56 datasets found
  1. a

    Mapping the spread of COVID-19

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • covid-19-naperville.hub.arcgis.com
    Updated Jan 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2020). Mapping the spread of COVID-19 [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/Story::mapping-the-spread-of-covid-19
    Explore at:
    Dataset updated
    Jan 31, 2020
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    This story was originally published in February 2020. While the maps in the story are automatically updated with latest available statistics, the text may include information that is no longer current. For the latest guidelines on coronavirus prevention and mitigation, please visit the CDC's or WHO's information pages.Since December 2019, the novel coronavirus pandemic has touched nearly every country on the planet, and upended the lives of hundreds of millions of people, according to official and unofficial statistics compiled by researchers at Johns Hopkins University.The novel coronavirus belongs to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). COVID-19, as the disease is known, produces mild symptoms in most people, but can also lead to severe respiratory illness.

  2. Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    bin, png
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3719184
    Explore at:
    bin, pngAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation to infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation is poorly correlated.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

  3. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. Data from: Suitability Map of COVID-19 Virus Spread

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, png
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gianpaolo Coro; Gianpaolo Coro (2024). Suitability Map of COVID-19 Virus Spread [Dataset]. http://doi.org/10.5281/zenodo.3903917
    Explore at:
    png, bin, csvAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gianpaolo Coro; Gianpaolo Coro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is associated with the publication "G.Coro, (2020), A global-scale ecological niche model to predict SARS-CoV-2 coronavirus infection rate, Ecological Modelling, Volume 431, 109187, https://doi.org/10.1016/j.ecolmodel.2020.109187"

    This image reports a Maximum Entropy model that estimates suitable locations for COVID-19 spread, i.e. places that could favour the spread of the virus just in terms of environmental parameters.

    The model was trained just on locations in Italy that have reported a rate of new infections higher than the geometric mean of all Italian infection rates. The following environmental parameters were used, which are correlated to those used by other studies:

    • Average Annual Surface Air Temperature in 2018 (NASA)
    • Average Annual Precipitation in 2018 (NASA)
    • CO2 emission (natural+artificial) averaged between January 1979 and December 2013 (Copernicus Atmosphere Monitoring Service)
    • Elevation (NOAA ETOPO2)
    • Population per 0.5° cell (NASA Gridded Population of the World)

    A higher resolution map, the model file (in ASC format) and all parameters used are also attached.

    The model indicates highest correlation with infection rate for CO2 around 0.03 gCm^−2day^−1, for Temperature around 11.8 °C, and for Precipitation around 0.3 kg m^-2 s^-1, whereas Elevation and Population density are poorly correlated with infection rate.

    One interesting result is that the model indicates, among others, the Hubei region in China as a high-probability location, and Iran (around Teheran) as a suited location for virus' spread, but the model was not trained on these regions, i.e. it did not know about the actual spread in these regions.

    Evaluation:

    A risk score was calculated for each country/region reported by the JHU monitoring system (https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6). This score is calculated as the summed normalised probability in the populated locations divided by their total surface. This score represents how much the zone would potentially foster the virus' spread.

    We assessed the reliability of this score, by selecting the country/regions that reported the highest rates of infection. These zones were selected as those with a rate higher than the upper confidence of a log-normal distribution of the rates.

    The agreement between the two maps (covid_high_rate_vs_high_risk.png, where violet dots indicate high infection rates and countries' colours indicate estimated high risk score) is the following:

    Accuracy (overall percentage of correctly predicted high-rate zones): 77.25%
    Kappa (agreement between the two maps): 0.46 (Good, according to Fleiss' intepretation of the score)

    This assessment demonstrates that our map can be used to estimate the risk of a certain country to have a high rate of infection, and indicates that the influence of environmental parameters on virus's spread should be further investigated.

  5. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  6. f

    Data from: COVID-19: Chest Drains With Air Leak – The Silent ‘Super...

