The COCO-Text dataset is a dataset for text detection and recognition. It is based on the MS COCO dataset, which contains images of complex everyday scenes. The COCO-Text dataset contains non-text images, legible text images and illegible text images. In total there are 22184 training images and 7026 validation images with at least one instance of legible text.
The COCO (Common Objects in Context) dataset is a large-scale object detection, segmentation, and captioning dataset. It is designed to encourage research on a wide variety of object categories and is commonly used for benchmarking computer vision models. It is an essential dataset for researchers and developers working on object detection, segmentation, and pose estimation tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features: Object segmentation Recognition in context Superpixel stuff segmentation 330K images (>200K labeled) 1.5 million object instances 80 object categories 91 stuff categories 5 captions per image 250,000 people with keypoints
This dataset was created by SHARATH KRISHNA A H 231
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MS COCO is a large-scale object detection, segmentation, and captioning dataset. COCO has several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000 people with keypoints.
SPEECH-COCO contains speech captions that are generated using text-to-speech (TTS) synthesis resulting in 616,767 spoken captions (more than 600h) paired with images.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains a mapping between the classes of COCO, LVIS, and Open Images V4 datasets into a unique set of 1460 classes.
COCO [Lin et al 2014] contains 80 classes, LVIS [gupta2019lvis] contains 1460 classes, Open Images V4 [Kuznetsova et al. 2020] contains 601 classes.
We built a mapping of these classes using a semi-automatic procedure in order to have a unique final list of 1460 classes. We also generated a hierarchy for each class, using wordnet
This repository contains the following files:
This mapping was used in VISIONE [Amato et al. 2021, Amato et al. 2022] that is a content-based retrieval system that supports various search functionalities (text search, object/color-based search, semantic and visual similarity search, temporal search). For the object detection VISIONE uses three pre-trained models: VfNet [Zhang et al. 2021] (trained on COCO dataset), Mask R-CNN [He et al. 2017] (trained on LVIS), and a Faster R-CNN+Inception ResNet (trained on the Open Images V4).
This is repository is released under a Creative Commons Attribution license, please cite the following paper if you use it in your work in any form:
@inproceedings{amato2021visione, title={The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval}, author={Amato, Giuseppe and Bolettieri, Paolo and Carrara, Fabio and Debole, Franca and Falchi, Fabrizio and Gennaro, Claudio and Vadicamo, Lucia and Vairo, Claudio}, journal={Journal of Imaging}, volume={7}, number={5}, pages={76}, year={2021}, publisher={Multidisciplinary Digital Publishing Institute} }
References:
[Amato et al. 2022] Amato, G. et al. (2022). VISIONE at Video Browser Showdown 2022. In: , et al. MultiMedia Modeling. MMM 2022. Lecture Notes in Computer Science, vol 13142. Springer, Cham. https://doi.org/10.1007/978-3-030-98355-0_52
[Amato et al. 2021] Amato, G., Bolettieri, P., Carrara, F., Debole, F., Falchi, F., Gennaro, C., Vadicamo, L. and Vairo, C., 2021. The visione video search system: exploiting off-the-shelf text search engines for large-scale video retrieval. Journal of Imaging, 7(5), p.76.
[Gupta et al.2019] Gupta, A., Dollar, P. and Girshick, R., 2019. Lvis: A dataset for large vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5356-5364).
[He et al. 2017] He, K., Gkioxari, G., Dollár, P. and Girshick, R., 2017. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 2961-2969).
[Kuznetsova et al. 2020] Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A. and Duerig, T., 2020. The open images dataset v4. International Journal of Computer Vision, 128(7), pp.1956-1981.
[Lin et al. 2014] Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C.L., 2014, September. Microsoft coco: Common objects in context. In European conference on computer vision (pp. 740-755). Springer, Cham.
[Zhang et al. 2021] Zhang, H., Wang, Y., Dayoub, F. and Sunderhauf, N., 2021. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 8514-8523).
VLM-Perception/COCO-Text dataset hosted on Hugging Face and contributed by the HF Datasets community
coco2017
Image-text pairs from MS COCO2017.
