100+ datasets found
  1. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  3. Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Cases and Deaths by State - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-cases-and-deaths-by-state-archived
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.

    Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:

    • A CDC data team reviews and validates the information obtained from jurisdictions’ state and local websites via an overnight data review process.
    • If more than one official county data source exists, CDC uses a comprehensive data selection process comparing each official county data source, and takes the highest case and death counts respectively, unless otherwise specified by the state.
    • CDC compiles these data and posts the finalized information on COVID Data Tracker.
    • County level data is aggregated to obtain state and territory specific totals.
    This process is collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provide the most up-to-date numbers on cases and deaths by report date. CDC may retrospectively update counts to correct data quality issues.

    Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:

    • Source: The current Weekly-Updated Version is based on county-level aggregate count data, while the Archived Version is based on State-level aggregate count data.
    • Confirmed/Probable Cases/Death breakdown:  While the probable cases and deaths are included in the total case and total death counts in both versions (if applicable), they were reported separately from the confirmed cases and deaths by jurisdiction in the Archived Version.  In the current Weekly-Updated Version, the counts by jurisdiction are not reported by confirmed or probable status (See Confirmed and Probable Counts section for more detail).
    • Time Series Frequency: The current Weekly-Updated Version contains weekly time series data (i.e., one record per week per jurisdiction), while the Archived Version contains daily time series data (i.e., one record per day per jurisdiction).
    • Update Frequency: The current Weekly-Updated Version is updated weekly, while the Archived Version was updated twice daily up to October 20, 2022.
    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:

    Council of State and Territorial Epidemiologists (ymaws.com).

    Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (to

  4. Change in behaviours during and after the coronavirus pandemic

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2021). Change in behaviours during and after the coronavirus pandemic [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthandwellbeing/datasets/changeinbehavioursduringandafterthecoronaviruspandemic
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 19, 2021
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Data on activities that respondents have been doing more of since the start of the coronavirus pandemic and will keep doing after the end of the pandemic. Data are based on the COVID-19 module of the OPN, collected between 10 and 14 March 2021.

  5. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-disasterresponse.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  6. d

    COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases, Hospitalizations, and Deaths (By County) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-hospitalizations-and-deaths-by-county
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, hospitalizations, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics Data are reported d

  7. Data from: COVID-19 Case Surveillance Public Use Data with Geography

    • catalog.data.gov
    • data.virginia.gov
    • +5more
    Updated May 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). COVID-19 Case Surveillance Public Use Data with Geography [Dataset]. https://catalog.data.gov/dataset/covid-19-case-surveillance-public-use-data-with-geography-0605b
    Explore at:
    Dataset updated
    May 8, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors. Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 32 data element restricted access dataset. The following apply to the public use datasets and the restricted access dataset: - Data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf. - Data are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers. - Some data are suppressed to protect individual privacy. - Datasets will include all cases with the earliest date available in each record (date received by CDC or date related to illness/specimen collection) at least 14 days prior to the creation of the previously updated datasets. This 14-day lag allows case reporting to be stabilized and ensure that time-dependent outcome data are accurately captured. - Datasets are updated monthly. - Datasets are created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access and include protections designed to protect individual privacy. - For more information about data collection and reporting, please see wwwn.cdc.gov/nndss/data-collection.html. - For more information about the COVID-19 case surveillance data, please see www.cdc.gov/coronavirus/2019-ncov/covid-data/faq-surveillance.html. Overview The COVID-19 case surveillance database includes patient-level data reported by U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as "immediately notifiable, urgent (within 24 hours)" by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020 to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data collected by jurisdictions are shared voluntarily with CDC. For more information, visit: wwwn.cdc.gov/nndss/conditions/coronavirus-disease-2019-covid-19/case-definition/2020/08/05/. COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by pu

  8. m

    COVID-19 reporting

    • mass.gov
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2020). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    Executive Office of Health and Human Services
    Department of Public Health
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  9. c

    COVID-19 Cases and Deaths by Age Group - ARCHIVE

    • s.cnmilf.com
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Age Group - ARCHIVE [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/covid-19-cases-and-deaths-by-age-group
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  10. e

    COVID-19 Coronavirus data - weekly (from 17 December 2020)

    • data.europa.eu
    csv, excel xlsx, html +3
    Updated Dec 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Centre for Disease Prevention and Control (2020). COVID-19 Coronavirus data - weekly (from 17 December 2020) [Dataset]. https://data.europa.eu/data/datasets/covid-19-coronavirus-data-weekly-from-17-december-2020?locale=en
    Explore at:
    html, csv, json, unknown, xml, excel xlsxAvailable download formats
    Dataset updated
    Dec 17, 2020
    Dataset authored and provided by
    European Centre for Disease Prevention and Control
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).

    Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.

    ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.

    ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.

    Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.

    If you reuse or enrich this dataset, please share it with us.

  11. COVID-19 Country Level Timeseries

    • kaggle.com
    zip
    Updated Mar 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arpan Das (2020). COVID-19 Country Level Timeseries [Dataset]. https://www.kaggle.com/arpandas65/covid19-country-level-timeseries
    Explore at:
    zip(60020 bytes)Available download formats
    Dataset updated
    Mar 29, 2020
    Authors
    Arpan Das
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Context

    Amidst the COVID-19 outbreak, the world is facing great crisis in every way. The value and things we built as a human race are going through tremendous challenges. It is a very small effort to bring curated data set on Novel Corona Virus to accelerate the forecasting and analytical experiments to cope up with this critical situation. It will help to visualize the country level out break and to keep track on regularly added new incidents.

    COVID-19 Country Level Timeseries Dataset

    This Dataset contains country wise public domain time series information on COVID-19 outbreak. The Data is sorted alphabetically on Country name and Date of Observation.

    Column Descriptions

    The data set contains the following columns:
    ObservationDate: The date on which the incidents are observed country: Country of the Outbreak Confirmed: Number of confirmed cases till observation date Deaths: Number of death cases till observation date Recovered: Number of recovered cases till observation date New Confirmed: Number of new confirmed cases on observation date New Deaths: Number of New death cases on observation date New Recovered: Number of New recovered cases on observation date latitude: Latitude of the affected country longitude: Longitude of the affected country

    Acknowledgements

    This data set is a cleaner version of the https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset data set with added geo location information and regularly added incident counts. I would like to thank this great effort by SRK.

    Original Data Source

    Johns Hopkins University MoBS lab - https://www.mobs-lab.org/2019ncov.html World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus

  12. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  13. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

  14. d

    COVID-19 Test Results by Date of Specimen Collection (By County) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Test Results by Date of Specimen Collection (By County) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-test-results-by-date-of-specimen-collection-by-county
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 test results by date of specimen collection, including total, positive, negative, and indeterminate for molecular and antigen tests. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests. Test results may be reported several days after the result. Data are incomplete for the most recent days. Data from previous dates are routinely updated. Records with a null date field summarize tests reported that were missing the date of collection. Starting in July 2020, this dataset will be updated every weekday.

  15. Trends in COVID-19 Cases and Deaths in the United States, by County-level...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Trends in COVID-19 Cases and Deaths in the United States, by County-level Population Factors - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/trends-in-covid-19-cases-and-deaths-in-the-united-states-by-county-level-population-factors-arc
    Explore at:
    csv, json, xsl, rdfAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration and set up alerts to monitor for discrepancies in the data.
    • CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • County level data were aggregated to obtain state- and territory- specific totals.
    • Counting of cases and deaths is based on date of report and not on the date of symptom onset. CDC calculates rates in these data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data are organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts are calculated as the week-to-week change in cumulative counts of cases and deaths reported (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the prior week.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.

    Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).

    Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.

    Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dict

  16. Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Cases and Deaths by County - ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-cases-and-deaths-by-county-archived
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: The cumulative case count for some counties (with small population) is higher than expected due to the inclusion of non-permanent residents in COVID-19 case counts.

    Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported through a robust process with the following steps:

    • Aggregate county-level counts were obtained indirectly, via automated overnight web collection, or directly, via a data submission process.
    • If more than one official county data source existed, CDC used a comprehensive data selection process comparing each official county data source to retrieve the highest case and death counts, unless otherwise specified by the state.
    • A CDC data team reviewed counts for congruency prior to integration. CDC routinely compiled these data and post the finalized information on COVID Data Tracker.
    • Cases and deaths are based on date of report and not on the date of symptom onset. CDC calculates rates in this data by using population estimates provided by the US Census Bureau Population Estimates Program (2019 Vintage).
    • COVID-19 aggregate case and death data were organized in a time series that includes cumulative number of cases and deaths as reported by a jurisdiction on a given date. New case and death counts were calculated as the week-to-week change in reported cumulative cases and deaths (i.e., newly reported cases and deaths = cumulative number of cases/deaths reported this week minus the cumulative total reported the week before.