    • figshare.com
    • ctsnet.figshare.com
    jpeg
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rajdeep Bilkhu; Alessandro Viviano; Igor Saftic; Andrea Billè (2020). COVID-19: Chest Drains With Air Leak – The Silent ‘Super Spreader’? [Dataset]. http://doi.org/10.25373/ctsnet.12089130.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    CTSNet, Inc
    Authors
    Rajdeep Bilkhu; Alessandro Viviano; Igor Saftic; Andrea Billè
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    To date, one million confirmed cases of SARS-CoV-2 virus have been reported worldwide with a death toll of over 50,000 (1). Particular concern has been raised regarding the exposure of healthcare professionals. Early reports from the Wuhan province in China described up to 29% infection rates among healthcare professionals before the use of personal Protection equipment (PPE) was fully established (2). Several measures are being established with regard the correct use of PPE and reduction in aerosol generating procedures. However to the authors’ knowledge, no specific guidance is available regarding the potential risk of aerosolization of SARS-Cov-2 virus via chest drains in patients with active air leak.Viral Spread and Air LeakThe SARS-CoV-2 virus, which leads to COVID-19, has been demonstrated to remain viable in aerosol form and is transmitted by droplets (3). Despite the current coronavirus pandemic, we are still faced with patients requiring chest tube drainage for pneumothorax on cardiothoracic and respiratory wards, as well as in critical care units. Whilst drains may be inserted with lower risk of viral spread for simple pleural effusions, the authors fear there may be a high risk of aerosolization in cases of pneumothorax with active air leak, whether that be primary, secondary, or indeed iatrogenic in mechanically ventilated patients requiring high PEEP ventilation such as in patients with COVID-19.Citing a recent example of a postoperative thoracic surgical patient in the authors’ unit who had a prolonged air leak and who later was found to be positive for SARS-CoV-2, they have considered the implications of aerosolization from the chest drain and in particular the chest drain bottle. This may represent an under-recognised means of viral spread, which may put patients and health care professionals at risk of infection.Chest Drains and Risk of AerosolizationTraditional under water seal chest drain bottles have a port which allows attachment to low pressure wall suction. Most modern drain systems also have a safety valve which opens to air should the suction be accidentally turned off in the presence of an air leak, to avoid creating a closed system effect which could lead to a tension pneumothorax. If the drain bottle is not attached to suction, then the port is open to the atmosphere.When air leaks into a chest drain bottle, it causes the fluid inside to bubble. Given the aerosolization that is likely to occur inside the drain bottle, which then escapes through the suction port or safety valve, this may be a potentially important mode of viral transmission. Alternatives to a traditional chest drain bottle include a number of different digital chest drainage systems. Whilst these do not have a port open to room air, they are not closed systems and the air escapes from the system into the air without any specific viral filter.A number of patients on the authors’ unit’s thoracic ward have since tested positive for COVID-19. Whilst the patient with the air leak may not have been the source of infection, they feel this should be considered. In their patient, a digital chest drainage system was being used.In light of this, and until further robust evidence regarding the volume of aerosolization from a chest drain bottle emerges, the authors would recommend the use of closed drainage systems, i.e. connecting the standard drain bottle to wall suction to avoid the spread of viral load via aerosolization. However, in order to obtain this, the safety valve will have to be occluded with potential risk of increasing intrathoracic pressure and cause tension, should the suction system be switched off whilst still connected to the bottle. Furthermore, keeping the bottle attached to wall suction will significantly limit the mobilization of patients, which is a significant risk factor for postoperative complications in the surgical patient.A Bespoke Chest Drain SystemIn order to overcome this, a possible consideration would be to attach an antimicrobial filter, such as those used in ventilator circuits, to the chest drain suction port leaving the drain off suction and occluding the safety valve. Connecting the filter directly to the chest drain should be discouraged, as fluid and moisture directly from the chest cavity are likely to interfere with the functioning of the filter.Therefore, the authors designed a bespoke drainage system using the Filta-Guard™ ventilator filter from Intersurgical Ltd© 2020 and a segment of endotracheal tube to use in their unit (Figures 1 and 2). The filter guarantees a filtration efficiency of >99.999% as tested on Hepatitis C and Mycobacterium tuberculosis in addition to standard test micro-organisms (4). The SARS-Cov-2 diameter varies from 60 to 140 nm, and therefore is larger than hepatitis C virus, which has an average diameter of about 55 nm. The authors postulated that given the larger size compared to Hep C virus, this filter should be effective in preventing flow of SARS-Cov-2 across the filter, however to their knowledge, this has not been clinically tested. Regarding the possible resistance to the system added by the filter and related risk of building up pressure in the chest cavity, they believe this should be marginal. Published data suggest the above filter would generate a resistance against the passage of 30L/min of 1.0cm H2O and 2.3cm H2O at 60L/min (4).ConclusionsThe efficacy of this chest drain modification clearly needs to be further investigated, however, given the current pandemic, any method of reducing viral spread should be considered.Acknowledgements: The authors would like to acknowledge Mr Panagiotis Theodoropoulos and Mr Duncan Steele, Specialist Registrars in Thoracic Surgery at Hammersmith Hospital, London.ReferencesJohns Hopkins University & Medicine. COVID-19 Map. https://coronavirus.jhu.edu/map.html. Published 2020. Accessed April 2, 2020.Chen W, Huang Y. To protect healthcare workers better, to save more lives. Anesth Analg. 2020:1-15. doi:10.1213/ANE.0000000000004834van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med. 2020. doi:10.1056/NEJMc2004973Systems ICR. Filta-GuardTM range - high efficiency. https://www.intersurgical.com/products/airway-management/filtaguard-range-high-efficiency#1944000. Published 2020. Accessed April 2, 2020.

