100+ datasets found
  1. R

    Tensorflow's Tfrecord Format Dataset

    • universe.roboflow.com
    zip
    Updated Mar 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ObjectDetectionStop (2023). Tensorflow's Tfrecord Format Dataset [Dataset]. https://universe.roboflow.com/objectdetectionstop/tensorflow-s-tfrecord-format/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 11, 2023
    Dataset authored and provided by
    ObjectDetectionStop
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Traffic Signs Bounding Boxes
    Description

    TensorFlow's TFRecord Format

    ## Overview
    
    TensorFlow's TFRecord Format is a dataset for object detection tasks - it contains Traffic Signs annotations for 219 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  2. wpiv22-tfrecord-dataset

    • kaggle.com
    Updated Sep 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pa928human (2022). wpiv22-tfrecord-dataset [Dataset]. https://www.kaggle.com/datasets/pa928human/wpiv22-tfrec-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 14, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    pa928human
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by pa928human

    Released under CC0: Public Domain

    Contents

  3. R

    Tfrecord Data Format Dataset

    • universe.roboflow.com
    zip
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TFRecord data format (2022). Tfrecord Data Format Dataset [Dataset]. https://universe.roboflow.com/tfrecord-data-format/tfrecord-data-format/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    TFRecord data format
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Weapons And Animals Bounding Boxes
    Description

    Tfrecord Data Format

    ## Overview
    
    Tfrecord Data Format is a dataset for object detection tasks - it contains Weapons And Animals annotations for 1,333 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  4. R

    Coco To Tfrecord Dataset

    • universe.roboflow.com
    zip
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coco to tfrecord (2025). Coco To Tfrecord Dataset [Dataset]. https://universe.roboflow.com/coco-to-tfrecord/coco-to-tfrecord-ik1ve
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Coco to tfrecord
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Objects Bounding Boxes
    Description

    Coco To TFRecord

    ## Overview
    
    Coco To TFRecord is a dataset for object detection tasks - it contains Objects annotations for 677 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  5. SAPilC-RCZNAR 512x512 1C tfrecord Dataset

    • kaggle.com
    Updated Mar 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pa928human (2021). SAPilC-RCZNAR 512x512 1C tfrecord Dataset [Dataset]. https://www.kaggle.com/datasets/pa928human/sapilc-rcznar-512x512-1c-tfrecord-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    pa928human
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by pa928human

    Released under CC0: Public Domain

    Contents

  6. R

    Frc Coco To Tfrecord Dataset

    • universe.roboflow.com
    zip
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coco to tfrecord (2025). Frc Coco To Tfrecord Dataset [Dataset]. https://universe.roboflow.com/coco-to-tfrecord/frc-coco-to-tfrecord
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Coco to tfrecord
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Corals Algae Bounding Boxes
    Description

    FRC Coco To Tfrecord

    ## Overview
    
    FRC Coco To Tfrecord is a dataset for object detection tasks - it contains Corals Algae annotations for 418 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  7. INGV - Volcanic Eruption - Training TFRecords

    • kaggle.com
    Updated Oct 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darien Schettler (2020). INGV - Volcanic Eruption - Training TFRecords [Dataset]. https://www.kaggle.com/dschettler8845/ingv-volcanic-eruption-training-tfrecords/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 31, 2020
    Dataset provided by
    Kaggle
    Authors
    Darien Schettler
    Description

    TFRecord Files for Training From the INGC – Predict Volanic Eruptions Competition (https://www.kaggle.com/c/predict-volcanic-eruptions-ingv-oe) - Each TFRecord contains 80 Examples - Each Example is a CSV file from the training dataset of the competition - The following code can decode the TFRecord files into a tf.data.Dataset ``python def decode(serialized_example, is_test=False): """ Parses a set of features and label from the givenserialized_example`.

