95 datasets found
  1. u

    Population and Family Health Survey 2012 - Jordan

    • microdata.unhcr.org
    • catalog.ihsn.org
    • +3more
    Updated May 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405
    Explore at:
    Dataset updated
    May 19, 2021
    Dataset authored and provided by
    Department of Statistics (DoS)
    Time period covered
    2012
    Area covered
    Jordan
    Description

    Abstract

    The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Women age 15-49

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

    The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

    Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

    Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

    The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

    In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

    The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

    Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

    Cleaning operations

    Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

    Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

    Response rate

    In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

    In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

  2. Data: study populations - location, wing length, monitoring method, tide

    • figshare.com
    txt
    Updated Feb 3, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Bulla (2016). Data: study populations - location, wing length, monitoring method, tide [Dataset]. http://doi.org/10.6084/m9.figshare.1536260.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 3, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Martin Bulla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    --------------------------------------------------------------------------------------------------------# Description of the dataset "study-populations_location_wing-length_monitoring-method_tide.csv"#--------------------------------------------------------------------------------------------------------# The dataset contains estimates of mean female wing length for breeding and wintering populations of biparental shorebirds described from .....# Questions can be directed to: Martin Bulla (bulla.mar@gmail.com)# Values are separated by semi-colon.# Missing values are NA. 1. scinam : scientific name of the species 2. species : four letter abbreviatio of the species's English name 3. study_site : name of the study site 4. site_abbreviation : four letter abbreviation of the study site 5. type : was the study site at the breeding ground (breeding) or not (wintering) 6. lat : latitude of the study site (decimal) 7. lon : longitude of the study site (decimal) 8. tidal_habitat : is the study site at primarily tidal habitat (y=yes, n=no) 9. tidal_used : if the study site is primarily tidal habitat, do the birds use it for foraging (y=yes, n=no) 10. sexing_method : identifies the sexing method of the individuals used for the mean estimate 11. mean_female_wing : mean female wing length for the population 12. f_wing_N : sample size used for the mean estimate 13. mean_male_wing : mean male wing length for the population 14. m_wing_N : sample size used for the mean estimate 15. data_source : is the mean estimate based on the primary data ("our primary data") or literature (citation)#--------------------------------------------------------------------------------------------------------#WHEN USING THIS DATA, PLEASE CITE:#Bulla et al (2016). Data: study populations - location, wing length, monitoring method, tide. figshare. http://dx.doi.org/10.6084/m9.figshare.1536260. Retrieved ADD DATETIME.#--------------------------------------------------------------------------------------------------------

  3. Census of Population and Housing, 2010 [United States]: Summary File 2 With...

    • icpsr.umich.edu
    • search.datacite.org
    Updated Jul 18, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2013). Census of Population and Housing, 2010 [United States]: Summary File 2 With National Update [Dataset]. http://doi.org/10.3886/ICPSR34755.v1
    Explore at:
    Dataset updated
    Jul 18, 2013
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34755/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34755/terms