  7. e

    COVID-19 Trends in Each Country

    • coronavirus-resources.esri.com
    • coronavirus-response-israel-systematics.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-resources.esri.com/datasets/UrbanObservatory::covid-19-trends-in-each-country
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset authored and provided by
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  8. g

    Map data on the COVID-19 outbreak

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map data on the COVID-19 outbreak [Dataset]. https://gimi9.com/dataset/eu_5e73a422be9d2612583d07b8
    Explore at:
    Description

    The official information on the spread of the epidemic in France was initially rather fragmented. Various initiatives have attempted to structure it in the form of free data. Despite this work, however, the data were often difficult to exploit in the raw state within cartographic tools. The purpose of this repository is to consolidate the information and make it available in open and easily reusable formats to produce maps. The preferred pivot format is GeoJson. The data are proposed according to several granularities: regions and departments. The data at the department’s grid was initially fragmented, however under the impetus of free initiatives such as OpenCovid19, more precise data on the epidemic was made available by Santé publique France. For more details or the latest version of the data, see https://github.com/kalisio/covid-19. For more information about KALISIO visit our website.

  9. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Sep 11, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  10. USAFacts US Coronavirus Database

    • kaggle.com
    zip
    Updated May 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). USAFacts US Coronavirus Database [Dataset]. https://www.kaggle.com/bigquery/covid19-usafacts
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 31, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Googlehttp://google.com/
    Authors
    Google BigQuery
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Context

    To aid researchers, data scientists, and analysts in the effort to combat COVID-19, Google is making a hosted repository of public datasets including OpenStreetMap data, free to access. To facilitate the Kaggle community to access the BigQuery dataset, it is onboarded to Kaggle platform which allows querying it without a linked GCP account. Please note that due to the large size of the dataset, Kaggle applies a quota of 5 TB of data scanned per user per 30-days.

    Description

    This data from USAFacts provides US COVID-19 case and death counts by state and county. This data is sourced from the CDC, and state and local health agencies.

    For more information, see the USAFacts site on the Coronavirus. Interactive data visualizations are also available via USAFacts.

  11. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  12. COVID-19 outbreak and spread in Italy (2020-04-05)

    • data.europa.eu
    esri shape
    Updated Apr 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2020). COVID-19 outbreak and spread in Italy (2020-04-05) [Dataset]. https://data.europa.eu/data/datasets/56c468e3-6148-47a1-b454-1d61407cf4a6
    Explore at:
    esri shapeAvailable download formats
    Dataset updated
    Apr 5, 2020
    Dataset authored and provided by
    Joint Research Centrehttps://joint-research-centre.ec.europa.eu/index_en
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Area covered
    Italy
    Description


    Activation time (UTC): 2020-04-05 22:46:00
    Event time (UTC): 2020-04-06 08:00:00
    Event type: Epidemic (Viral disease)

    Activation reason:
    Italy is currently facing a serious situation related to the Covid-19. The Head of the Civil Protection Department has been nominated as national emergency Coordinator and the entire National System has been activated to face the Emergency. From the first day of March, the entire Italian territory has been put on lock-down and further initiatives are being implemented to limit the spread of the disease. The Civil Protection needs to map all the temporary health facilities (such as triage facilities, field hospitals and so on) as well the gathering places in order to have a clear understanding of the current situation of the territory for the subsequent monitoring of activities and public spaces during the emergency.

    Reference products: 8
    Delineation products: 7
    Grading products: 0

    Copernicus Emergency Management Service - Mapping is a service funded by European Commission aimed at providing actors in the management of natural and man-made disasters, in particular Civil Protection Authorities and Humanitarian Aid actors, with mapping products based on satellite imagery.

