100+ datasets found
  1. Countries with lowest death rates 2022

    • statista.com
    Updated Aug 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Countries with lowest death rates 2022 [Dataset]. https://www.statista.com/statistics/562759/ranking-of-20-countries-with-lowest-death-rates/
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    World
    Description

    In 2022, with just one death per one thousand people, Qatar was the country with the lowest death rate worldwide. This statistic shows a ranking of the 20 countries with the lowest death rates worldwide, as of 2022. Health in high-income countries Countries with the highest life expectancies are also often high-income countries with well-developed economic, social and health care systems, providing adequate resources and access to treatment for health concerns. Health care expenditure as a share of GDP varies per country; for example, spending in the United States is higher than in other OECD countries due to higher costs and prices for care services and products. In developed countries, the main burden of disease is often due to non-communicable diseases occurring in old age such as cardiovascular diseases and cancer. High burden in low-income countries The countries with the lowest life expectancy worldwide are all in Africa- including Chad, Lesotho, and Nigeria- with life expectancies reaching up to 20 years shorter than the average global life expectancy. Leading causes of death in low-income countries include respiratory infections and diarrheal diseases, as these countries are often hit with the double burden of infectious diseases plus non-communicable diseases, such as those related to cardiovascular pathologies. Additionally, these countries often lack the resources and infrastructure to sustain effective healthcare systems and fail to provide appropriate access and treatment for their populations.

  2. Median age of the world population 2023, by country

    • statista.com
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Median age of the world population 2023, by country [Dataset]. https://www.statista.com/statistics/1227208/median-age-of-the-world-population/
    Explore at:
    Dataset updated
    Mar 20, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    According to 2023 estimations, Monaco's population had the highest median age of 56.2 years worldwide. Furthermore, the lowest listed countries are all from the African continent, with Niger recording a median age of nearly 15 years old.

  3. G

    Coal reserves by country, around the world | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2018). Coal reserves by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/coal_reserves/
    Explore at:
    xml, csv, excelAvailable download formats
    Dataset updated
    Nov 12, 2018
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2008 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2022 based on 190 countries was 6752.79 million short tons. The highest value was in the USA: 273243.91 million short tons and the lowest value was in Angola: 0 million short tons. The indicator is available from 2008 to 2023. Below is a chart for all countries where data are available.

  4. Countries with the lowest average weekly working hours worldwide 2022

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Countries with the lowest average weekly working hours worldwide 2022 [Dataset]. https://www.statista.com/statistics/1338919/countries-lowest-working-hours-worldwide/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Kiribati in the Pacific was the country with the lowest average weekly working hours per employee in 2022, with the most recent value showing that the population of Kiribati worked on average less than 28 hours per week. Second came Vanuatu at nearly 29 hours per week, with Micronesia following in third. On the other hand, Gambia had the highest average weekly working hours worldwide.

  5. Most miserable countries in the world 2022

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most miserable countries in the world 2022 [Dataset]. https://www.statista.com/statistics/227162/most-miserable-countries-in-the-world/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    World
    Description

    In 2022, Zimbabwe was ranked as the most miserable country in the world with a misery index score of 414.7. Venezuela ranked second with an index score of 330.8.

    Quality of life around the world The misery index was created by the economist Arthur Okun in the 1960s. The index is calculated by adding the unemployment rate, the lending rate and the inflation rate minus percent change of GDP per capita.

    Another famous tool used for the comparison of development of countries around the world is the Human Development Index, which takes into account such factors as life expectancy at birth, literacy rate, education level and gross national income (GNI) per capita.

    Better economic conditions correlate with higher quality of life

    Economic conditions affect the life expectancy, which is much higher in the wealthiest regions. With a life expectancy of 85 years, Japan led the ranking of countries with the highest life expectancy in 2020. On the other hand, Lesotho was the country with the lowest life expectancy, where men were expected to live 50 years as of 2022.

    The Global Liveability Index ranks the quality of life in cities around the world, basing on political, social, economic and environmental aspects, such as personal safety and health, education and transport services and other public services. In 2022, Vienna was ranked as the city with the highest quality of life worldwide.

  6. Global Share of Urban Population Using at Least Basic Drinking Water...

    • reportlinker.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Global Share of Urban Population Using at Least Basic Drinking Water Services by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/612984f7f728463d9a450341e92e9336d897b9d1
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Global Share of Urban Population Using at Least Basic Drinking Water Services by Country, 2023 Discover more data with ReportLinker!

