Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
This tutorial package, comprising both data and code, accompanies the article and is designed primarily to allow readers to explore the various vocabulary-building methods discussed in the paper. The article discusses how to apply computational linguistics techniques to analyze largely unstructured corporate-generated text for economic analysis. As a core example, we illustrate how textual analysis of earnings conference call transcripts can provide insights into how markets and individual firms respond to economic shocks, such as a nuclear disaster or a geopolitical event: insights that often elude traditional non-text data sources. This approach enables extracting actionable intelligence, supporting both policy-making and strategic corporate decision-making. We also explore applications using other sources of corporate-generated text, including patent documents and job postings. By incorporating computational linguistics techniques into the analysis of economic shocks, new opportunities arise for real-time economic data, offering a more nuanced understanding of market and firm responses in times of economic volatility.
Facebook
TwitterThis dataset was created by nohafathi
Facebook
TwitterSubject Area: Text Mining Description: This is the dataset used for the SIAM 2007 Text Mining competition. This competition focused on developing text mining algorithms for document classification. The documents in question were aviation safety reports that documented one or more problems that occurred during certain flights. The goal was to label the documents with respect to the types of problems that were described. This is a subset of the Aviation Safety Reporting System (ASRS) dataset, which is publicly available. How Data Was Acquired: The data for this competition came from human generated reports on incidents that occurred during a flight. Sample Rates, Parameter Description, and Format: There is one document per incident. The datasets are in raw text format. All documents for each set will be contained in a single file. Each row in this file corresponds to a single document. The first characters on each line of the file are the document number and a tilde separats the document number from the text itself. Anomalies/Faults: This is a document category classification problem.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
cwchang/text-classification-dataset-example dataset hosted on Hugging Face and contributed by the HF Datasets community
Facebook
TwitterThis dataset was created by tiansz
Facebook
TwitterThis is text document classification dataset which contains 2225 text data and five categories of documents. Five categories are politics, sport, tech, entertainment and business. We can use this dataset for documents classification and document clustering.
About Dataset - Dataset contains two features text and label. - No. of Rows : 2225 - No. of Columns : 2
Text: It contains different categories of text data Label: It contains labels for five different categories : 0,1,2,3,4
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Text files of different size and structure. More precisely, we selected random data from the Gutenberg dataset.
This artefact contains five different datasets with random text files (i.e. e-books in .txt format) from the Gutenberg database. The datasets that we selected ranged from text files with a total size of 184MB to a set of text files with a total size of 1.7GB.
More precisely, the following datasets can be found in this package:
In our case, we used this dataset to perform extensive experiments on regarding the performance of a Symmetric Searchable Encryption scheme. However, this dataset can be used to measure the performance of any algorithm that is parsing documents, extracting keywords, creates dictionaries etc.
Facebook
TwitterThis dataset was created by Manish Kumar Mishra
Facebook
TwitterHTMLmetadata Text files in HTML-format containing metadata about samples and spectra. Also included in the zip file are folders containing information linked to from the HTML files, including: - README: contains a HTML version of the USGS Data Series publication, linked to this data release, that describes this spectral library (Kokaly and others, 2017). The folder also contains an HTML version of the release notes. - photo_images: contains full resolution images of photos of samples and field sites. - photo_thumbs: contains low-resolution thumbnail versions of photos of samples and field sites. GENERAL LIBRARY DESCRIPTION This data release provides the U.S. Geological Survey (USGS) Spectral Library Version 7 and all related documents. The library contains spectra measured with laboratory, field, and airborne spectrometers. The instruments used cover wavelengths from the ultraviolet to the far infrared (0.2 to 200 microns). Laboratory samples of specific minerals, plants, chemical compounds, and man-made materials were measured. In many cases, samples were purified, so that unique spectral features of a material can be related to its chemical structure. These spectro-chemical links are important for interpreting remotely sensed data collected in the field or from an aircraft or spacecraft. This library also contains physically-constructed as well as mathematically-computed mixtures. Measurements of rocks, soils, and natural mixtures of minerals have also been made with laboratory and field spectrometers. Spectra of plant components and vegetation plots, comprising many plant types and species with varying backgrounds, are also in this library. Measurements by airborne spectrometers are included for forested vegetation plots, in which the trees are too tall for measurement by a field spectrometer. The related U.S. Geological Survey Data Series publication, "USGS Spectral Library Version 7", describes the instruments used, metadata descriptions of spectra and samples, and possible artifacts in the spectral measurements (Kokaly and others, 2017). Four different spectrometer types were used to measure spectra in the library: (1) Beckman™ 5270 covering the spectral range 0.2 to 3 µm, (2) standard, high resolution (hi-res), and high-resolution Next Generation (hi-resNG) models of ASD field portable spectrometers covering the range from 0.35 to 2.5 µm, (3) Nicolet™ Fourier Transform Infra-Red (FTIR) interferometer spectrometers covering the range from about 1.12 to 216 µm, and (4) the NASA Airborne Visible/Infra-Red Imaging Spectrometer AVIRIS, covering the range 0.37 to 2.5 µm. Two fundamental spectrometer characteristics significant for interpreting and utilizing spectral measurements are sampling position (the wavelength position of each spectrometer channel) and bandpass (a parameter describing the wavelength interval over which each channel in a spectrometer is sensitive). Bandpass is typically reported as the Full Width at Half Maximum (FWHM) response at each channel (in wavelength units, for example nm or micron). The linked publication (Kokaly and others, 2017), includes a comparison plot of the various spectrometers used to measure the data in this release. Data for the sampling positions and the bandpass values (for each channel in the spectrometers) are included in this data release. These data are in the SPECPR files, as separate data records, and in the American Standard Code for Information Interchange (ASCII) text files, as separate files for wavelength and bandpass. Spectra are provided in files of ASCII text format (files with a .txt file extension). In the ASCII files, deleted channels (bad bands) are indicated by a value of -1.23e34. Metadata descriptions of samples, field areas, spectral measurements, and results from supporting material analyses – such as XRD – are provided in HyperText Markup Language HTML formatted ASCII text files (files with .html file extension). In addition, Graphics Interchange Format (GIF) images of plots of spectra are provided. For each spectrum a plot with wavelength in microns on the x-axis is provided. For spectra measured on the Nicolet spectrometer, an additional GIF image with wavenumber on the x-axis is provided. Data are also provided in SPECtrum Processing Routines (SPECPR) format (Clark, 1993) which packages spectra and associated metadata descriptions into a single file (see the linked publication, Kokaly and others, 2017, for additional details on the SPECPR format and freely-available software than can be used to read files in SPECPR format). The data measured on the source spectrometers are denoted by the “splib07a” tag in filenames. In addition to providing the original measurements, the spectra have been convolved and resampled to different spectrometer and multispectral sensor characteristics. The following list specifies the identifying tag for the measured and convolved libraries and gives brief descriptions of the sensors. splib07a – this is the name of the SPECPR file containing the spectra measured on the Beckman, ASD, Nicolet and AVIRIS spectrometers. The data are provided with their original sampling positions (wavelengths) and bandpass values. The prefix “splib07a_” is at the beginning of the ASCII and GIF files pertaining to the measured spectra. splib07b – this is the name of the SPECPR file containing a modified version of the original measurements. The results from using spectral convolution to convert measurements to other spectrometer characteristics can be improved by oversampling (increasing sample density). Thus, splib07b is an oversampled version of the library, computed using simple cubic-spline interpolation to produce spectra with fine sampling interval (therefore a higher number of channels) for Beckman and AVIRIS measurements. The spectra in this version of the library are the data used to create the convolved and resampled versions of the library. The prefix “splib07b_” is at the beginning of the ASCII and GIF files pertaining to the oversampled spectra. s07_ASD – this is the name of the SPECPR file containing the spectral library measurements convolved to standard resolution ASD full range spectrometer characteristics. The standard reported wavelengths of the ASD spectrometers used by the USGS were used (2151 channels with wavelength positions starting at 350 nm and increasing in 1 nm increments). The bandpass values of each channel were determined by comparing measurements of reference materials made on ASD spectrometers in comparison to measurements made of the same materials on higher resolution spectrometers (the procedure is described in Kokaly, 2011, and discussed in Kokaly and Skidmore, 2015, and Kokaly and others, 2017). The prefix “s07ASD_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV95 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 1995 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV95_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV96 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 1996 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV96_” is at the beginning of the ASCII, and GIF files. s07_AV97 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 1997 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV97_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV98 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 1998 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV98_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV99 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 1999 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV99_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV00 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 2000 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV00_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV01 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 2001 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV01_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV05 – this is the name of the SPECPR file containing the spectral library measurements convolved to AVIRIS-Classic with spectral characteristics determined in the year 2005 (wavelength and bandpass values for the 224 channels provided with AVIRIS data by NASA/JPL). The prefix “s07_AV05_” is at the beginning of the ASCII and GIF files pertaining to this spectrometer. s07_AV06 – this is the name of the SPECPR file containing the spectral library measurements convolved to
Facebook
TwitterIf you would like to pre-train a model on the text data in the Feedback Prize competition, here you go! It is one text file with a single sentence per line. Duplicate lines and lines with fewer than 20 characters are removed.