    Time period covered
    2010
    Area covered
    United States
    Description

    This data collection contains summary statistics on population and housing subjects derived from the responses to the 2010 Census questionnaire. Population items include sex, age, average household size, household type, and relationship to householder such as nonrelative or child. Housing items include tenure (whether a housing unit is owner-occupied or renter-occupied), age of householder, and household size for occupied housing units. Selected aggregates and medians also are provided. The summary statistics are presented in 71 tables, which are tabulated for multiple levels of observation (called "summary levels" in the Census Bureau's nomenclature), including, but not limited to, regions, divisions, states, metropolitan/micropolitan areas, counties, county subdivisions, places, ZIP Code Tabulation Areas (ZCTAs), school districts, census tracts, American Indian and Alaska Native areas, tribal subdivisions, and Hawaiian home lands. There are 10 population tables shown down to the county level and 47 population tables and 14 housing tables shown down to the census tract level. Every table cell is represented by a separate variable in the data. Each table is iterated for up to 330 population groups, which are called "characteristic iterations" in the Census Bureau's nomenclature: the total population, 74 race categories, 114 American Indian and Alaska Native categories, 47 Asian categories, 43 Native Hawaiian and Other Pacific Islander categories, and 51 Hispanic/not Hispanic groups. Moreover, the tables for some large summary areas (e.g., regions, divisions, and states) are iterated for portions of geographic areas ("geographic components" in the Census Bureau's nomenclature) such as metropolitan/micropolitan statistical areas and the principal cities of metropolitan statistical areas. The collection has a separate set of files for every state, the District of Columbia, Puerto Rico, and the National File. Each file set has 11 data files per characteristic iteration, a data file with geographic variables called the "geographic header file," and a documentation file called the "packing list" with information about the files in the file set. Altogether, the 53 file sets have 110,416 data files and 53 packing list files. Each file set is compressed in a separate ZIP archive (Datasets 1-56, 72, and 99). Another ZIP archive (Dataset 100) contains a Microsoft Access database shell and additional documentation files besides the codebook. The National File (Dataset 99) constitutes the National Update for Summary File 2. The National Update added summary levels for the United States as a whole, regions, divisions, and geographic areas that cross state lines such as Core Based Statistical Areas.

  4. s

    Census Microdata Samples Project

    • scicrunch.org
    • dknet.org
    • +1more
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Census Microdata Samples Project [Dataset]. http://identifiers.org/RRID:SCR_008902
    Explore at:
    Dataset updated
    Sep 12, 2024
    Description

    A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219

  5. Global Country Information 2023

    • zenodo.org
    • data.niaid.nih.gov
    csv
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana; Nidula Elgiriyewithana (2024). Global Country Information 2023 [Dataset]. http://doi.org/10.5281/zenodo.8165229
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nidula Elgiriyewithana; Nidula Elgiriyewithana
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.

    Key Features

    • Country: Name of the country.
    • Density (P/Km2): Population density measured in persons per square kilometer.
    • Abbreviation: Abbreviation or code representing the country.
    • Agricultural Land (%): Percentage of land area used for agricultural purposes.
    • Land Area (Km2): Total land area of the country in square kilometers.
    • Armed Forces Size: Size of the armed forces in the country.
    • Birth Rate: Number of births per 1,000 population per year.
    • Calling Code: International calling code for the country.
    • Capital/Major City: Name of the capital or major city.
    • CO2 Emissions: Carbon dioxide emissions in tons.
    • CPI: Consumer Price Index, a measure of inflation and purchasing power.
    • CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
    • Currency_Code: Currency code used in the country.
    • Fertility Rate: Average number of children born to a woman during her lifetime.
    • Forested Area (%): Percentage of land area covered by forests.
    • Gasoline_Price: Price of gasoline per liter in local currency.
    • GDP: Gross Domestic Product, the total value of goods and services produced in the country.
    • Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
    • Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
    • Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
    • Largest City: Name of the country's largest city.
    • Life Expectancy: Average number of years a newborn is expected to live.
    • Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
    • Minimum Wage: Minimum wage level in local currency.
    • Official Language: Official language(s) spoken in the country.
    • Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
    • Physicians per Thousand: Number of physicians per thousand people.
    • Population: Total population of the country.
    • Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
    • Tax Revenue (%): Tax revenue as a percentage of GDP.
    • Total Tax Rate: Overall tax burden as a percentage of commercial profits.
    • Unemployment Rate: Percentage of the labor force that is unemployed.
    • Urban Population: Percentage of the population living in urban areas.
    • Latitude: Latitude coordinate of the country's location.
    • Longitude: Longitude coordinate of the country's location.

    Potential Use Cases

    • Analyze population density and land area to study spatial distribution patterns.
    • Investigate the relationship between agricultural land and food security.
    • Examine carbon dioxide emissions and their impact on climate change.
    • Explore correlations between economic indicators such as GDP and various socio-economic factors.
    • Investigate educational enrollment rates and their implications for human capital development.
    • Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
    • Study labor market dynamics through indicators such as labor force participation and unemployment rates.
    • Investigate the role of taxation and its impact on economic development.
    • Explore urbanization trends and their social and environmental consequences.
  6. Population of the world 10,000BCE-2100

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population of the world 10,000BCE-2100 [Dataset]. https://www.statista.com/statistics/1006502/global-population-ten-thousand-bc-to-2050/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.