      It is used as a map function for `dataset.map`
    
    Args:
      serialized_example (tf.Example): A serialized example containing the
        following features:
          – sensor_feature_0 – [int64]
          – sensor_feature_1 – [int64]
          – sensor_feature_2 – [int64]
          – sensor_feature_3 – [int64]
          – sensor_feature_4 – [int64]
          – sensor_feature_5 – [int64]
          – sensor_feature_6 – [int64]
          – sensor_feature_7 – [int64]
          – sensor_feature_8 – [int64]
          – sensor_feature_9 – [int64]
          – label_feature  – int64
      is_test (bool, optional): Whether to allow for the label feature
    
    Returns:
      A decoded tf.data.Dataset object representing the tfrecord dataset
    """
    # Defaults are not specified since both keys are required.
    feature_dict = {
      'sensor_feature_0': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_1': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_2': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_3': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_4': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_5': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_6': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_7': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_8': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      'sensor_feature_9': tf.io.FixedLenSequenceFeature(shape=(), dtype=tf.int64, allow_missing=True),
      }
    
    if not is_test:
      feature_dict['label_feature'] = tf.io.FixedLenFeature(shape=(), dtype=tf.int64)
    
    # Define a parser
    features = tf.io.parse_single_example(serialized_example, features=feature_dict)
    
    # Decode the data and capture the label feature
    sensors = [tf.cast(features[f"sensor_feature_{i}"], tf.int16) for i in range(10)]
    
    if is_test:
      return sensors
    else:
      label = tf.cast(features["label_feature"], tf.int32)
      return sensors, label
    

    def get_tfrecord_ds(tfrecord_dir): tfrecord_paths = [os.path.join(tfrecord_dir, f_name)
    for f_name in os.listdir(tfrecord_dir)
    if f_name.endswith('.tfrec')] return tf.data.TFRecordDataset(tfrecord_paths) ```

  8. h

    e621-v1-tfrecord

    • huggingface.co
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smiling Wolf (2025). e621-v1-tfrecord [Dataset]. https://huggingface.co/datasets/SmilingWolf/e621-v1-tfrecord
    Explore at:
    Dataset updated
    Jan 28, 2025
    Authors
    Smiling Wolf
    Description

    E621 TFRecords to train classifiers and other stuff with my codebases. TFRecord serialization/deserialization code: NUM_CLASSES = 8783

    Function to convert value to bytes_list

    def _bytes_feature(value): if isinstance(value, type(tf.constant(0))): value = value.numpy() elif isinstance(value, str): value = value.encode() return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

    Function to convert bool/enum/int/uint to int64_listdef… See the full description on the dataset page: https://huggingface.co/datasets/SmilingWolf/e621-v1-tfrecord.

  9. h

    danbooru-v4-tfrecord

    • huggingface.co
    Updated Jan 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smiling Wolf (2025). danbooru-v4-tfrecord [Dataset]. https://huggingface.co/datasets/SmilingWolf/danbooru-v4-tfrecord
    Explore at:
    Dataset updated
    Jan 28, 2025
    Authors
    Smiling Wolf
    Description

    Danbooru TFRecords to train classifiers and other stuff with my codebases. TFRecord serialization/deserialization code: NUM_CLASSES = 12822

    Function to convert value to bytes_list

    def _bytes_feature(value): if isinstance(value, type(tf.constant(0))): value = value.numpy() elif isinstance(value, str): value = value.encode() return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

    Function to convert bool/enum/int/uint to int64_listdef… See the full description on the dataset page: https://huggingface.co/datasets/SmilingWolf/danbooru-v4-tfrecord.

  10. R

    Yolo To Tfrecord Dataset

    • universe.roboflow.com
    zip
    Updated Oct 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Drone Yolov5 to TFrecord (2021). Yolo To Tfrecord Dataset [Dataset]. https://universe.roboflow.com/drone-yolov5-to-tfrecord/yolo-to-tfrecord-eupna/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 4, 2021
    Dataset authored and provided by
    Drone Yolov5 to TFrecord
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Drone Bounding Boxes
    Description

    YOLO To TFrecord

    ## Overview
    
    YOLO To TFrecord is a dataset for object detection tasks - it contains Drone annotations for 1,337 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  11. DiffusionDB 384 TFRecord Dataset 27

    • kaggle.com
    Updated May 9, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    junseonglee11 (2023). DiffusionDB 384 TFRecord Dataset 27 [Dataset]. https://www.kaggle.com/datasets/junseonglee11/diffusiondb-384-tfrecord-dataset-27
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 9, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    junseonglee11
    Description

    Dataset

    This dataset was created by junseonglee11

    Contents

  12. APilC-RCZNAR 512x512 1C tfrecord Dataset

    • kaggle.com
    zip
    Updated Feb 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tyson (2021). APilC-RCZNAR 512x512 1C tfrecord Dataset [Dataset]. https://www.kaggle.com/tyson068/apilc-rcznar-512x512-1c-tfrecord-dataset
    Explore at:
    zip(1396797789 bytes)Available download formats
    Dataset updated
    Feb 20, 2021
    Authors
    Tyson
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Tyson