Code to recreate here: https://www.kaggle.com/nbroad/line-by-line-dataset
Use it in transformers scripts using the --line_by_line flag.
Facebook
TwitterThese data are to be used in conjunction with Data Analysis : An Introduction by B. Nolan, available at booksellers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Python notebook (research work) provides a comprehensive solution for text analysis and hint extraction that will be useful for making computational scenes using input text .
It includes a collection of functions that can be used to preprocess textual data, extract information such as characters, relationships, emotions, dates, times, addresses, locations, purposes, and hints from the text.
Key Features:
Preprocessing Collected Data: The notebook offers preprocessing capabilities to remove unwanted strings, normalize text data, and prepare it for further analysis. Character Extraction: The notebook includes functions to extract characters from the text, count the number of characters, and determine the number of male and female characters. Relationship Extraction: Functions are provided to calculate possible relationships among characters and extract the relationship names. Dominant Emotion Extraction: The notebook includes a function to extract the dominant emotion from the text. Date and Time Extraction: Functions are available to extract dates and times from the text, including handling phrases like "before," "after," "in the morning," and "in the evening." Address and Location Extraction: The notebook provides functions to extract addresses and locations from the text, including identifying specific places like offices, homes, rooms, or bathrooms. Purpose Extraction: Functions are included to extract the purpose of the text. Hint Collection: The notebook offers the ability to collect hints from the text based on specific keywords or phrases. Sample Implementations: Sample Python code is provided for each function, demonstrating how to use them effectively. This notebook serves as a valuable resource for text analysis tasks, assisting in extracting essential information and hints from textual data. It can be used in various domains such as natural language processing, sentiment analysis, and information retrieval. The code is well-documented and can be easily integrated into existing projects or workflows.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A bulk data set consisting of XML-tagged titles, abstracts, descriptions, claims and search reports of European Patent (EP) publications, designed to facilitate natural language processing work.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Card for Synthetic Text Dataset - Augmentation Example
Dataset Summary
This dataset demonstrates text data augmentation. Starting from 100 original short text samples, multiple augmentation techniques were applied to expand the dataset to 1,000 samples.
Purpose
The dataset was created as part of a course exercise to explore text augmentation and its effect on classification tasks.
Composition
Instances: 100 original + 1200 augmented = 1,300… See the full description on the dataset page: https://huggingface.co/datasets/madhavkarthi/2025-24679-hw1-text-dataset-mkarthik.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supervised machine learning methods are increasingly employed in political science. Such models require costly manual labeling of documents. In this paper we introduce active learning, a framework in which data to be labeled by human coders are not chosen at random but rather targeted in such a way that the required amount of data to train a machine learning model can be minimized. We study the benefits of active learning using text data examples. We perform simulation studies that illustrate conditions where active learning can reduce the cost of labeling text data. We perform these simulations on three corpora that vary in size, document length and domain. We find that in cases where the document class of interest is not balanced, researchers can label a fraction of the documents one would need using random sampling (or `passive' learning) to achieve equally performing classifiers. We further investigate how varying levels of inter-coder reliability affect the active learning procedures and find that even with low-reliability active learning performs more efficiently than does random sampling.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MultiSocial is a dataset (described in a paper) for multilingual (22 languages) machine-generated text detection benchmark in social-media domain (5 platforms). It contains 472,097 texts, of which about 58k are human-written and approximately the same amount is generated by each of 7 multilingual large language models by using 3 iterations of paraphrasing. The dataset has been anonymized to minimize amount of sensitive data by hiding email addresses, usernames, and phone numbers.
