20 datasets found
  1. e

    LRP TF K6_9 Usage Basic Map

    • data.europa.eu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LRP TF K6_9 Usage Basic Map [Dataset]. https://data.europa.eu/data/datasets/e202b886-9d1e-4d89-a02c-8b36b6b118f4
    Explore at:
    Description

    Map 6 "Biotopes, Flora" of the LRP Teltow-Fläming. (Standing waters, anthropogenic raw soil sites and ruderal areas, grass and perennial meadows, dwarf shrub heaths, forests and forests, fields, biotopes of greenery and open spaces, built-up areas, traffic facilities, special areas)

  2. T

    coco

    • tensorflow.org
    • huggingface.co
    Updated Jun 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). coco [Dataset]. https://www.tensorflow.org/datasets/catalog/coco
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    COCO is a large-scale object detection, segmentation, and captioning dataset.

    Note: * Some images from the train and validation sets don't have annotations. * Coco 2014 and 2017 uses the same images, but different train/val/test splits * The test split don't have any annotations (only images). * Coco defines 91 classes but the data only uses 80 classes. * Panotptic annotations defines defines 200 classes but only uses 133.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('coco', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/coco-2014-1.1.0.png" alt="Visualization" width="500px">

  3. f

    The comparison of time-consuming in WMD and fast WMD.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fuji Ren; Ning Liu (2023). The comparison of time-consuming in WMD and fast WMD. [Dataset]. http://doi.org/10.1371/journal.pone.0194136.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Fuji Ren; Ning Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The comparison of time-consuming in WMD and fast WMD.

  4. o

    mobilenet-v1-ssd300.tensorflow (8bit quantized and fine-tuned)

    • explore.openaire.eu
    Updated Jun 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matan Haroush (2019). mobilenet-v1-ssd300.tensorflow (8bit quantized and fine-tuned) [Dataset]. http://doi.org/10.5281/zenodo.3252083
    Explore at:
    Dataset updated
    Jun 21, 2019
    Authors
    Matan Haroush
    Description

    Application: Single-stage Object Detection Base model: MobileNet-v1 Framework: tensorflow1.1 Training Information: weights were fine-tuned using TF fake quantization nodes Quality: The COCO mAP(IoU=0.50:0.95) on 5000 validation images is 23.0% Precision: 8-bit precision Is Quantized: Yes, using fake quantization - i.e., weights appear in float32 but have only 256 unique values. Dataset: COCO val-2017

  5. d

    Data from: Digital Geologic Map of Sherman Quadrangle, North-Central Texas

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital Geologic Map of Sherman Quadrangle, North-Central Texas [Dataset]. https://catalog.data.gov/dataset/digital-geologic-map-of-sherman-quadrangle-north-central-texas
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Sherman, Texas
    Description

    This digital data set contains geologic formations for the 1:250,000-scale Sherman quadrangle, Texas and Oklahoma. The original data are from the Bureau of Economic Geology publication, "Geologic Atlas of Texas, Sherman sheet", by J.H. McGowen, T.F. Hentz, D.E. Owen, M.K. Pieper, C.A. Shelby, and V.E. Barnes, 1967, revised 1991.

  6. Z

    Data from: Material stock map of Austria

    • data.niaid.nih.gov
    • data.subak.org
    • +1more
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lederer, Jakob (2023). Material stock map of Austria [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4522891
    Explore at:
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Frantz, David
    van der Linden, Sebastian
    Lederer, Jakob
    Gattringer, Andreas
    Kemper, Thomas
    Wiedenhofer, Dominik
    Plutzar, Christoph
    Liu, Gang
    Virag, Doris
    Haberl, Helmut
    Gruhler, Karin
    Tanikawa, Hiroki
    Schug, Franz
    Fishman, Tomer
    Hostert, Patrick
    Schiller, Georg
    Lanau, Maud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Austria
    Description

    Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures.

    This dataset features a detailed map of material stocks for the whole of Austria on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Temporal extent The map is representative for ca. 2018.

    Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

    The dataset features

    area and mass for different street types

    area and mass for different rail types

    area and mass for other infrastructure

    area, volume and mass for different building types

    Masses are reported as total values, and per material category.

    Units

    area in m²

    height in m

    volume in m³

    mass in t for infrastructure and buildings

    Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.