  7. M

    World Immigration Statistics 1960-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Immigration Statistics 1960-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/immigration-statistics
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Mar 26, 2025
    Area covered
    World
    Description

    International migrant stock is the number of people born in a country other than that in which they live. It also includes refugees. The data used to estimate the international migrant stock at a particular time are obtained mainly from population censuses. The estimates are derived from the data on foreign-born population--people who have residence in one country but were born in another country. When data on the foreign-born population are not available, data on foreign population--that is, people who are citizens of a country other than the country in which they reside--are used as estimates. After the breakup of the Soviet Union in 1991 people living in one of the newly independent countries who were born in another were classified as international migrants. Estimates of migrant stock in the newly independent states from 1990 on are based on the 1989 census of the Soviet Union. For countries with information on the international migrant stock for at least two points in time, interpolation or extrapolation was used to estimate the international migrant stock on July 1 of the reference years. For countries with only one observation, estimates for the reference years were derived using rates of change in the migrant stock in the years preceding or following the single observation available. A model was used to estimate migrants for countries that had no data.

  8. a

    COVID-19 Trends in Each Country-Copy

    • census-unfpapdp.hub.arcgis.com
    • open-data-pittsylvania.hub.arcgis.com
    • +2more
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://census-unfpapdp.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    North Pacific Ocean, Pacific Ocean
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  9. C

    Chile CL: Income Share Held by Lowest 10%

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chile CL: Income Share Held by Lowest 10% [Dataset]. https://www.ceicdata.com/en/chile/social-poverty-and-inequality/cl-income-share-held-by-lowest-10
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1996 - Dec 1, 2022
    Area covered
    Chile
    Description

    Chile CL: Income Share Held by Lowest 10% data was reported at 2.300 % in 2022. This records an increase from the previous number of 1.700 % for 2020. Chile CL: Income Share Held by Lowest 10% data is updated yearly, averaging 1.550 % from Dec 1987 (Median) to 2022, with 16 observations. The data reached an all-time high of 2.300 % in 2022 and a record low of 1.200 % in 1994. Chile CL: Income Share Held by Lowest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chile – Table CL.World Bank.WDI: Social: Poverty and Inequality. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.;World Bank, Poverty and Inequality Platform. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are mostly from the Luxembourg Income Study database. For more information and methodology, please see http://pip.worldbank.org.;;The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than 2000 household surveys across 169 countries. See the Poverty and Inequality Platform (PIP) for details (www.pip.worldbank.org).

  10. G

    Geothermal electricity capacity by country, around the world |...

    • theglobaleconomy.com
    csv, excel, xml
    Updated Nov 10, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2018). Geothermal electricity capacity by country, around the world | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/geothermal_electricity_capacity/
    Explore at:
    csv, xml, excelAvailable download formats
    Dataset updated
    Nov 10, 2018
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1980 - Dec 31, 2022
    Area covered
    World
    Description

    The average for 2022 based on 190 countries was 0.08 million kilowatts. The highest value was in the USA: 2.65 million kilowatts and the lowest value was in Afghanistan: 0 million kilowatts. The indicator is available from 1980 to 2022. Below is a chart for all countries where data are available.

  11. o

    Geonames - All Cities with a population > 1000

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, geojson +1
    Updated Mar 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Geonames - All Cities with a population > 1000 [Dataset]. https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-population-1000/
    Explore at:
    csv, json, geojson, excelAvailable download formats
    Dataset updated
    Mar 10, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name

  12. S

    Switzerland CH: Income Share Held by Lowest 10%

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Switzerland CH: Income Share Held by Lowest 10% [Dataset]. https://www.ceicdata.com/en/switzerland/poverty/ch-income-share-held-by-lowest-10
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2014
    Area covered
    Switzerland
    Description

    Switzerland Income Share Held by Lowest 10% data was reported at 3.200 % in 2015. This stayed constant from the previous number of 3.200 % for 2014. Switzerland Income Share Held by Lowest 10% data is updated yearly, averaging 3.150 % from Dec 2006 (Median) to 2015, with 10 observations. The data reached an all-time high of 3.300 % in 2013 and a record low of 2.900 % in 2007. Switzerland Income Share Held by Lowest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Switzerland – Table CH.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  13. Lowest divorce rate worldwide 2020, by country

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lowest divorce rate worldwide 2020, by country [Dataset]. https://www.statista.com/statistics/1226451/lowest-divorce-rate-worldwide-by-country/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of 2020, Sri Lanka had the lowest divorce rate in the world, with only 0.15 divorces per 1,000 population. Vietnam and Guatemala followed with 0.2 divorces per 1,000 inhabitants. On the other hand, West Bank & the Gaza Strip had the highest marriage rate in the world that year.

  14. G

    GDP share of agriculture in | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated May 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2021). GDP share of agriculture in | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/share_of_agriculture/Tilman/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    May 5, 2021
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    World
    Description

    The average for 2023 based on 166 countries was 9.91 percent. The highest value was in Niger: 47.81 percent and the lowest value was in Singapore: 0.03 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  15. Global Export of Low Expansion Laboratory, Hygienic, Pharmacy Glassware by...