If you use this dataset in any publication, project, tool or in any other form, please, cite the paper.
Due to data source (described below), the dataset may contain harmful, disinformation, or offensive content. Based on a multilingual toxicity detector, about 8% of the text samples are probably toxic (from 5% in WhatsApp to 10% in Twitter). Although we have used data sources of older date (lower probability to include machine-generated texts), the labeling (of human-written text) might not be 100% accurate. The anonymization procedure might not successfully hiden all the sensitive/personal content; thus, use the data cautiously (if feeling affected by such content, report the found issues in this regard to dpo[at]kinit.sk). The intended use if for non-commercial research purpose only.
The human-written part consists of a pseudo-randomly selected subset of social media posts from 6 publicly available datasets:
Telegram data originated in Pushshift Telegram, containing 317M messages (Baumgartner et al., 2020). It contains messages from 27k+ channels. The collection started with a set of right-wing extremist and cryptocurrency channels (about 300 in total) and was expanded based on occurrence of forwarded messages from other channels. In the end, it thus contains a wide variety of topics and societal movements reflecting the data collection time.
Twitter data originated in CLEF2022-CheckThat! Task 1, containing 34k tweets on COVID-19 and politics (Nakov et al., 2022, combined with Sentiment140, containing 1.6M tweets on various topics (Go et al., 2009).
Gab data originated in the dataset containing 22M posts from Gab social network. The authors of the dataset (Zannettou et al., 2018) found out that “Gab is predominantly used for the dissemination and discussion of news and world events, and that it attracts alt-right users, conspiracy theorists, and other trolls.” They also found out that hate speech is much more prevalent there compared to Twitter, but lower than 4chan's Politically Incorrect board.
Discord data originated in Discord-Data, containing 51M messages. This is a long-context, anonymized, clean, multi-turn and single-turn conversational dataset based on Discord data scraped from a large variety of servers, big and small. According to the dataset authors, it contains around 0.1% of potentially toxic comments (based on the applied heuristic/classifier).
WhatsApp data originated in whatsapp-public-groups, containing 300k messages (Garimella & Tyson, 2018). The public dataset contains the anonymised data, collected for around 5 months from around 178 groups. Original messages were made available to us on request to dataset authors for research purposes.
From these datasets, we have pseudo-randomly sampled up to 1300 texts (up to 300 for test split and the remaining up to 1000 for train split if available) for each of the selected 22 languages (using a combination of automated approaches to detect the language) and platform. This process resulted in 61,592 human-written texts, which were further filtered out based on occurrence of some characters or their length, resulting in about 58k human-written texts.
The machine-generated part contains texts generated by 7 LLMs (Aya-101, Gemini-1.0-pro, GPT-3.5-Turbo-0125, Mistral-7B-Instruct-v0.2, opt-iml-max-30b, v5-Eagle-7B-HF, vicuna-13b). All these models were self-hosted except for GPT and Gemini, where we used the publicly available APIs. We generated the texts using 3 paraphrases of the original human-written data and then preprocessed the generated texts (filtered out cases when the generation obviously failed).
The dataset has the following fields:
'text' - a text sample,
'label' - 0 for human-written text, 1 for machine-generated text,
'multi_label' - a string representing a large language model that generated the text or the string "human" representing a human-written text,
'split' - a string identifying train or test split of the dataset for the purpose of training and evaluation respectively,
'language' - the ISO 639-1 language code identifying the detected language of the given text,
'length' - word count of the given text,
'source' - a string identifying the source dataset / platform of the given text,
'potential_noise' - 0 for text without identified noise, 1 for text with potential noise.
ToDo Statistics (under construction)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A dataset of .csv files each containing article texts from newspapers published on the Shared Research Repository.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the classification based E-commerce text dataset for 4 categories - "Electronics", "Household", "Books" and "Clothing & Accessories", which almost cover 80% of any E-commerce website.
The dataset is in ".csv" format with two columns - the first column is the class name and the second one is the datapoint of that class. The data point is the product and description from the e-commerce website.
The dataset has the following features :
Data Set Characteristics: Multivariate
Number of Instances: 50425
Number of classes: 4
Area: Computer science
Attribute Characteristics: Real
Number of Attributes: 1
Associated Tasks: Classification
Missing Values? No
Gautam. (2019). E commerce text dataset (version - 2) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3355823
Facebook
TwitterThe ViTexOCR script presents a new method for extracting navigation data from videos with text overlays using optical character recognition (OCR) software. Over the past few decades, it was common for videos recorded during surveys to be overlaid with real-time geographic positioning satellite chyrons including latitude, longitude, date and time, as well as other ancillary data (such as speed, heading, or user input identifying fields). Embedding these data into videos provides them with utility and accuracy, but using the location data for other purposes, such as analysis in a geographic information system, is not possible when only available on the video display. Extracting the text data from imagery using software allows these videos to be located and analyzed in a geospatial context. The script allows a user to select a video, specify the text data types (e.g. latitude, longitude, date, time, or other), text color, and the pixel locations of overlay text data on a sample video frame. The script’s output is a data file containing the retrieved geospatial and temporal data. All functionality is bundled in a Python script that incorporates a graphical user interface and several other software dependencies.
Facebook
TwitterDerived from over 150 years of lexical research, these comprehensive textual and audio data, focused on American English, provide linguistically annotated data. Ideal for NLP applications, LLM training and/or fine-tuning, as well as educational and game apps.
One of our flagship datasets, the American English data is expertly curated and linguistically annotated by professionals, with annual updates to ensure accuracy and relevance. The below datasets in American English are available for license:
Key Features (approximate numbers):
Our American English Monolingual Dictionary Data is the foremost authority on American English, including detailed tagging and labelling covering parts of speech (POS), grammar, region, register, and subject, providing rich linguistic information. Additionally, all grammar and usage information is present to ensure relevance and accuracy.
The American English Synonyms and Antonyms Dataset is a leading resource offering comprehensive, up-to-date coverage of word relationships in contemporary American English. It includes rich linguistic details such as precise definitions and part-of-speech (POS) tags, making it an essential asset for developing AI systems and language technologies that require deep semantic understanding.
This dataset provides IPA transcriptions and clean audio data in contemporary American English. It includes syllabified transcriptions, variant spellings, POS tags, and pronunciation group identifiers. The audio files are supplied separately and linked where available for seamless integration - perfect for teams building TTS systems, ASR models, and pronunciation engines.
Use Cases:
We consistently work with our clients on new use cases as language technology continues to evolve. These include NLP applications, TTS, dictionary display tools, games, translation machine, AI training and fine-tuning, word embedding, and word sense disambiguation (WSD).
If you have a specific use case in mind that isn't listed here, we’d be happy to explore it with you. Don’t hesitate to get in touch with us at Growth.OL@oup.com to start the conversation.
Pricing:
Oxford Languages offers flexible pricing based on use case and delivery format. Our datasets are licensed via term-based IP agreements and tiered pricing for API-delivered data. Whether you’re integrating into a product, training an LLM, or building custom NLP solutions, we tailor licensing to your specific needs.
Contact our team or email us at Growth.OL@oup.com to explore pricing options and discover how our language data can support your goals. Please note that some datasets may have rights restrictions. Contact us for more information.
About the sample:
To help you explore the structure and features of our dataset on this platform, we provide a sample in CSV and/or JSON formats for one of the presented datasets, for preview purposes only, as shown on this page. This sample offers a quick and accessible overview of the data's contents and organization.
Our full datasets are available in various formats, depending on the language and type of data you require. These may include XML, JSON, TXT, XLSX, CSV, WAV, MP3, and other file types. Please contact us (Growth.OL@oup.com) if you would like to receive the original sample with full details.
Facebook
TwitterAttribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically
This tutorial package, comprising both data and code, accompanies the article and is designed primarily to allow readers to explore the various vocabulary-building methods discussed in the paper. The article discusses how to apply computational linguistics techniques to analyze largely unstructured corporate-generated text for economic analysis. As a core example, we illustrate how textual analysis of earnings conference call transcripts can provide insights into how markets and individual firms respond to economic shocks, such as a nuclear disaster or a geopolitical event: insights that often elude traditional non-text data sources. This approach enables extracting actionable intelligence, supporting both policy-making and strategic corporate decision-making. We also explore applications using other sources of corporate-generated text, including patent documents and job postings. By incorporating computational linguistics techniques into the analysis of economic shocks, new opportunities arise for real-time economic data, offering a more nuanced understanding of market and firm responses in times of economic volatility.