  7. Input data for: Combining global tree cover loss data with historical...

    • dataverse.cirad.fr
    Updated Nov 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CIRAD Dataverse (2023). Input data for: Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. [Dataset]. http://doi.org/10.18167/DVN1/2FP7LR
    Explore at:
    application/zipped-shapefile(532607786)Available download formats
    Dataset updated
    Nov 20, 2023
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Madagascar
    Dataset funded by
    Fondation pour la Recherche sur la Biodiversité
    Description

    This dataset includes input data used in the following article: Vieilledent G., C. Grinand, F. A. Rakotomalala, R. Ranaivosoa, J.-R. Rakotoarijaona, T. F. Allnutt, and F. Achard. 2018. Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biological Conservation. 222: 189-197. [doi:10.1016/j.biocon.2018.04.008]. bioRxiv: 147827. Results from this article have been updated for the periods 2010-2015 and 2015-2017.

  8. PP2021 - Augmented KFold TFRecords (2/4)

    • kaggle.com
    zip
    Updated Apr 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nick Kuzmenkov (2021). PP2021 - Augmented KFold TFRecords (2/4) [Dataset]. https://www.kaggle.com/nickuzmenkov/pp2021-kfold-tfrecords-1
    Explore at:
    zip(13051777813 bytes)Available download formats
    Dataset updated
    Apr 13, 2021
    Authors
    Nick Kuzmenkov
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description

    Dataset of TFRecords files made from Plant Pathology 2021 original competition data. Changes: * labels column of the initial train.csv DataFrame was binarized to multi-label format columns: complex, frog_eye_leaf_spot, healthy, powdery_mildew, rust, and scab * images were scaled to 512x512 * 77 duplicate images having different labels were removed (see the context in this notebook) * samples were stratified and split into 5 folds (see corresponding folders fold_0:fold_4) * images were heavily augmented with albumentations library (for raw images see this dataset) * each folder contains 5 copies of randomly augmented initial images (so that the model never meets the same images)

    I suggest adding all 5 datasets to your notebook: 4 augmented datasets = 20 epochs of unique images (1, 2, 3, 4) + 1 raw dataset for validation here.

    For a complete example see my TPU Training Notebook

    Contents:

    • preprocessed DataFrame train.csv
    • fold indexes DataFrame folds.csv
    • fold_0:fold_4 folders containing 64 .tfrec files, respectively, with feature map shown below: feature_map = { 'image': tf.io.FixedLenFeature([], tf.string), 'name': tf.io.FixedLenFeature([], tf.string), 'complex': tf.io.FixedLenFeature([], tf.int64), 'frog_eye_leaf_spot': tf.io.FixedLenFeature([], tf.int64), 'healthy': tf.io.FixedLenFeature([], tf.int64), 'powdery_mildew': tf.io.FixedLenFeature([], tf.int64), 'rust': tf.io.FixedLenFeature([], tf.int64), 'scab': tf.io.FixedLenFeature([], tf.int64)} ### Acknowledgements
    • photo from Unsplash here
  9. e

    LRP TF K13_5 Sources

    • data.europa.eu
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LRP TF K13_5 Sources [Dataset]. https://data.europa.eu/data/datasets/ff9cafb7-d58c-47bf-bf90-6038b08f8f20?locale=en
    Explore at:
    Description

    Pointed representation of the sources from map 13 "surface waters" of the LRP Teltow-Fläming.

  10. f

    The results of experiments on Ren_CECps and 20 newsgroup.

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fuji Ren; Ning Liu (2023). The results of experiments on Ren_CECps and 20 newsgroup. [Dataset]. http://doi.org/10.1371/journal.pone.0194136.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Fuji Ren; Ning Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results of experiments on Ren_CECps and 20 newsgroup.

  11. Z

    Data from: Material stock map of Germany

    • data.niaid.nih.gov
    • data.subak.org
    • +1more
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hostert, Patrick (2023). Material stock map of Germany [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_4536989
    Explore at:
    Dataset updated
    Jul 12, 2023
    Dataset provided by
    Frantz, David
    van der Linden, Sebastian
    Lederer, Jakob
    Gattringer, Andreas
    Kemper, Thomas
    Wiedenhofer, Dominik
    Plutzar, Christoph
    Liu, Gang
    Virag, Doris
    Haberl, Helmut
    Gruhler, Karin
    Tanikawa, Hiroki
    Schug, Franz
    Fishman, Tomer
    Hostert, Patrick
    Schiller, Georg
    Lanau, Maud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures.

    This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.

    Temporal extent The map is representative for ca. 2018.

    Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (.tif). There is a mosaic in GDAL Virtual format (.vrt), which can readily be opened in most Geographic Information Systems.

    The dataset features

    area and mass for different street types

    area and mass for different rail types

    area and mass for other infrastructure

    area, volume and mass for different building types

    Masses are reported as total values, and per material category.

    Units

    area in m²

    height in m

    volume in m³

    mass in t for infrastructure and buildings

    Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.

    Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology

    Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.

  12. e

    INSPIRE Download Service (voorgedefinieerde ATOM) voor dataset Ferienpark...

    • data.europa.eu
    atom feed
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LVermGeo im Auftrag von Thalfang (2025). INSPIRE Download Service (voorgedefinieerde ATOM) voor dataset Ferienpark Himmelberg 2e wijziging [Dataset]. https://data.europa.eu/data/datasets/40c1dbe1-5387-0002-7075-3ba7a80a0be5?locale=nl
    Explore at:
    atom feedAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    LVermGeo im Auftrag von Thalfang
    Description

    Beschrijving van de INSPIRE Download Service (vooraf gedefinieerde Atom): Wijziging van de TF - De link(s) voor het downloaden van de records wordt/worden dynamisch gegenereerd vanuit Get Map calls naar een WMS interface Beschrijving van de INSPIRE Download Service (vooraf gedefinieerde Atom): Wijziging van de TF - De link(s) voor het downloaden van de records wordt/worden dynamisch gegenereerd vanuit Get Map calls naar een WMS interface Beschrijving van de INSPIRE Download Service (vooraf gedefinieerde Atom): Wijziging van de TF - De link(s) voor het downloaden van de records wordt/worden dynamisch gegenereerd vanuit Get Map calls naar een WMS interface

  13. Liver Tumor Segmentation in TFRecords Part 3

    • kaggle.com
    zip
    Updated May 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LangeB (2021). Liver Tumor Segmentation in TFRecords Part 3 [Dataset]. https://www.kaggle.com/langeb/liver-tumor-segmentation-in-tfrecords-part-3
    Explore at:
    zip(5732875694 bytes)Available download formats
    Dataset updated
    May 2, 2021
    Authors
    LangeB
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Abstract

    Part 3 of 3 of the Liver Tumor Segmentation Challenge Data.

    To participate in the challenge look at LiTS competition website

    For info on TPU setup please look at the documentation

    TFRecord content

    Please look at the starter notebook for below steps

    The bucket path: python from kaggle_datasets import KaggleDatasets GCS_PATH = KaggleDatasets().get_gcs_path('liver-tumor-segmentation-in-tfrecords-part-3') paths = tf.io.gfile.glob(f"{GCS_PATH}/*")

    The TFRecord reader: ```python def read_tfrecord(serialized_example): """ Reads a serialized tf.Example message from a google storage bucket. """ feature_description = {'example_id': tf.io.FixedLenFeature([1], tf.int64), 'shape': tf.io.FixedLenFeature([3], tf.int64), 'volume': tf.io.FixedLenFeature([], tf.string), 'segmentation': tf.io.FixedLenFeature([], tf.string)}

    example = tf.io.parse_single_example(serialized_example, feature_description)
    volume = tf.io.parse_tensor(example['volume'], tf.int16)
    volume.set_shape((None, None, None))
    segmentation = tf.io.parse_tensor(example['segmentation'], tf.uint8)
    segmentation.set_shape((None, None, None))
    
    return example['example_id'], example['shape'], volume, segmentation
    
    
    Initilize dataset:
    ```python
    raw_train_dataset = tf.data.TFRecordDataset(filenames=paths, compression_type='GZIP')
    raw_train_dataset = raw_train_dataset.map(read_tfrecord)
    

    Organizer and Data Contributors

    Technical University of Munich

    Patrick Christ, Florian Ettlinger, Felix Gruen, Sebastian Schlecht, Jana Lipkova, Georgios Kassis, Sebastian Ziegelmayer, Fabian Lohöfer, Rickmer Braren & Bjoern Menze Ludwig Maxmilian University of Munich

    Julian Holch, Felix Hofmann, Wieland Sommer & Volker Heinemann Radboudumc

    Colin Jacobs, Gabriel Efrain HumpireMamani & Bram van Ginneken Polytechnique Montréal & CHUM Research Center

    Gabriel Chartrand, Eugene Vorontsov, An Tang, Michal Drozdzal & Samuel Kadoury Tel Aviv University & Sheba Medical Center