    Released under CC0: Public Domain

    Contents

    It contains the following files:

  13. f

    Multimodal dataset (tfrecord file) and trained weight (h5 file)

    • figshare.com
    hdf
    Updated Jun 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yueyuxiao Yang (2022). Multimodal dataset (tfrecord file) and trained weight (h5 file) [Dataset]. http://doi.org/10.6084/m9.figshare.20012456.v1
    Explore at:
    hdfAvailable download formats
    Dataset updated
    Jun 7, 2022
    Dataset provided by
    figshare
    Authors
    Yueyuxiao Yang
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    Multimodal dataset (tfrecord file) and trained weight (h5 file) are used to reproduce multi attention weight.

  14. Z

    Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yin Ranyu (2024). Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A Spatial-Temporal Approach and Dataset" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8419699
    Explore at:
    Dataset updated
    Feb 4, 2024
    Dataset provided by
    Wang Guizhou
    Long Tengfei
    Gong Chengjuan
    Jiao Weili
    Yin Ranyu
    He Guojin
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is built for time-series Sentinel-2 cloud detection and stored in Tensorflow TFRecord (refer to https://www.tensorflow.org/tutorials/load_data/tfrecord).

    Each file is compressed in 7z format and can be decompressed using Bandzip or 7-zip software.

    Dataset Structure:

    Each filename can be split into three parts using underscores. The first part indicates whether it is designated for training or validation ('train' or 'val'); the second part indicates the Sentinel-2 tile name, and the last part indicates the number of samples in this file.

    For each sample, it includes:

    Sample ID;

    Array of time series 4 band image patches in 10m resolution, shaped as (n_timestamps, 4, 42, 42);

    Label list indicating cloud cover status for the center (6\times6) pixels of each timestamp;

    Ordinal list for each timestamp;

    Sample weight list (reserved);

    Here is a demonstration function for parsing the TFRecord file:

    import tensorflow as tf

    init Tensorflow Dataset from file name

    def parseRecordDirect(fname): sep = '/' parts = tf.strings.split(fname,sep) tn = tf.strings.split(parts[-1],sep='_')[-2] nn = tf.strings.to_number(tf.strings.split(parts[-1],sep='_')[-1],tf.dtypes.int64) t = tf.data.Dataset.from_tensors(tn).repeat().take(nn) t1 = tf.data.TFRecordDataset(fname) ds = tf.data.Dataset.zip((t, t1)) return ds

    keys_to_features_direct = { 'localid': tf.io.FixedLenFeature([], tf.int64, -1), 'image_raw_ldseries': tf.io.FixedLenFeature((), tf.string, ''), 'labels': tf.io.FixedLenFeature((), tf.string, ''), 'dates': tf.io.FixedLenFeature((), tf.string, ''), 'weights': tf.io.FixedLenFeature((), tf.string, '') }

    The Decoder (Optional)

    class SeriesClassificationDirectDecorder(decoder.Decoder): """A tf.Example decoder for tfds classification datasets.""" def init(self) -> None: super()._init_()

    def decode(self, tid, ds): parsed = tf.io.parse_single_example(ds, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) sample_dict = { 'tid': tid, # tile ID 'dates': dates, # Date list 'localid': parsed['localid'], # sample ID 'imgs': decoded, # image array 'labels': label, # label list 'weights': weight } return sample_dict

    simple function

    def preprocessDirect(tid, record): parsed = tf.io.parse_single_example(record, keys_to_features_direct) encoded = parsed['image_raw_ldseries'] labels_encoded = parsed['labels'] decoded = tf.io.decode_raw(encoded, tf.uint16) label = tf.io.decode_raw(labels_encoded, tf.int8) dates = tf.io.decode_raw(parsed['dates'], tf.int64) weight = tf.io.decode_raw(parsed['weights'], tf.float32) decoded = tf.reshape(decoded,[-1,4,42,42]) return tid, dates, parsed['localid'], decoded, label, weight

    t1 = parseRecordDirect('filename here') dataset = t1.map(preprocessDirect, num_parallel_calls=tf.data.experimental.AUTOTUNE)

    #

    Class Definition:

    0: clear

    1: opaque cloud

    2: thin cloud

    3: haze

    4: cloud shadow

    5: snow

    Dataset Construction:

    First, we randomly generate 500 points for each tile, and all these points are aligned to the pixel grid center of the subdatasets in 60m resolution (eg. B10) for consistence when comparing with other products. It is because that other cloud detection method may use the cirrus band as features, which is in 60m resolution.