    This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues. CDC also worked with jurisdictions after the end of the public health emergency declaration to finalize county data.

    • Source: The weekly archived dataset is based on county-level aggregate count data
    • Confirmed/Probable Cases/Death breakdown: Cumulative cases and deaths for each county are included. Total reported cases include probable and confirmed cases.
    • Time Series Frequency: The weekly archived dataset contains weekly time series data (i.e., one record per week per county)

    Important note: The counts reflected during a given time period in this dataset may not match the counts reflected for the same time period in the daily archived dataset noted above. Discrepancies may exist due to differences between county and state COVID-19 case surveillance and reconciliation efforts.

    The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implement these case classifications. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.

    Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, counts of confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report

  17. Consumers keeping updated with the coronavirus U.S. 2020, by age group

    • statista.com
    Updated Mar 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Consumers keeping updated with the coronavirus U.S. 2020, by age group [Dataset]. https://www.statista.com/statistics/1105443/coronavirus-news-consumption-by-age-us/
    Explore at:
    Dataset updated
    Mar 10, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 10, 2020 - Mar 11, 2020
    Area covered
    United States
    Description

    A survey held in March 2020 revealed that ** percent of participating U.S. adults were closely following news about the coronavirus, whereas just ***** percent said that they were not keeping up with news about the COVID-19 outbreak at all. Adults aged 65 or above were more likely to be following the news regularly, whereas more respondents who were 18 to 29 years old age admitted that they were not keeping up with coronavirus news at all than adults in any other age group.

  18. Coronavirus-Update Podcast Transcripts

    • kaggle.com
    zip
    Updated Dec 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julius Hibbert (2020). Coronavirus-Update Podcast Transcripts [Dataset]. https://www.kaggle.com/juliushibbert/coronavirusupdate-podcast-transcripts
    Explore at:
    zip(1215516 bytes)Available download formats
    Dataset updated
    Dec 11, 2020
    Authors
    Julius Hibbert
    Description

    Coronavirus-Update

    "Coronavirus-Update" is a famous and awarded german Podcast by the public radio and television broadcaster Norddeutscher Rundfunk (NDR) about the Coronavirus Pandemic. It is hosted by Korinna Hennig and Anja Martini, regular Guests are the scientists Christian Drosten and Sandra Ciesek.

    Transcripts

    The data contains the transcripts of the podcast extracted from the published PDF-files in XML. Hyphenation, columns and line-feeds are removed. If you need the spoken text text just ignore the tags for page numbers seite and subheadings header.

    ToDo

    • rename tags
    • check hyphenation at page breaks
  19. O

    COVID-19 DPH Reports Library - Archive

    • data.ct.gov
    • catalog.data.gov
    • +1more
    csv, xlsx, xml
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2023). COVID-19 DPH Reports Library - Archive [Dataset]. https://data.ct.gov/w/bqve-e8um/wqz6-rhce?cur=FAbMvg-xnpO
    Explore at:
    xml, xlsx, csvAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    A library of reports produced by the Department of Public Health on COVID-19 data in Connecticut, starting on March 21, 2020. Reports are published to https://portal.ct.gov/Coronavirus/COVID-19-Data-Tracker and to https://portal.ct.gov/Coronavirus/Nursing-Homes-and-Assisted-Living-Facilities

    Note: As of June 1, 2023 regular reporting on COVID-19 ended and will transition to align with the seasonal respiratory surveillance reporting program in October 2023. More details on the changes in reporting and end of the public health emergency can be found https://portal.ct.gov/Office-of-the-Governor/News/Press-Releases/2023/05-2023/Governor-Lamont-Coronavirus-Update-May-11">here. National data on COVID-19, including state and county-level data for Connecticut can also be found directly via the CDC COVID Data Tracker.

  20. n

    COVID-19 Open Research Dataset

    • neuinfo.org
    • scicrunch.org
    • +2more
    Updated Aug 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). COVID-19 Open Research Dataset [Dataset]. http://identifiers.org/RRID:SCR_018336
    Explore at:
    Dataset updated
    Aug 11, 2024
    Description

    Collection of scholarly articles about COVID-19 and coronavirus family of viruses for use by global research community. Dataset is updated on weekly basis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html

Coronavirus (Covid-19) Data in the United States

Explore at:
Dataset provided by
New York Times
Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu