In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBLT01026) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
In the first quarter of 2024, 51.8 percent of the total wealth in the United States was owned by members of the baby boomer generation. In comparison, millennials own around 9.4 percent of total wealth in the U.S. In terms of population distribution, there is almost an equal share of millennials and baby boomers in the United States.
https://www.icpsr.umich.edu/web/ICPSR/studies/1176/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1176/terms
This research describes the demographic attributes of both rich and poor households, and also the composition of their holdings. The data are drawn from surveys of household wealth conducted for the Federal Reserve Board in 1983, 1989, and 1992, years that approximate the turning points of the 1982-1991 business cycle.
https://www.icpsr.umich.edu/web/ICPSR/studies/1145/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/1145/terms
The data collection describes changes in the distribution of wealth among United States households that occurred between 1983 and 1989 and analyzes the role of several demographic and economic factors in contributing to the changes.
In the third quarter of 2024, 51.6 percent of the total wealth in the United States was owned by members of the baby boomer generation. In comparison, millennials owned around ten percent of total wealth in the U.S. In terms of population distribution, there is almost an equal share of millennials and baby boomers in the United States.
This map shows households within high ($200,000 or more) and low (less than $25,000) annual income ranges. This is shown as a percentage of total households. The data is attached to tract, county, and state centroids and shows:Percent of households making less than $25,000 annuallyPercent of households making $200,000 or more annuallyThe data shown is household income in the past 12 months. These are the American Community Survey (ACS) most current 5-year estimates: Table B19001. The data layer is updated annually, so this map always shows the most current values from the U.S. Census Bureau. To find the layer used in this map and see the full metadata, visit this Living Atlas item.These categories were constructed using an Arcade expression, which groups the lowest census income categories and normalizes them by total households.
The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.
We quantitatively identify the factors that drive wealth dynamics in the United States and are consistent with its skewed cross-sectional distribution and with social mobility. We concentrate on three critical factors: (i) skewed earnings, (ii) differential saving rates across wealth levels, and (iii) stochastic idiosyncratic returns to wealth. All of these are fundamental for matching both distribution and mobility. The stochastic process for returns which best fits the cross-sectional distribution of wealth and social mobility in the United States shares several statistical properties with those of the returns to wealth uncovered by Fagereng et al. (2017) from tax records in Norway.
In 2023, roughly 1.49 billion adults worldwide had a net worth of less than 10,000 U.S. dollars. By comparison, 58 million adults had a net worth of more than one million U.S. dollars in the same year. Wealth distribution The distribution of wealth is an indicator of economic inequality. The United Nations says that wealth includes the sum of natural, human, and physical assets. Wealth is not synonymous with income, however, because having a large income can be depleted if one has significant expenses. In 2023, nearly 1,700 billionaires had a total wealth between one to two billion U.S. dollars. Wealth worldwide China had the highest number of billionaires in 2023, with the United States following behind. That same year, New York had the most billionaires worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wealth inequality has been sharply rising in the United States and across many other high-income countries. Due to a lack of data, we know little about how this trend has unfolded across locations within countries. Investigating this subnational geography of wealth is crucial, as from one generation to the next, wealth powerfully shapes opportunity and disadvantage across individuals and communities. Using machine-learning-based imputation to link newly assembled national historical surveys conducted by the U.S. Federal Reserve to population survey microdata, the data presented in this paper addresses this gap. The Geographic Wealth Inequality Database ("GEOWEALTH-US") provides the first estimates of the level and distribution of wealth at various geographical scales within the United States from 1960 to 2020. The GEOWEALTH-US database enables new lines investigation into the contribution of inter-regional wealth patterns to major societal challenges including wealth concentration, spatial income inequality, equality of opportunity, housing unaffordability, and political polarization.