    Then, the time series image patches of two shapes are cropped with each point as the center.The patches of shape (42 \times 42) are cropped from the bands in 10m resolution (B2, B3, B4, B8) and are used to construct this dataset.And the patches of shape (348 \times 348) are cropped from the True Colour Image (TCI, details see sentinel-2 user guide) file and are used to interpreting class labels.

    The samples with a large number of timestamps could be time-consuming in the IO stage, thus the time series patches are divided into different groups with timestamps not exceeding 100 for every group.

  15. Parkinson FoG Pred TimeSeries TFRecord Dataset

    • kaggle.com
    Updated Mar 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    coderRKJ (2023). Parkinson FoG Pred TimeSeries TFRecord Dataset [Dataset]. https://www.kaggle.com/datasets/coderrkj/parkinson-fog-pred-timeseries-tfrecord-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    coderRKJ
    Description

    tdcsfog train folder data converted to tfrecord Dataset. Since data is greater than 20 GB, it is split into two datasets.

    Part 2: https://www.kaggle.com/datasets/coderrkj/parkinson-fog-pred-timeseries-tfrecord-dataset-2

  16. R

    Class Dataset

    • universe.roboflow.com
    zip
    Updated May 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AI class project (2023). Class Dataset [Dataset]. https://universe.roboflow.com/ai-class-project/class-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 16, 2023
    Dataset authored and provided by
    AI class project
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Faces
    Description

    Class Dataset

    ## Overview
    
    Class Dataset is a dataset for classification tasks - it contains Faces annotations for 6,551 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  17. R

    Dltr Dataset

    • universe.roboflow.com
    zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Orange (2025). Dltr Dataset [Dataset]. https://universe.roboflow.com/orange-1rjea/dltr
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Orange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Fruits
    Description

    DLTr

    ## Overview
    
    DLTr is a dataset for classification tasks - it contains Fruits annotations for 3,242 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  18. R

    Collaboration Dataset

    • universe.roboflow.com
    zip
    Updated Aug 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    devforce (2025). Collaboration Dataset [Dataset]. https://universe.roboflow.com/devforce/collaboration-8fx3t/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 10, 2025
    Dataset authored and provided by
    devforce
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cells
    Description

    Collaboration

    ## Overview
    
    Collaboration is a dataset for classification tasks - it contains Cells annotations for 1,805 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  19. R

    Generate Tfrecord For Masks Dataset

    • universe.roboflow.com
    zip
    Updated Mar 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    hunterdeddevil@gmail.com (2022). Generate Tfrecord For Masks Dataset [Dataset]. https://universe.roboflow.com/hunterdeddevil-gmail-com/generate-tfrecord-for-masks/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 7, 2022
    Dataset authored and provided by
    hunterdeddevil@gmail.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Masks Bounding Boxes
    Description

    Generate TFRecord For Masks

    ## Overview
    
    Generate TFRecord For Masks is a dataset for object detection tasks - it contains Masks annotations for 1,340 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  20. hubmap_train_test

    • kaggle.com
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcos Novaes (2020). hubmap_train_test [Dataset]. https://www.kaggle.com/marcosnovaes/hubmap-tfrecord-512/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Marcos Novaes
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Marcos Novaes

    Released under CC0: Public Domain

    Contents

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ObjectDetectionStop (2023). Tensorflow's Tfrecord Format Dataset [Dataset]. https://universe.roboflow.com/objectdetectionstop/tensorflow-s-tfrecord-format/model/1

Tensorflow's Tfrecord Format Dataset

tensorflow-s-tfrecord-format

tensorflow's-tfrecord-format-dataset

Explore at:
14 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Mar 11, 2023
Dataset authored and provided by
ObjectDetectionStop
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Variables measured
Traffic Signs Bounding Boxes
Description

TensorFlow's TFRecord Format

## Overview

TensorFlow's TFRecord Format is a dataset for object detection tasks - it contains Traffic Signs annotations for 219 images.

## Getting Started

You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.

  ## License

  This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Search
Clear search
Close search
Google apps
Main menu