Data origin
Data originates from cocodataset.org While coco-karpathy uses a dense format (with several sentences and sendids per row), coco-karpathy-long uses a long format with one sentence (aka caption) and sendid per row. coco-karpathy-long uses the first five sentences and therefore is five times as long as coco-karpathy. phiyodr/coco2017: One row corresponds one image with several sentences. phiyodr/coco2017-long: One row… See the full description on the dataset page: https://huggingface.co/datasets/phiyodr/coco2017.
This dataset contains pickled Python objects with data from the annotations of the Microsoft (MS) COCO dataset. COCO is a large-scale object detection, segmentation, and captioning dataset.
Except for the objs file, which is a plain text file continuing a list of objects, the data in this dataset is all in the pickle format, a way of storing Python objects at binary data files.
Important: These pickles were pickled using Python 2. Since Kernels use Python 3, you will need to specify the encoding when unpickling these files. The Python utility scripts here have been updated to correctly unpickle these files.
# the correct syntax to read these pickled files into Python 3
pickle.load(open('file_path, 'rb'), encoding = "latin1")
As a derivative of the original COCO dataset, this dataset is distributed under a CC-BY 4.0 license. These files were distributed as part of the supporting materials for Zhao et al 2017. If you use these files in your work, please cite the following paper:
Zhao, J., Wang, T., Yatskar, M., Ordonez, V., & Chang, K. W. (2017). Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 2979-2989).
FS-COCO: A large-scale scene sketch dataset with fine-grained alignment among sketch, text, and photo.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
A simple dataset for benchmarking CreateML object detection models. The images are sampled from COCO dataset with eyes and nose bounding boxes added. It’s not meant to be serious or useful in a real application. The purpose is to look at how long it takes to train CreateML models with varying dataset and batch sizes.
Training performance is affected by model configuration, dataset size and batch configuration. Larger models and batches require more memory. I used CreateML object detection project to compare the performance.
Hardware
M1 Macbook Air * 8 GPU * 4/4 CPU * 16G memory * 512G SSD
M1 Max Macbook Pro * 24 GPU * 2/8 CPU * 32G memory * 2T SSD
Small Dataset Train: 144 Valid: 16 Test: 8
Results |batch | M1 ET | M1Max ET | peak mem G | |--------|:------|:---------|:-----------| |16 | 16 | 11 | 1.5 | |32 | 29 | 17 | 2.8 | |64 | 56 | 30 | 5.4 | |128 | 170 | 57 | 12 |
Larger Dataset Train: 301 Valid: 29 Test: 18
Results |batch | M1 ET | M1Max ET | peak mem G | |--------|:------|:---------|:-----------| |16 | 21 | 10 | 1.5 | |32 | 42 | 17 | 3.5 | |64 | 85 | 30 | 8.4 | |128 | 281 | 54 | 16.5 |
CreateML Settings
For all tests, training was set to Full Network. I closed CreateML between each run to make sure memory issues didn't cause a slow down. There is a bug with Monterey as of 11/2021 that leads to memory leak. I kept an eye on the memory usage. If it looked like there was a memory leak, I restarted MacOS.
Observations
In general, more GPU and memory with MBP reduces the training time. Having more memory lets you train with larger datasets. On M1 Macbook Air, the practical limit is 12G before memory pressure impacts performance. On M1 Max MBP, the practical limit is 26G before memory pressure impacts performance. To work around memory pressure, use smaller batch sizes.
On the larger dataset with batch size 128, the M1Max is 5x faster than Macbook Air. Keep in mind a real dataset should have thousands of samples like Coco or Pascal. Ideally, you want a dataset with 100K images for experimentation and millions for the real training. The new M1 Max Macbooks is a cost effective alternative to building a Windows/Linux workstation with RTX 3090 24G. For most of 2021, the price of RTX 3090 with 24G is around $3,000.00. That means an equivalent windows workstation would cost the same as the M1Max Macbook pro I used to run the benchmarks.
Full Network vs Transfer Learning
As of CreateML 3, training with full network doesn't fully utilize the GPU. I don't know why it works that way. You have to select transfer learning to fully use the GPU. The results of transfer learning with the larger dataset. In general, the training time is faster and loss is better.
batch | ET min | Train Acc | Val Acc | Test Acc | Top IU Train | Top IU Valid | Top IU Test | Peak mem G | loss |
---|---|---|---|---|---|---|---|---|---|
16 | 4 | 75 | 19 | 12 | 78 | 23 | 13 | 1.5 | 0.41 |
32 | 8 | 75 | 21 | 10 | 78 | 26 | 11 | 2.76 | 0.02 |
64 | 13 | 75 | 23 | 8 | 78 | 24 | 9 | 5.3 | 0.017 |
128 | 25 | 75 | 22 | 13 | 78 | 25 | 14 | 8.4 | 0.012 |
Github Project
The source code and full results are up on Github https://github.com/woolfel/createmlbench
Click to add a brief description of the dataset (Markdown and LaTeX enabled).
Provide:
a high-level explanation of the dataset characteristics explain motivations and summary of its content potential use cases of the dataset
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction: Our corpus is an extension of the MS COCO image recognition and captioning dataset. MS COCO comprises images paired with a set of five captions. Yet, it does not include any speech. Therefore, we used Voxygen's text-to-speech system to synthesise the available captions. The addition of speech as a new modality enables MSCOCO to be used for researches in the field of language acquisition, unsupervised term discovery, keyword spotting, or semantic embedding using speech and vision. Our corpus is licensed under a Creative Commons Attribution 4.0 License. Data Set: This corpus contains 616,767 spoken captions from MSCOCO's val2014 and train2014 subsets (respectively 414,113 for train2014 and 202,654 for val2014). We used 8 different voices. 4 of them have a British accent (Paul, Bronwen, Judith, and Elizabeth) and the 4 others have an American accent (Phil, Bruce, Amanda, Jenny). In order to make the captions sound more natural, we used SOX tempo command, enabling us to change the speed without changing the pitch. 1/3 of the captions are 10% slower than the original pace, 1/3 are 10% faster. The last third of the captions was kept untouched. We also modified approximately 30% of the original captions and added disfluencies such as "um", "uh", "er" so that the captions would sound more natural. Each WAV file is paired with a JSON file containing various information: timecode of each word in the caption, name of the speaker, name of the WAV file, etc. The JSON files have the following data structure: {"duration": float, "speaker": string, "synthesisedCaption": string, "timecode": list, "speed": float, "wavFilename": string, "captionID": int, "imgID": int, "disfluency": list}. On average, each caption comprises 10.79 tokens, disfluencies included. The WAV files are on average 3.52 seconds long.
This dataset contains a collection of 32,000 image-caption pairs sourced from:
Each entry is included in the JSON file train_mix_32000.json
, with the following fields:
- "filename"
: Image filename (relative to dataset structure)
- "caption"
: Image description
- "data"
: Source dataset ("coco"
or "cc12m"
)
train_mix_32000.json
: Metadata file with image paths and captions.images/
: Folder structure containing all 32,000 actual image files referenced in the JSON.💡 Image paths in the JSON have been adjusted to reflect the folder structure inside this Kaggle dataset.
This dataset includes images from:
COCO 2014
Licensed under Creative Commons Attribution 4.0.
CC12M
Provided by Google LLC under a permissive license:
The dataset may be freely used for any purpose, although acknowledgment of Google LLC as the data source would be appreciated.
The dataset is provided "AS IS" without any warranty, express or implied.
View License
A collection of 3 referring expression datasets based off images in the COCO dataset. A referring expression is a piece of text that describes a unique object in an image. These datasets are collected by asking human raters to disambiguate objects delineated by bounding boxes in the COCO dataset.
RefCoco and RefCoco+ are from Kazemzadeh et al. 2014. RefCoco+ expressions are strictly appearance based descriptions, which they enforced by preventing raters from using location based descriptions (e.g., "person to the right" is not a valid description for RefCoco+). RefCocoG is from Mao et al. 2016, and has more rich description of objects compared to RefCoco due to differences in the annotation process. In particular, RefCoco was collected in an interactive game-based setting, while RefCocoG was collected in a non-interactive setting. On average, RefCocoG has 8.4 words per expression while RefCoco has 3.5 words.
