 915 meters, creating a data swath of approximately 550 meters. The surface elevation value accuracy is better than 15 centimeters. The lidar points are unclassified.; abstract: This data set was received by the NOAA Office for Coastal Management from the Texas Natural Resources Information System. The data was collected in October of 2001 by Terrapoint USA, Inc. using an Airborne LIDAR Topographic Mapping System (ALTMS). Flight altitude was approximately 915 meters, creating a data swath of approximately 550 meters. The surface elevation value accuracy is better than 15 centimeters. The lidar points are unclassified.
Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2005 USGS Post-Hurricane Rita Texas and Louisiana lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NCALM Seed. PI: Celso Ferreira, Texas A&M University. The survey area consists of a long rectangular polygon located on the Gulf Coast 25 kilometers east of Corpus Christi, TX. Lidar data were collected to investigate the influence of dunes and barrier islands on hurricane surge in Corpus Christi, Texas. Publications associated with this dataset can be found at NCALM's Data Tracking Center
description: This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for a portion of Willacy County, Texas. LiDAR data, and derivative products produced in compliance with this task order are part of the data to be obtained under the American Recovery and Reinvestment Act (ARRA) of 2009. Contract number G10PC00025. Specifications listed below are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 13. Tile names were slightly altered to meet particular naming conventions on NOAA OCM ftp. Dataset is titled 2010 but due to acquisition dates falling in 2011, the name has been updated.; abstract: This task order is for planning, acquisition, processing, and derivative products of LiDAR data to be collected for a portion of Willacy County, Texas. LiDAR data, and derivative products produced in compliance with this task order are part of the data to be obtained under the American Recovery and Reinvestment Act (ARRA) of 2009. Contract number G10PC00025. Specifications listed below are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 13. Tile names were slightly altered to meet particular naming conventions on NOAA OCM ftp. Dataset is titled 2010 but due to acquisition dates falling in 2011, the name has been updated.
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2002 University of Texas Post-Fay lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
PI: Dr. Paola Passalacqua, University of Texas, Austin
The requested survey area consisted of a polygon located over downtown Austin, TX, and the surrounding area. The polygon encloses approximately 157 km2 (60.5 mi2). The survey took place on June 12–13, 2015 (DOY 163 & 164) following flooding in Central Texas in late May, 2015.
Publications associated with this dataset can be found at NCALM's Data Tracking Center
The Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 1999 Fall Gulf Coast (Texas) NOAA/USGS/NASA lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
A bare-earth topography Digital Elevation Model (DEM) mosaic for the Menard Corridor Unit of Big Thicket National Preserve in Texas was produced from remotely sensed, geographically referenced elevation measurements collected on January 21 and 22, 2014 by the U.S. Geological Survey, in cooperation with the National Park Service - Gulf Coast Network. Elevation measurements were collected over the area using the second-generation Experimental Advanced Airborne Research Lidar (EAARL-B), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 55 meters per second at an elevation of approximately 300 meters, resulting in a laser swath of approximately 240 meters with an average point density of 1.4 points per square meter. A peak sampling rate of 15-30 kilohertz results in an extremely dense spatial elevation dataset. More than 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When resultant elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development.
This lidar dataset was collected as part of an NCALM Rapid Response Project for Inci Gunerlap at Texas A&M University. Data collection covers and area of ~69 km2 along the Mission River in Refugio, Texas after Hurricane Harvey.
Note that this project utilized three laser channels during its data collection. Each of the returns contained on the LAS tiles are encoded with a laser channel value. The values used are 1 (1550 nm), 2 (1064 nm), and 3 (532 nm), and are stored in the \"User Data\" record of the Point Data records in the LAS file.
Publications associated with this dataset can be found at NCALM's Data Tracking Center
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NCALM Seed Project. PI: Ryan Ewing, University of Texas at Austin. The survey area is a 47 square kilometer rectangular polygon of sand dunes at White Sands National Monument. The survey area is located 25 miles west of Alamogrodo, NM.
Publications associated with this dataset can be found at NCALM's Data Tracking Center
The Texas Water Development Board (TWDB) in cooperation with their project partners tasked Fugro Geospatial, Inc. (Fugro) under the Department of Information Resources (DIR) Geographic Information Systems (GIS) Hardware, Software and Services contract also known as the Texas Strategic Mapping (StratMap) Contract to acquire high resolution elevation data and associated products from airborne lid...