In 2023, the Middle East and North Africa, and Latin America were the regions with the lowest level of distribution of wealth worldwide, with the richest ten percent holding around ** percent of the total wealth. On the other hand, in Europe, the richest ten percent held around ** percent of the wealth. East and South Asia were the regions where the poorest half of the population held the highest share of the wealth, but still only around **** percent, underlining the high levels of wealth inequalities worldwide.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Share of Net Worth Held by the Bottom 50% (1st to 50th Wealth Percentiles) (WFRBSB50215) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
DOI: 10.1111/isqu.12203
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains data on income inequality. The primary measure is the Gini index – a measure of the extent to which the distribution of income among families/households within a community deviates from a perfectly equal distribution. The index ranges from 0.0, when all families (households) have equal shares of income (implies perfect equality), to 1.0 when one family (household) has all the income and the rest have none (implies perfect inequality). Index data is provided for California and its counties, regions, and large cities/towns. The data is from the U.S. Census Bureau, American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Income is linked to acquiring resources for healthy living. Both household income and the distribution of income across a society independently contribute to the overall health status of a community. On average Western industrialized nations with large disparities in income distribution tend to have poorer health status than similarly advanced nations with a more equitable distribution of income. Approximately 119,200 (5%) of the 2.4 million U.S. deaths in 2000 are attributable to income inequality. The pathways by which income inequality act to increase adverse health outcomes are not known with certainty, but policies that provide for a strong safety net of health and social services have been identified as potential buffers. More information about the data table and a data dictionary can be found in the About/Attachments section.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Share of Net Worth Held by the 50th to 90th Wealth Percentiles (WFRBSN40188) from Q3 1989 to Q1 2025 about net worth, wealth, percentile, Net, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Minimum Wealth Cutoff for the Top 0.1% (99.9th to 100th Wealth Percentiles) (WFRBLTP1311) from Q3 1989 to Q3 2022 about wealth, percentile, and USA.
The World Top Incomes Database provides statistical information on the shares of top income groups for 30 countries. The construction of this database was possible thanks to the research of over thirty contributing authors. There has been a marked revival of interest in the study of the distribution of top incomes using tax data. Beginning with the research by Thomas Piketty of the long-run distribution of top incomes in France, a succession of studies has constructed top income share time series over the long-run for more than twenty countries to date. These projects have generated a large volume of data, which are intended as a research resource for further analysis. In using data from income tax records, these studies use similar sources and methods as the pioneering work by Kuznets for the United States.The findings of recent research are of added interest, since the new data provide estimates covering nearly all of the twentieth century -a length of time series unusual in economics. In contrast to existing international databases, generally restricted to the post-1970 or post-1980 period, the top income data cover a much longer period, which is important because structural changes in income and wealth distributions often span several decades. The data series is fairly homogenous across countries, annual, long-run, and broken down by income source for several cases. Users should be aware also about their limitations. Firstly, the series measure only top income shares and hence are silent on how inequality evolves elsewhere in the distribution. Secondly, the series are largely concerned with gross incomes before tax. Thirdly, the definition of income and the unit of observation (the individual vs. the family) vary across countries making comparability of levels across countries more difficult. Even within a country, there are breaks in comparability that arise because of changes in tax legislation affecting the definition of income, although most studies try to correct for such changes to create homogenous series. Finally and perhaps most important, the series might be biased because of tax avoidance and tax evasion. The first theme of the research programme is the assembly and analysis of historical evidence from fiscal records on the long-run development of economic inequality. “Long run” is a relative term, and here it means evidence dating back before the Second World War, and extending where possible back into the nineteenth century. The time span is determined by the sources used, which are based on taxes on incomes, earnings, wealth and estates. Perspective on current concerns is provided by the past, but also by comparison with other countries. The second theme of the research programme is that of cross-country comparisons. The research is not limited to OECD countries and will draw on evidence globally. In order to understand the drivers of inequality, it is necessary to consider the sources of economic advantage. The third theme is the analysis of the sources of income, considering separately the roles of earned incomes and property income, and examining the historical and comparative evolution of earned and property income, and their joint distribution. The fourth theme is the long-run trend in the distribution of wealth and its transmission through inheritance. Here again there are rich fiscal data on the passing of estates at death. The top income share series are constructed, in most of the cases presented in this database, using tax statistics (China is an exception; for the time being the estimates come from households surveys). The use of tax data is often regarded by economists with considerable disbelief. These doubts are well justified for at least two reasons. The first is that tax data are collected as part of an administrative process, which is not tailored to the scientists' needs, so that the definition of income, income unit, etc., are not necessarily those that we would have chosen. This causes particular difficulties for comparisons across countries, but also for time-series analysis where there have been substantial changes in the tax system, such as the moves to and from the joint taxation of couples. Secondly, it is obvious that those paying tax have a financial incentive to present their affairs in a way that reduces tax liabilities. There is tax avoidance and tax evasion. The rich, in particular, have a strong incentive to understate their taxable incomes. Those with wealth take steps to ensure that the return comes in the form of asset appreciation, typically taxed at lower rates or not at all. Those with high salaries seek to ensure that part of their remuneration comes in forms, such as fringe benefits or stock-options which receive favorable tax treatment. Both groups may make use of tax havens that allow income to be moved beyond the reach of the national tax net. These shortcomings limit what can be said from tax data, but this does not mean that the data are worthless. Like all economic data, they measure with error the 'true' variable in which we are interested. References Atkinson, Anthony B. and Thomas Piketty (2007). Top Incomes over the Twentieth Century: A Contrast between Continental European and English-Speaking Countries (Volume 1). Oxford: Oxford University Press, 585 pp. Atkinson, Anthony B. and Thomas Piketty (2010). Top Incomes over the Twentieth Century: A Global Perspective (Volume 2). Oxford: Oxford University Press, 776 pp. Atkinson, Anthony B., Thomas Piketty and Emmanuel Saez (2011). Top Incomes in the Long Run of History, Journal of Economic Literature, 49(1), pp. 3-71. Kuznets, Simon (1953). Shares of Upper Income Groups in Income and Savings. New York: National Bureau of Economic Research, 707 pp. Piketty, Thomas (2001). Les Hauts Revenus en France au 20ème siècle. Paris: Grasset, 807 pp. Piketty, Thomas (2003). Income Inequality in France, 1901-1998, Journal of Political Economy, 111(5), pp. 1004-42.
About 50.4 percent of the household income of private households in the U.S. were earned by the highest quintile in 2023, which are the upper 20 percent of the workers. In contrast to that, in the same year, only 3.5 percent of the household income was earned by the lowest quintile. This relation between the quintiles is indicative of the level of income inequality in the United States. Income inequalityIncome inequality is a big topic for public discussion in the United States. About 65 percent of U.S. Americans think that the gap between the rich and the poor has gotten larger in the past ten years. This impression is backed up by U.S. census data showing that the Gini-coefficient for income distribution in the United States has been increasing constantly over the past decades for individuals and households. The Gini coefficient for individual earnings of full-time, year round workers has increased between 1990 and 2020 from 0.36 to 0.42, for example. This indicates an increase in concentration of income. In general, the Gini coefficient is calculated by looking at average income rates. A score of zero would reflect perfect income equality and a score of one indicates a society where one person would have all the money and all other people have nothing. Income distribution is also affected by region. The state of New York had the widest gap between rich and poor people in the United States, with a Gini coefficient of 0.51, as of 2019. In global comparison, South Africa led the ranking of the 20 countries with the biggest inequality in income distribution in 2018. South Africa had a score of 63 points, based on the Gini coefficient. On the other hand, the Gini coefficient stood at 16.6 in Azerbaijan, indicating that income is widely spread among the population and not concentrated on a few rich individuals or families. Slovenia led the ranking of the 20 countries with the greatest income distribution equality in 2018.
Between 2010 and 2023, Brazil's data on the degree of inequality in wealth distribution based on the Gini coefficient reached 52. That year, Brazil was deemed one of the most unequal country in Latin America. Prior to 2010, wealth distribution in Brazil had shown signs of improvement, with the Gini coefficient decreasing in the previous 3 reporting periods. The Gini coefficient measures the deviation of the distribution of income (or consumption) among individuals or households in a given country from a perfectly equal distribution. A value of 0 represents absolute equality, whereas 100 would be the highest possible degree of inequality.
In the first quarter of 2024, almost two-thirds percent of the total wealth in the United States was owned by the top 10 percent of earners. In comparison, the lowest 50 percent of earners only owned 2.5 percent of the total wealth. Income inequality in the U.S. Despite the idea that the United States is a country where hard work and pulling yourself up by your bootstraps will inevitably lead to success, this is often not the case. In 2023, 7.4 percent of U.S. households had an annual income under 15,000 U.S. dollars. With such a small percentage of people in the United States owning such a vast majority of the country’s wealth, the gap between the rich and poor in America remains stark. The top one percent The United States follows closely behind China as the country with the most billionaires in the world. Elon Musk alone held around 219 billion U.S. dollars in 2022. Over the past 50 years, the CEO-to-worker compensation ratio has exploded, causing the gap between rich and poor to grow, with some economists theorizing that this gap is the largest it has been since right before the Great Depression.