    Avi Ben-Cohen, Eyal Klang, Marianne M. Amitai, Eli Konen & Hayit Greenspan. IRCAD

    Johan Moreau, Alexandre Hostettler & Luc Soler The Hebrew University of Jerusalem & Hadassah University Medical Center

    Refael Vivanti, Adi Szeskin, Naama Lev-Cohain, Jacob Sosna & Leo Joskowicz Special thanks to the CodaLab Team for helping us

    Eric Carmichael & Flavio Alexander

    Attribute

    @misc{bilic2019liver, title={The Liver Tumor Segmentation Benchmark (LiTS)}, author={Patrick Bilic and Patrick Ferdinand Christ and Eugene Vorontsov and Grzegorz Chlebus and Hao Chen and Qi Dou and Chi-Wing Fu and Xiao Han and Pheng-Ann Heng and Jürgen Hesser and Samuel Kadoury and Tomasz Konopczynski and Miao Le and Chunming Li and Xiaomeng Li and Jana Lipkovà and John Lowengrub and Hans Meine and Jan Hendrik Moltz and Chris Pal and Marie Piraud and Xiaojuan Qi and Jin Qi and Markus Rempfler and Karsten Roth and Andrea Schenk and Anjany Sekuboyina and Eugene Vorontsov and Ping Zhou and Christian Hülsemeyer and Marcel Beetz and Florian Ettlinger and Felix Gruen and Georgios Kaissis and Fabian Lohöfer and Rickmer Braren and Julian Holch and Felix Hofmann and Wieland Sommer and Volker Heinemann and Colin Jacobs and Gabriel Efrain Humpire Mamani and Bram van Ginneken and Gabriel Chartrand and An Tang and Michal Drozdzal and Avi Ben-Cohen and Eyal Klang and Marianne M. Amitai and Eli Konen and Hayit Greenspan and Johan Moreau and Alexandre Hostettler and Luc Soler and Refael Vivanti and Adi Szeskin and Naama Lev-Cohain and Jacob Sosna and Leo Joskowicz and Bjoern H. Menze}, year={2019}, eprint={1901.04056}, archivePrefix={arXiv}, primaryClass={cs.CV} }

  14. Summary of phosphoproteins and phosphosites determined by MS analysis.

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pedro Beltrao; Jonathan C. Trinidad; Dorothea Fiedler; Assen Roguev; Wendell A. Lim; Kevan M. Shokat; Alma L. Burlingame; Nevan J. Krogan (2023). Summary of phosphoproteins and phosphosites determined by MS analysis. [Dataset]. http://doi.org/10.1371/journal.pbio.1000134.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Pedro Beltrao; Jonathan C. Trinidad; Dorothea Fiedler; Assen Roguev; Wendell A. Lim; Kevan M. Shokat; Alma L. Burlingame; Nevan J. Krogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of phosphoproteins and phosphosites determined by MS analysis.

  15. i

    TEC database

    • integbio.jp
    Updated Jan 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Genetics (2019). TEC database [Dataset]. https://integbio.jp/dbcatalog/en/record/nbdc02402
    Explore at:
    Dataset updated
    Jan 15, 2019
    Dataset provided by
    TEC group
    National Institute of Genetics
    Description

    TEC database provides the regulatory targets for all sigma factors and transcription factor (TF)s in E. coli identified by genomic SELEX screening. Users can search either TFs that may regulate specific genes or target genes regulated by TF(s) of specific interest. Then, the results can be filtered by binding intensity and/or location. Users can view both bar chart and heat map of TF binding, and can analyze consensus sequences and download raw data.

  16. Input data for: Combining global tree cover loss data with historical...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghislain Vieilledent; Ghislain Vieilledent (2020). Input data for: Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. [Dataset]. http://doi.org/10.5281/zenodo.1118956
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Ghislain Vieilledent; Ghislain Vieilledent
    License

    https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.htmlhttps://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html

    Description

    This repository includes input data used in the following article:

    Vieilledent G., C. Grinand, F. A. Rakotomalala, R. Ranaivosoa, J.-R. Rakotoarijaona, T. F. Allnutt, and F. Achard. Combining global tree cover loss data with historical national forest-cover maps to look at six decades of deforestation and forest fragmentation in Madagascar.

    For this article, data have been processed with a R/GRASS script. The development version of this script is available on GitHub at https://github.com/ghislainv/deforestation-maps-Mada. The last release of this script is archived on Zenodo: [DOI: 10.5281/zenodo.1118484].