Each dataset has different split allocations that are typically all reported in papers. The "testA" and "testB" sets in RefCoco and RefCoco+ contain only people and only non-people respectively. Images are partitioned into the various splits. In the "google" split, objects, not images, are partitioned between the train and non-train splits. This means that the same image can appear in both the train and validation split, but the objects being referred to in the image will be different between the two sets. In contrast, the "unc" and "umd" splits partition images between the train, validation, and test split. In RefCocoG, the "google" split does not have a canonical test set, and the validation set is typically reported in papers as "val*".
Stats for each dataset and split ("refs" is the number of referring expressions, and "images" is the number of images):
dataset | partition | split | refs | images |
---|---|---|---|---|
refcoco | train | 40000 | 19213 | |
refcoco | val | 5000 | 4559 | |
refcoco | test | 5000 | 4527 | |
refcoco | unc | train | 42404 | 16994 |
refcoco | unc | val | 3811 | 1500 |
refcoco | unc | testA | 1975 | 750 |
refcoco | unc | testB | 1810 | 750 |
refcoco+ | unc | train | 42278 | 16992 |
refcoco+ | unc | val | 3805 | 1500 |
refcoco+ | unc | testA | 1975 | 750 |
refcoco+ | unc | testB | 1798 | 750 |
refcocog | train | 44822 | 24698 | |
refcocog | val | 5000 | 4650 | |
refcocog | umd | train | 42226 | 21899 |
refcocog | umd | val | 2573 | 1300 |
refcocog | umd | test | 5023 | 2600 |
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('ref_coco', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/ref_coco-refcoco_unc-1.1.0.png" alt="Visualization" width="500px">
COCO Captions contains over one and a half million captions describing over 330,000 images. For the training and validation images, five independent human generated captions are be provided for each image.
We present Imagen, a text-to-image diffusion model with an unprecedented degree of photorealism and a deep level of language understanding. Imagen builds on the power of large transformer language models in understanding text and hinges on the strength of diffusion models in high-fidelity image generation. Our key discovery is that generic large language models (e.g. T5), pretrained on text-only corpora, are surprisingly effective at encoding text for image synthesis: increasing the size of the language model in Imagen boosts both sample fidelity and imagetext alignment much more than increasing the size of the image diffusion model. Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset, without ever training on COCO, and human raters find Imagen samples to be on par with the COCO data itself in image-text alignment. To assess text-to-image models in greater depth, we introduce DrawBench, a comprehensive and challenging benchmark for text-to-image models. With DrawBench, we compare Imagen with recent methods including VQ-GAN+CLIP, Latent Diffusion Models, GLIDE and DALL-E 2, and find that human raters prefer Imagen over other models in side-byside comparisons, both in terms of sample quality and image-text alignment.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
This dataset is introduced by the paper "Understanding, Categorizing and Predicting Semantic Image-Text Relations".
If you are using this dataset it in your work, please cite:
@inproceedings{otto2019understanding,
title={Understanding, Categorizing and Predicting Semantic Image-Text Relations},
author={Otto, Christian and Springstein, Matthias and Anand, Avishek and Ewerth, Ralph},
booktitle={In Proceedings of ACM International Conference on Multimedia Retrieval (ICMR 2019)},
year={2019}
}
To create the full tar use the following command in the command line:
cat train.tar.part* > train_concat.tar
Then simply untar it via
tar -xf train_concat.tar
The jsonl files contain metadata of the following format:
id, origin, CMI, SC, STAT, ITClass, text, tagged text, image_path
License Information:
This dataset is composed of various open access sources as described in the paper. We thank all the original authors for their work.
The COCO-Text dataset is a dataset for text detection and recognition. It is based on the MS COCO dataset, which contains images of complex everyday scenes. The COCO-Text dataset contains non-text images, legible text images and illegible text images. In total there are 22184 training images and 7026 validation images with at least one instance of legible text.