    • reportlinker.com
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Global Export of Low Expansion Laboratory, Hygienic, Pharmacy Glassware by Country, 2023 [Dataset]. https://www.reportlinker.com/dataset/773895dcbdf1b79a22e30cf16a46e569de5e1693
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Global Export of Low Expansion Laboratory, Hygienic, Pharmacy Glassware by Country, 2023 Discover more data with ReportLinker!

  16. L

    Lebanon Imports: Other South American Countries: UK Virgin Island

    • ceicdata.com
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Lebanon Imports: Other South American Countries: UK Virgin Island [Dataset]. https://www.ceicdata.com/en/lebanon/imports-by-country-annual/imports-other-south-american-countries-uk-virgin-island
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Lebanon
    Variables measured
    Merchandise Trade
    Description

    Lebanon Imports: Other South American Countries: UK Virgin Island data was reported at 0.168 USD th in 2016. This records an increase from the previous number of 0.009 USD th for 2015. Lebanon Imports: Other South American Countries: UK Virgin Island data is updated yearly, averaging 0.000 USD th from Dec 1996 (Median) to 2016, with 21 observations. The data reached an all-time high of 55.000 USD th in 2002 and a record low of 0.000 USD th in 2012. Lebanon Imports: Other South American Countries: UK Virgin Island data remains active status in CEIC and is reported by Lebanese Customs. The data is categorized under Global Database’s Lebanon – Table LB.JA017: Imports: by Country: Annual.

  17. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  18. G

    Silver production in South America | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2025). Silver production in South America | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/silver_production/South-America/
    Explore at:
    xml, excel, csvAvailable download formats
    Dataset updated
    Feb 4, 2025
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 2002 - Dec 31, 2021
    Area covered
    South America, Americas, World
    Description

    The average for 2021 based on 7 countries was 959 metric tons. The highest value was in Peru: 3310 metric tons and the lowest value was in Ecuador: 2 metric tons. The indicator is available from 2002 to 2021. Below is a chart for all countries where data are available.

  19. 20 least fragile states worldwide 2024

    • statista.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). 20 least fragile states worldwide 2024 [Dataset]. https://www.statista.com/statistics/752087/20-least-fragile-countries-worldwide/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    In 2024, Norway was considered the world's least fragile state with an index score of 12.7 on a scale from zero to 120, where a higher score suggests the state is more fragile. Finland was ranked as the second most stable country globally, followed by Iceland. Meanwhile, Somalia was ranked as the most fragile state. The Fragile States Index assigns each country a score based on a range of social, economic, and political indicators.

  20. L

    Lebanon Imports: Other South American Countries: Uruguay

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Lebanon Imports: Other South American Countries: Uruguay [Dataset]. https://www.ceicdata.com/en/lebanon/imports-by-country-annual/imports-other-south-american-countries-uruguay
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Lebanon
    Variables measured
    Merchandise Trade
    Description

    Lebanon Imports: Other South American Countries: Uruguay data was reported at 7,930.222 USD th in 2017. This records an increase from the previous number of 5,886.559 USD th for 2016. Lebanon Imports: Other South American Countries: Uruguay data is updated yearly, averaging 1,382.349 USD th from Dec 1996 (Median) to 2017, with 22 observations. The data reached an all-time high of 58,088.000 USD th in 2009 and a record low of 52.000 USD th in 2001. Lebanon Imports: Other South American Countries: Uruguay data remains active status in CEIC and is reported by Lebanese Customs. The data is categorized under Global Database’s Lebanon – Table LB.JA017: Imports: by Country: Annual.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Countries with lowest death rates 2022 [Dataset]. https://www.statista.com/statistics/562759/ranking-of-20-countries-with-lowest-death-rates/
Organization logo

Countries with lowest death rates 2022

Explore at:
Dataset updated
Aug 21, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2022
Area covered
World
Description

In 2022, with just one death per one thousand people, Qatar was the country with the lowest death rate worldwide. This statistic shows a ranking of the 20 countries with the lowest death rates worldwide, as of 2022. Health in high-income countries Countries with the highest life expectancies are also often high-income countries with well-developed economic, social and health care systems, providing adequate resources and access to treatment for health concerns. Health care expenditure as a share of GDP varies per country; for example, spending in the United States is higher than in other OECD countries due to higher costs and prices for care services and products. In developed countries, the main burden of disease is often due to non-communicable diseases occurring in old age such as cardiovascular diseases and cancer. High burden in low-income countries The countries with the lowest life expectancy worldwide are all in Africa- including Chad, Lesotho, and Nigeria- with life expectancies reaching up to 20 years shorter than the average global life expectancy. Leading causes of death in low-income countries include respiratory infections and diarrheal diseases, as these countries are often hit with the double burden of infectious diseases plus non-communicable diseases, such as those related to cardiovascular pathologies. Additionally, these countries often lack the resources and infrastructure to sustain effective healthcare systems and fail to provide appropriate access and treatment for their populations.

Search
Clear search
Close search
Google apps
Main menu