  13. Comprehensive COVID-19 State Data

    • kaggle.com
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cameron Gould (2021). Comprehensive COVID-19 State Data [Dataset]. https://www.kaggle.com/datasets/camerongould/comprehensive-covid19-state-data/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 24, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Cameron Gould
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    After observing many naive conversations about COVID-19, claiming that the pandemic can be blamed on just a few factors, I decided to create a data set, to map a number of different data points to every U.S. state (including D.C. and Puerto Rico).

    Content

    This data set contains basic COVID-19 information about each state, such as total population, total COVID-19 cases, cases per capita, COVID-19 deaths and death rate, Mask mandate start, and end dates, mask mandate duration (in days), and vaccination rates.

    However, when evaluating a pandemic (specifically a respiratory virus) it would be wise to also explore the population density of each state, which is also included. For those interested, I also included political party affiliation for each state ("D" for Democrat, "R" for Republican, and "I" for Puerto Rico). Vaccination rates are split into 1-dose and 2-dose rates.

    Also included is data ranking the Well-Being Index and Social Determinantes of Health Index for each state (2019). There are also several other columns that "rank" states, such as ranking total cases per state (ascending), total cases per capita per state (ascending), population density rank (ascending), and 2-dose vaccine rate rank (ascending). There are also columns that compare deviation between columns: case count rank vs population density rank (negative numbers indicate that a state has more COVID-19 cases, despite being lower in population density, while positive numbers indicate the opposite), as well as per-capita case count vs density.

    Acknowledgements

    Several Statista Sources: * COVID-19 Cases in the US * Population Density of US States * COVID-19 Cases in the US per-capita * COVID-19 Vaccination Rates by State

    Other sources I'd like to acknowledge: * Ballotpedia * DC Policy Center * Sharecare Well-Being Index * USA Facts * World Population Overview

    Inspiration

    I would like to see if any new insights could be made about this pandemic, where states failed, or if these case numbers are 100% expected for each state.

  14. f

    COVID-19 Deaths and cases by state

    • figshare.com
    xlsx
    Updated Feb 28, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Cohen; Yana van der Meulen Rodgers (2021). COVID-19 Deaths and cases by state [Dataset]. http://doi.org/10.6084/m9.figshare.12751850.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 28, 2021
    Dataset provided by
    figshare
    Authors
    Jennifer Cohen; Yana van der Meulen Rodgers
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID-19 confirmed cases and deaths by state as of July 28, 2020 from https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html and https://usafacts.org/visualizations/coronavirus-covid-19-spread-map The state numbers listed by the CDC are aggregated from the USAFact county data.The CDC reports healthcare personnel cases and infections (120,467 and 587 as of August 1, 2020; accessed August 2, 2020) but does not disaggregate the numbers by state.Healthcare worker deaths by state as of July 28, 2020 pulled from https://www.medscape.com/viewarticle/927976#vp_1

  15. a

    COVID-19 Trends in Each Country-Copy

    • open-data-pittsylvania.hub.arcgis.com
    • hub.arcgis.com
    Updated Jun 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United Nations Population Fund (2020). COVID-19 Trends in Each Country-Copy [Dataset]. https://open-data-pittsylvania.hub.arcgis.com/maps/1c4a4134d2de4e8cb3b4e4814ba6cb81
    Explore at:
    Dataset updated
    Jun 4, 2020
    Dataset authored and provided by
    United Nations Population Fund
    Area covered
    Description

    COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an

  16. Coronavirus: World connectivity can save lives (Esri Newsroom)

    • coronavirus-resources.esri.com
    • coronavirus-disasterresponse.hub.arcgis.com
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Coronavirus: World connectivity can save lives (Esri Newsroom) [Dataset]. https://coronavirus-resources.esri.com/documents/e9a45c03c4d34003b71b80c6e180c110
    Explore at:
    Dataset updated
    Mar 17, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Area covered
    World
    Description

    Coronavirus: World connectivity can save lives (Esri Newsroom). As pandemic fears escalated in late January, Johns Hopkins University published its now-famous coronavirus dashboard—a map-based tool developed to track and fight the spread of the disease now called COVID-19. Developed by Lauren Gardner and her team from the University’s Center for Systems Science and Engineering, the dashboard went viral almost instantly with hundreds of news articles and shares on social media and hundreds of millions of page views._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  17. H

    Data from: The COVID Border Accountability Project (COBAP): Mapping Travel...