  17. Data from: A comprehensive map of genome-wide gene regulation in...

    • figshare.com
    • search.datacite.org
    xlsx
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serdar Turkarslan (2016). A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis [Dataset]. http://doi.org/10.6084/m9.figshare.1249805.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Authors
    Serdar Turkarslan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mycobacterium tuberculosis (MTB) is a pathogenic bacterium responsible for 12 million active cases of tuberculosis (TB) worldwide. The complexity and critical regulatory components of MTB pathogenicity are still poorly understood despite extensive research efforts. In this study, we constructed the first systems-scale map of transcription factor (TF) binding sites and their regulatory target proteins in MTB. We constructed FLAG-tagged overexpression constructs for 206 TFs in MTB, used ChIP-seq to identify genome-wide binding events and surveyed global transcriptomic changes for each overexpressed TF. Here we present data for the most comprehensive map of MTB gene regulation to date. We also define elaborate quality control measures, extensive filtering steps, and the gene-level overlap between ChIP-seq and microarray datasets. Further, we describe the use of TF overexpression datasets to validate a global gene regulatory network model of MTB and describe an online source to explore the datasets. Overall, we provide evidence that these datasets are an invaluable regulatory catalogue that can be used to drive a systems understanding of MTB pathogenicity.

  18. f

    SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory...

    • plos.figshare.com
    pdf
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manu Setty; Christina S. Leslie (2023). SeqGL Identifies Context-Dependent Binding Signals in Genome-Wide Regulatory Element Maps [Dataset]. http://doi.org/10.1371/journal.pcbi.1004271
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS Computational Biology
    Authors
    Manu Setty; Christina S. Leslie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Genome-wide maps of transcription factor (TF) occupancy and regions of open chromatin implicitly contain DNA sequence signals for multiple factors. We present SeqGL, a novel de novo motif discovery algorithm to identify multiple TF sequence signals from ChIP-, DNase-, and ATAC-seq profiles. SeqGL trains a discriminative model using a k-mer feature representation together with group lasso regularization to extract a collection of sequence signals that distinguish peak sequences from flanking regions. Benchmarked on over 100 ChIP-seq experiments, SeqGL outperformed traditional motif discovery tools in discriminative accuracy. Furthermore, SeqGL can be naturally used with multitask learning to identify genomic and cell-type context determinants of TF binding. SeqGL successfully scales to the large multiplicity of sequence signals in DNase- or ATAC-seq maps. In particular, SeqGL was able to identify a number of ChIP-seq validated sequence signals that were not found by traditional motif discovery algorithms. Thus compared to widely used motif discovery algorithms, SeqGL demonstrates both greater discriminative accuracy and higher sensitivity for detecting the DNA sequence signals underlying regulatory element maps. SeqGL is available at http://cbio.mskcc.org/public/Leslie/SeqGL/.

  19. Additional file 3 of Selecting and tailoring implementation interventions: a...

    • springernature.figshare.com
    xlsx
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elaine Yuen Ling Kwok; Sheila T. F. Moodie; Barbara Jane Cunningham; Janis E. Oram Cardy (2023). Additional file 3 of Selecting and tailoring implementation interventions: a concept mapping approach [Dataset]. http://doi.org/10.6084/m9.figshare.12262667.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Elaine Yuen Ling Kwok; Sheila T. F. Moodie; Barbara Jane Cunningham; Janis E. Oram Cardy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 3. Statements included in each concept map category.

  20. f

    Summary of the evidence for PTMs in SCRTT.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anirban Banerjee; Anthony Percival-Smith (2023). Summary of the evidence for PTMs in SCRTT. [Dataset]. http://doi.org/10.1371/journal.pone.0227642.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Anirban Banerjee; Anthony Percival-Smith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Summary of the evidence for PTMs in SCRTT.

  21. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
LRP TF K6_9 Usage Basic Map [Dataset]. https://data.europa.eu/data/datasets/e202b886-9d1e-4d89-a02c-8b36b6b118f4

LRP TF K6_9 Usage Basic Map

Explore at:
Description

Map 6 "Biotopes, Flora" of the LRP Teltow-Fläming. (Standing waters, anthropogenic raw soil sites and ruderal areas, grass and perennial meadows, dwarf shrub heaths, forests and forests, fields, biotopes of greenery and open spaces, built-up areas, traffic facilities, special areas)

Search
Clear search
Close search
Google apps
Main menu