    • dataverse.harvard.edu
    • datasetcatalog.nlm.nih.gov
    • +1more
    Updated Dec 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mary A. Shiraef; Cora Hirst; Mark A. Weiss; Sarah Naseer; Nikolas Lazar; Elizabeth Beling; Erin Straight; Lukas Feddern; Noah Taylor; Cayleigh Jackson; William Yu; Aadya Bhaskaran; Layth Mattar; Matthew Amme; Maggie Shum; Mary Louise Mitsdarffer; Johanna Sweere; Susanna E. Brantley; Luis L. Schenoni; Colin Lewis-Beck; Jonathan Falcone; Sonila Hasaj; Amalia Gradie; Rachel E. Musetti; Thuy Nguyen; Yashwini Selvaraj; Bryn Walker (2021). The COVID Border Accountability Project (COBAP): Mapping Travel and Immigration Policy Responses to COVID-19 [Dataset]. http://doi.org/10.7910/DVN/U6DJAC
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 21, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Mary A. Shiraef; Cora Hirst; Mark A. Weiss; Sarah Naseer; Nikolas Lazar; Elizabeth Beling; Erin Straight; Lukas Feddern; Noah Taylor; Cayleigh Jackson; William Yu; Aadya Bhaskaran; Layth Mattar; Matthew Amme; Maggie Shum; Mary Louise Mitsdarffer; Johanna Sweere; Susanna E. Brantley; Luis L. Schenoni; Colin Lewis-Beck; Jonathan Falcone; Sonila Hasaj; Amalia Gradie; Rachel E. Musetti; Thuy Nguyen; Yashwini Selvaraj; Bryn Walker
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Description

    The unprecedented travel bans introduced in response to the COVID-19 pandemic is a pertinent phenomenon of interest to scholars across the globe. Quantifying the timing and content of policy changes affecting travel and immigration is key to future research on the spread of SARS-CoV-2 and the socioeconomic impacts of these policies. The COVID Border Accountability Project (COBAP) provides a systematized dataset of >1000 policies, reflecting a timeline of new country-level restrictions on movement across international borders during the 2020 year. Using a 20-question survey, trained research assistants (RAs) sourced and documented for each new border policy: start and end dates, whether the closure constitutes a "complete closure" or "partial closure", which exceptions are made, which countries are banned, and which borders are closed, among other variables. In addition, the full text of each policy was included in the database. We maintain and update the data monthly. For public use, we visualize the data in an interactive map tool visualization: covidborderaccountability.org. For ongoing and future pandemic research, the dataset will be useful to policymakers, social and biomedical scientists, and public health experts alike.

  18. f

    Data_Sheet_4_Risk and Protective Factors in the COVID-19 Pandemic: A Rapid...

    • frontiersin.figshare.com
    docx
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian E. Howard; Arpit Tandon; Christopher Norman; Jason Phillips; Mihir Shah; Shyam Patel; Tyler Albert; Debra J. Taxman; Ruchir R. Shah (2023). Data_Sheet_4_Risk and Protective Factors in the COVID-19 Pandemic: A Rapid Evidence Map.docx [Dataset]. http://doi.org/10.3389/fpubh.2020.582205.s004
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Rebecca Elmore; Lena Schmidt; Juleen Lam; Brian E. Howard; Arpit Tandon; Christopher Norman; Jason Phillips; Mihir Shah; Shyam Patel; Tyler Albert; Debra J. Taxman; Ruchir R. Shah
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Background: Given the worldwide spread of the 2019 Novel Coronavirus (COVID-19), there is an urgent need to identify risk and protective factors and expose areas of insufficient understanding. Emerging tools, such as the Rapid Evidence Map (rEM), are being developed to systematically characterize large collections of scientific literature. We sought to generate an rEM of risk and protective factors to comprehensively inform areas that impact COVID-19 outcomes for different sub-populations in order to better protect the public.Methods: We developed a protocol that includes a study goal, study questions, a PECO statement, and a process for screening literature by combining semi-automated machine learning with the expertise of our review team. We applied this protocol to reports within the COVID-19 Open Research Dataset (CORD-19) that were published in early 2020. SWIFT-Active Screener was used to prioritize records according to pre-defined inclusion criteria. Relevant studies were categorized by risk and protective status; susceptibility category (Behavioral, Physiological, Demographic, and Environmental); and affected sub-populations. Using tagged studies, we created an rEM for COVID-19 susceptibility that reveals: (1) current lines of evidence; (2) knowledge gaps; and (3) areas that may benefit from systematic review.Results: We imported 4,330 titles and abstracts from CORD-19. After screening 3,521 of these to achieve 99% estimated recall, 217 relevant studies were identified. Most included studies concerned the impact of underlying comorbidities (Physiological); age and gender (Demographic); and social factors (Environmental) on COVID-19 outcomes. Among the relevant studies, older males with comorbidities were commonly reported to have the poorest outcomes. We noted a paucity of COVID-19 studies among children and susceptible sub-groups, including pregnant women, racial minorities, refugees/migrants, and healthcare workers, with few studies examining protective factors.Conclusion: Using rEM analysis, we synthesized the recent body of evidence related to COVID-19 risk and protective factors. The results provide a comprehensive tool for rapidly elucidating COVID-19 susceptibility patterns and identifying resource-rich/resource-poor areas of research that may benefit from future investigation as the pandemic evolves.

  19. USACE COVID-19 Two Week Trends (Public Version)

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). USACE COVID-19 Two Week Trends (Public Version) [Dataset]. https://data.amerigeoss.org/hu/dataset/usace-covid-19-two-week-trends-public-version
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jul 21, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    Refreshed daily at about noon Central Time. 14 day trend analysis using historical data per county from the USAFacts.org COVID-19 database. Two trend types are available in the attributes. One shows the number of improvements within the two week period in the style of CDC metrics, the other shows improvements based on the linear regression of daily new case numbers.


    USAFacts data:

    Improvement Days:
    7-12 Days of Improvement- 7-12 days were reported with fewer new counts than the previous day.
    8-13 Days of Improvement- 8 -13 days were reported with fewer new counts than the previous day.
    14 Days of Improvement- 14 days were reported with fewer new counts than the previous day.
    No Improvement- Greater than 1% trend slope or does not match other categories.
    1-5 New Cases in Last 2 Weeks - 5 cases or fewer were reported in the period.
    No New Cases- No cases were reported during the period

    Regression Trends:
    Strong Upward- Slope >3%
    Moderate Upward - Slope is between 1% and 3%
    Weak Upward- Slope is between 0% and 1%
    Flat- Slope is 0%
    Weak Downward- Slope is between 0% and -1%
    Moderate Downward- Slope is between -1% and -3%
    Strong Downward- Slope < 3%

    Slope:
    Slope is calculated by identifying the change in reported cases per day and plugging into a least-squares linear regression formula to solve for slope of the line y=mx +b.

    Growth Rate:
    Is the rate at which the reported number of cases has increased in the past 14 days.

  20. COVID-19 Community Mobility Reports

    • google.com
    • google.com.tr
    • +5more
    csv, pdf
    Updated Oct 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2022). COVID-19 Community Mobility Reports [Dataset]. https://www.google.com/covid19/mobility/
    Explore at:
    csv, pdfAvailable download formats
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Google Searchhttp://google.com/
    Googlehttp://google.com/
    Authors
    Google
    Description

    As global communities responded to COVID-19, we heard from public health officials that the same type of aggregated, anonymized insights we use in products such as Google Maps would be helpful as they made critical decisions to combat COVID-19. These Community Mobility Reports aimed to provide insights into what changed in response to policies aimed at combating COVID-19. The reports charted movement trends over time by geography, across different categories of places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and residential.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ArcGIS StoryMaps (2020). Mapping the spread of COVID-19 [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/Story::mapping-the-spread-of-covid-19

Mapping the spread of COVID-19

Explore at:
91 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jan 31, 2020
Dataset authored and provided by
ArcGIS StoryMaps
Description

This story was originally published in February 2020. While the maps in the story are automatically updated with latest available statistics, the text may include information that is no longer current. For the latest guidelines on coronavirus prevention and mitigation, please visit the CDC's or WHO's information pages.Since December 2019, the novel coronavirus pandemic has touched nearly every country on the planet, and upended the lives of hundreds of millions of people, according to official and unofficial statistics compiled by researchers at Johns Hopkins University.The novel coronavirus belongs to the same family of viruses that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). COVID-19, as the disease is known, produces mild symptoms in most people, but can also lead to severe respiratory illness.

Search
Clear search
Close search
Google apps
Main menu