  7. N

    Science Hill, KY Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Science Hill, KY Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1feb7e5-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kentucky, Science Hill
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Science Hill by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Science Hill. The dataset can be utilized to understand the population distribution of Science Hill by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Science Hill. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Science Hill.

    Key observations

    Largest age group (population): Male # 20-24 years (41) | Female # 35-39 years (54). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Science Hill population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Science Hill is shown in the following column.
    • Population (Female): The female population in the Science Hill is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Science Hill for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Science Hill Population by Gender. You can refer the same here

  8. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  9. d

    ScienceBase Item Summary Page

    • datadiscoverystudio.org
    Updated Jan 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). ScienceBase Item Summary Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f7117fa50098409ba2b11259129da6b9/html
    Explore at:
    Dataset updated
    Jan 16, 2017
    Area covered
    Description

    Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information

  10. r

    The database TABVERK

    • researchdata.se
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umeå university (2025). The database TABVERK [Dataset]. https://researchdata.se/en/catalogue/dataset/ext0084-1
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset provided by
    Umeå University
    Authors
    Umeå university
    Time period covered
    1749 - 1859
    Description

    The database TABVERK contains population statistics in the Swedish parishes during the period 1749-1859. It constitutes the earliest population statistics throughout the world making it a unique source. Merely in Finland, a similar time serial of data exists. The database gathers all the information about the parishes’ populations that Swedish clergymens filled out in large forms of tables which were reported to the Tabellkommissionen in Stockholm. Now this information is accessible through the agency of the Demographic Data Base.

    The database contain information on births, deaths, marriage, and occupation. The population is describe by sex, age, civil status, and by occupation and social status every fifth year. Yearly statistics is given about the demographical events, fertility, mortality and nuptiality, as well as migrations in the 19th century. The statistics in Tabellverket (TABVERK) enable demographical studies from several angles on both local and regional level in Sweden during the pre-industrial society.

    TABVERK holds an online search tool called SHiPS (Swedish Historical Population Statistics), which can be reached and utilized from the home page of the Demographic Data Base.

    Purpose:

    The Demographic Database (DDB) is a special unit at Umeå University with activities focused on two main areas: data production and research. DDB creates and makes available population databases, mainly based on historical information in parish registers during the 18th, 19th, and 20th centuries.

  11. d

    Data from: Dealing with assumptions and sampling bias in the estimation of...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Mar 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karen Cox; Sabrina Neyrinck; Joachim Mergeay (2025). Dealing with assumptions and sampling bias in the estimation of effective population size: A case study in an amphibian population [Dataset]. http://doi.org/10.5061/dryad.j0zpc86ps
    Explore at:
    Dataset updated
    Mar 13, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Karen Cox; Sabrina Neyrinck; Joachim Mergeay
    Description

    Accurately estimating effective population size (Ne) is essential for understanding evolutionary processes and guiding conservation efforts. This study investigates Ne estimation methods in spatially structured populations using a population of moor frog (Rana arvalis) as a case study. We assessed the behaviour of Ne estimates derived from the linkage disequilibrium (LD) method as we changed the spatial configuration of samples. Moor frog eggs were sampled from 25 breeding patches (i.e., separate vernal ponds, ditches or parts of larger fens) within a single population, revealing an isolation-by-distance pattern and a local spatial genetic structure. Varying buffer sizes around each patch were used to examine the impact of sampling window size on the estimation of effective number of breeders (Nb). Our results indicate a downward bias in LD Nb estimates with increasing buffer size, suggesting an underestimation of Nb. The observed bias is attributed to LD resulting from including geneti..., The study site of c. 200 ha is part of the nature reserve and military domain ‘Klein Schietveld’ in Kapellen near Antwerp, Belgium (51.358 N, 4.495 E; Fig. S1). In March 2017, heathland pools, fens and temporary ponds were screened for the presence of egg clutches possibly belonging to moor frogs. In total, eggs were sampled in 26 locations where clusters of clutches were found. These locations consisted of separate vernal ponds, ditches or parts of larger fens; they are called ‘breeding patches’ from now on. In each breeding patch, up to 50 intact and distinguishable clutches were sampled and three eggs per clutch were taken. The eggs were stored in pond water in a refrigerator until DNA-extraction (maximally a few days after sampling). DNA-extraction was performed on two eggs per clutch. The jelly coats were first removed using a scalpel. DNA was extracted from the embryo’s using DNeasy Blood & Tissue Kit (Qiagen) with a lysis step of one hour and eluted in 70 μl AE buffer (elutio..., , # Data from: Dealing with assumptions and sampling bias in the estimation of effective population size: A case study in an amphibian population

    https://doi.org/10.5061/dryad.j0zpc86ps

    Description of the data and file structure

    genotypes_eggs_moor_frog.csv: the microsatellite genotypes of Rana arvalis eggs collected in Klein Schietveld, Belgium in March 2017. The multilocus genotypes for 13 microsatellite markers of 729 R. arvalis eggs collected from 366 clutches in 25 breeding patches. In the first five columns the following information is provided: the sample ID, the ID of the breeding patch, the egg clutch ID, followed by the coordinates of the breeding patch (Belgian Lambert 72 coordinate system). The next 13 columns represent the different microsatellite markers with the loci names mentioned in the column headers. Alleles are separated by a forward slash. Missing genotypes are indicated with “NA/NA†.

    Files and variables

    ...,

  12. U.S. population by generation 2024

    • statista.com
    • ai-chatbox.pro
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. population by generation 2024 [Dataset]. https://www.statista.com/statistics/797321/us-population-by-generation/
    Explore at:
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Millennials were the largest generation group in the United States in 2024, with an estimated population of ***** million. Born between 1981 and 1996, Millennials recently surpassed Baby Boomers as the biggest group, and they will continue to be a major part of the population for many years. The rise of Generation Alpha Generation Alpha is the most recent to have been named, and many group members will not be able to remember a time before smartphones and social media. As of 2024, the oldest Generation Alpha members were still only aging into adolescents. However, the group already makes up around ***** percent of the U.S. population, and they are said to be the most racially and ethnically diverse of all the generation groups. Boomers vs. Millennials The number of Baby Boomers, whose generation was defined by the boom in births following the Second World War, has fallen by around ***** million since 2010. However, they remain the second-largest generation group, and aging Boomers are contributing to steady increases in the median age of the population. Meanwhile, the Millennial generation continues to grow, and one reason for this is the increasing number of young immigrants arriving in the United States.

  13. o

    Data from: The geography of demography: long-term demographic studies and...

    • explore.openaire.eu
    • datadryad.org
    Updated Jul 12, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    V. M. Eckhart; M. A. Geber; W. F. Morris; E. S. Fabio; P. Tiffin; D. A. Moeller (2012). Data from: The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation [Dataset]. http://doi.org/10.5061/dryad.bm676
    Explore at:
    Dataset updated
    Jul 12, 2012
    Authors
    V. M. Eckhart; M. A. Geber; W. F. Morris; E. S. Fabio; P. Tiffin; D. A. Moeller
    Description

    WEATHER_daily_2005_2009WEATHER_daily_2005_2009 contains summarized daily data from automated weather stations, processed with Hobo ware software (Onset Computer Corp., Bourne, MA, USA). Columns are as follows. | site_abbr = abbreviated site weather_id = site index no. | demography_id = index number of the site if it resided at a population where demographic data were collected | easting_UTM_NAD27 - easting in meters UTM NAD 1927, zone 11 North | northing_UTM_NAD27 - northing in meters UTM NAD 1927, zone 11 North | elevation - meters above sea level | date_time | year | month | Precip_mm – daily cumulative precipitation in mm | Tmax_C - daily maximum temperature, in degrees centigrade | Tmin_C – daily minimum temperature, in degrees centigrade | Tmean_C - daily mean temperature, in degrees centigradeWEATHER_seasonal_meansWEATHER_seasonal_means_2005-2009 contains data collected by automated weather stations and processed by Hoboware (Onset Computer Corporation, Bourne, MA, USA), summarized by segment of the growing season and by year, in columns as follows. Variables not described have names that should be self-explanatory. | site_abbr - abbreviated site name | weather_id = station index no. | demography_site_id - index no. if station resided at population where demographic data were collected | easting - in meters, UTM NAD 1927, zone 11 North | northing - in meters, UTM NAD 1927, zone 11 North | elevation - metera above sea level | NovJan2005_2009_Tmax | NovJan2005_2009_Tmin | NovJan2005_2009_Tmean | FebJun2006_2009_Tmax | FebJun2006_2009_Tmin | FebJun2006_2009_Tmean | FebOct_2006_2009_ Tmax | FebOct_2006_2009_Tmin | FebOct_2006_2009_Tmean| Nov2005Jan2006_precip | FebJun2006_precip | JulOct2006_precip | JanOct2006 precip | Nov2006Jan2007_precip | FebJun2007_precip | JulOct2007_precip | JanOct2007_precip | Nov2007Jan2008_precip | FebJun2008_precip | JulOct2008_precip | JanOct2008_precip | Nov2008Jan2009_precipDEMOGRAPHY_41pops_2006_2009The file called "DEMOGRAPHY_41pops_2006_2009" contains the following variables, based on repeated field observations. | Site = population name | demography_site_id – an index number for each population | Easting – eastward position (longitude) in meters, UTM NAD 27 zone 11 North | Northing – northward position (latitude) in meters, UTM NAD 27 zone 11 North | area(ha) – population area in hectares, as estimated in 2006 | Year - year | No_plots – number of 0.5 m-squared quadrats sampled for demography data | No fruiting plants – mean no. of plants that reached fruiting stage within quadrats | No fruits – total number of fruiting plants (1-4 per quadrat) that underlie the following per-plant estimates | mean no fruits per plant – self-explanatory | stdev fr per plant – standard deviation of the above | mean no seeds per fruit = average number of seeds per fruit in a sample of single fruits (from median positions on stems) from each of 30 individuals per population | stdev sds per fr = standard deviation of the above variable | mean fruiting plants per m2 = average density of fruiting plants per meter-squared | stdevfrplm2 = standard deviation of the above | mean total fruits per m2 = average number of fruits (on any number of plants) per meter-squared | stdevfrm2 = standard deviation of the above | mean total seeds per m2 = average number of fruits (on any number of plants) per meter-squared | stdevsdm2 = standard deviation of the above | No fruiting plants per site = estimated total population size of fruiting individuals | stdev fr pl per site = standard deviation of the above | total no fruits per site = estimate of the total number of fruits in each population | stdev no fr per site = standard deviation of the above | Total no seeds per site = estimate of the total number of fruits in each population | stdev no sds per site – standard deviation of the aboveDEMOGRAPHY_vital_rate_estimates_20pops_2005_2009The file "DEMOGRAPHY_vital_rate_estimates_20pops_2005_2009" contains the following variables, estimated from field observations and experiments, in columns as follows. | Population - abbreviated site name | demography_site_id = index no.| SiteArea(ha) - population area in ha; : s1(R1), CL_lo, CL_up, s1(R2), CL_lo, CL_up, s1(R3), CL_lo, CL_up, s2(R1), CL_lo, CL_up, s2(R2), CL_lo, CL_up, s2(R3), CL_lo, CL_up, s3(R1), CL_lo, CL_up, s3(R2), CL_lo, CL_up, s4(R1), CL_lo, CL_up, s4(R2), CL_lo, CL_up, s5(R1), CL_lo, CL_up, s6(R1), CL_lo, CL_up, g1(R1), CL_lo, CL_up, g1(R2), CL_lo, CL_up, g1(R3), CL_lo, CL_up, g2(R1), CL_lo, CL_up, g2(R2), CL_lo, CL_up, g3(R1), CL_lo, CL_up, sigma(06), CL_lo, CL_up, sigma(07), CL_lo, CL_up, sigma(08), CL_lo, CL_up, sigma(09), CL_lo, CL_up, F(06), SE, F(07), SE, F(08), SE, F(09), SE, phi(06), SE, phi(07), SE, phi(08), SE, phi(09), SE, MeanSeedlings(06), SE, MeanSeedlings(07), SE, MeanSeedlings(08), SE, MeanSeedlings(09), SE, MeanFruiting(06), SE, MeanFruiting(07), SE, MeanFruiting(08), SE, MeanFruiting(09), SE, SdlngO/E(07), SdlngO/E(08), Lambda_SSPEC...

  14. World Health Survey 2003 - Belgium

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +2more
    Updated Oct 17, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Health Organization (WHO) (2013). World Health Survey 2003 - Belgium [Dataset]. https://microdata.worldbank.org/index.php/catalog/1694
    Explore at:
    Dataset updated
    Oct 17, 2013
    Dataset provided by
    World Health Organizationhttps://who.int/
    Authors
    World Health Organization (WHO)
    Time period covered
    2003
    Area covered
    Belgium
    Description

    Abstract

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers.

    The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters.

    The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules.

    The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

    Geographic coverage

    The survey sampling frame must cover 100% of the country's eligible population, meaning that the entire national territory must be included. This does not mean that every province or territory need be represented in the survey sample but, rather, that all must have a chance (known probability) of being included in the survey sample.

    There may be exceptional circumstances that preclude 100% national coverage. Certain areas in certain countries may be impossible to include due to reasons such as accessibility or conflict. All such exceptions must be discussed with WHO sampling experts. If any region must be excluded, it must constitute a coherent area, such as a particular province or region. For example if ¾ of region D in country X is not accessible due to war, the entire region D will be excluded from analysis.

    Analysis unit

    Households and individuals

    Universe

    The WHS will include all male and female adults (18 years of age and older) who are not out of the country during the survey period. It should be noted that this includes the population who may be institutionalized for health reasons at the time of the survey: all persons who would have fit the definition of household member at the time of their institutionalisation are included in the eligible population.

    If the randomly selected individual is institutionalized short-term (e.g. a 3-day stay at a hospital) the interviewer must return to the household when the individual will have come back to interview him/her. If the randomly selected individual is institutionalized long term (e.g. has been in a nursing home the last 8 years), the interviewer must travel to that institution to interview him/her.

    The target population includes any adult, male or female age 18 or over living in private households. Populations in group quarters, on military reservations, or in other non-household living arrangements will not be eligible for the study. People who are in an institution due to a health condition (such as a hospital, hospice, nursing home, home for the aged, etc.) at the time of the visit to the household are interviewed either in the institution or upon their return to their household if this is within a period of two weeks from the first visit to the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    SAMPLING GUIDELINES FOR WHS

    Surveys in the WHS program must employ a probability sampling design. This means that every single individual in the sampling frame has a known and non-zero chance of being selected into the survey sample. While a Single Stage Random Sample is ideal if feasible, it is recognized that most sites will carry out Multi-stage Cluster Sampling.

    The WHS sampling frame should cover 100% of the eligible population in the surveyed country. This means that every eligible person in the country has a chance of being included in the survey sample. It also means that particular ethnic groups or geographical areas may not be excluded from the sampling frame.

    The sample size of the WHS in each country is 5000 persons (exceptions considered on a by-country basis). An adequate number of persons must be drawn from the sampling frame to account for an estimated amount of non-response (refusal to participate, empty houses etc.). The highest estimate of potential non-response and empty households should be used to ensure that the desired sample size is reached at the end of the survey period. This is very important because if, at the end of data collection, the required sample size of 5000 has not been reached additional persons must be selected randomly into the survey sample from the sampling frame. This is both costly and technically complicated (if this situation is to occur, consult WHO sampling experts for assistance), and best avoided by proper planning before data collection begins.

    All steps of sampling, including justification for stratification, cluster sizes, probabilities of selection, weights at each stage of selection, and the computer program used for randomization must be communicated to WHO

    STRATIFICATION

    Stratification is the process by which the population is divided into subgroups. Sampling will then be conducted separately in each subgroup. Strata or subgroups are chosen because evidence is available that they are related to the outcome (e.g. health, responsiveness, mortality, coverage etc.). The strata chosen will vary by country and reflect local conditions. Some examples of factors that can be stratified on are geography (e.g. North, Central, South), level of urbanization (e.g. urban, rural), socio-economic zones, provinces (especially if health administration is primarily under the jurisdiction of provincial authorities), or presence of health facility in area. Strata to be used must be identified by each country and the reasons for selection explicitly justified.

    Stratification is strongly recommended at the first stage of sampling. Once the strata have been chosen and justified, all stages of selection will be conducted separately in each stratum. We recommend stratifying on 3-5 factors. It is optimum to have half as many strata (note the difference between stratifying variables, which may be such variables as gender, socio-economic status, province/region etc. and strata, which are the combination of variable categories, for example Male, High socio-economic status, Xingtao Province would be a stratum).

    Strata should be as homogenous as possible within and as heterogeneous as possible between. This means that strata should be formulated in such a way that individuals belonging to a stratum should be as similar to each other with respect to key variables as possible and as different as possible from individuals belonging to a different stratum. This maximises the efficiency of stratification in reducing sampling variance.

    MULTI-STAGE CLUSTER SELECTION

    A cluster is a naturally occurring unit or grouping within the population (e.g. enumeration areas, cities, universities, provinces, hospitals etc.); it is a unit for which the administrative level has clear, nonoverlapping boundaries. Cluster sampling is useful because it avoids having to compile exhaustive lists of every single person in the population. Clusters should be as heterogeneous as possible within and as homogenous as possible between (note that this is the opposite criterion as that for strata). Clusters should be as small as possible (i.e. large administrative units such as Provinces or States are not good clusters) but not so small as to be homogenous.

    In cluster sampling, a number of clusters are randomly selected from a list of clusters. Then, either all members of the chosen cluster or a random selection from among them are included in the sample. Multistage sampling is an extension of cluster sampling where a hierarchy of clusters are chosen going from larger to smaller.

    In order to carry out multi-stage sampling, one needs to know only the population sizes of the sampling units. For the smallest sampling unit above the elementary unit however, a complete list of all elementary units (households) is needed; in order to be able to randomly select among all households in the TSU, a list of all those households is required. This information may be available from the most recent population census. If the last census was >3 years ago or the information furnished by it was of poor quality or unreliable, the survey staff will have the task of enumerating all households in the smallest randomly selected sampling unit. It is very important to budget for this step if it is necessary and ensure that all households are properly enumerated in order that a representative sample is obtained.

    It is always best to have as many clusters in the PSU as possible. The reason for this is that the fewer the number of respondents in each PSU, the lower will be the clustering effect which

  15. Pittsburgh Youth Study Demographic Constructs, Pittsburgh, Pennsylvania,...

    • icpsr.umich.edu
    • catalog.data.gov
    Updated Sep 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loeber, Rolf; Stouthamer-Loeber, Magda; Farrington, David P.; Pardini, Dustin (2019). Pittsburgh Youth Study Demographic Constructs, Pittsburgh, Pennsylvania, 1987-2001 [Dataset]. http://doi.org/10.3886/ICPSR37350.v1
    Explore at:
    Dataset updated
    Sep 30, 2019
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Loeber, Rolf; Stouthamer-Loeber, Magda; Farrington, David P.; Pardini, Dustin
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/37350/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37350/terms

    Area covered
    Pittsburgh, United States, Pennsylvania
    Description

    The Pittsburgh Youth Study (PYS) is part of the larger "Program of Research on the Causes and Correlates of Delinquency" initiated by the Office of Juvenile Justice and Delinquency Prevention in 1986. PYS aims to document the development of antisocial and delinquent behavior from childhood to early adulthood, the risk factors that impinge on that development, and help seeking and service provision of boys' behavior problems. The study also focuses on boys' development of alcohol and drug use, and internalizing problems. PYS consists of three cohorts of boys who were in the first, fourth, and seventh grades in Pittsburgh, Pennsylvania public schools during the 1987-1988 academic year (called the youngest, middle, and oldest cohorts, respectively). Using a screening risk score that measured each boy's antisocial behavior, boys identified at the top 30 percent within each grade cohort on the screening risk measure (n=~250), as well as an equal number of boys randomly selected from the remainder (n=~250), were selected for follow-up. Consequently, the final sample for the study consisted of 1,517 total students selected for follow-up. 506 of these students were in the oldest sample, 508 were in the middle sample, and 503 were in the youngest sample. Assessments were conducted semiannually and then annually using multiple informants (i.e., boys, parents, and teachers) between 1987 and 2010. The youngest cohort was assessed from ages 6-19 and again at ages 25 and 28. The middle cohort was assessed from ages 9-13 and again at age 23. The oldest cohort was assessed from ages 13-25, with an additional assessment at age 35. Information has been collected on a broad range of risk and protective factors across multiple domains (e.g., individual, family, peer, school, and neighborhood). Measures of conduct problems, substance use/abuse, criminal behavior, mental health problems have been collected. This collection contains data and syntax files for demographic constructs. The datasets include constructs on repeated grade status, demographic information of participants, participants' biological mother, biological father, female caretaker, and male caretaker, change of caretaker since last phase, number of family members and other adults or children in the home, family structure, followup participation by youth, caretaker, and teacher, and housing characteristics. The demographic constructs were created by using the PYS raw data. The raw data are available at ICPSR in the following studies: Pittsburgh Youth Study Youngest Sample (1987 - 2001) [Pittsburgh, Pennsylvania], Pittsburgh Youth Study Middle Sample (1987 - 1991) [Pittsburgh, Pennsylvania], and Pittsburgh Youth Study Oldest Sample (1987 - 2000) [Pittsburgh, Pennsylvania].

  16. Countries with the smallest population 2024

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the smallest population 2024 [Dataset]. https://www.statista.com/statistics/1328242/countries-with-smallest-population/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    World
    Description

    The Vatican City, often called the Holy See, has the smallest population worldwide, with only *** inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populous country in the world, with over *** billion inhabitants.

  17. n

    AFRICA CITIES POPULATION DATABASE (ACPD)

    • cmr.earthdata.nasa.gov
    Updated Apr 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). AFRICA CITIES POPULATION DATABASE (ACPD) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C2232847815-CEOS_EXTRA/1
    Explore at:
    Dataset updated
    Apr 21, 2017
    Time period covered
    Oct 26, 1990
    Area covered
    Description

    The African Cities Population Database (ACPD) has been produced by the Birkbeck College of the University of London in 1990 at the request of the United Nations Environment Programme (UNEP) in Nairobi, Kenya. The database contains head counts for 479 cities in Africa which either have a population of over 20,000 or are capitals of their nation state. Listed are the geographical location of the cities and their population sizes. The material is primarily derived from a 1988 report of the Economic Commission for Africa (ECA) and several issues of the United Nations Demographic Yearbook (1973-81). Severe problems were found with several countries such as Togo, Ghana and South Africa. For South Africa, the data were derived from the United Nations Demographic Yearbook 1987.

    WCPD is an Arc/Info point coverage. It has no projection, as the cities are located on the basis of their latitude and longitude. Coordinates were assigned on the basis of gazetteers or African maps. Each record in the data base contains details of the city name, country name, latitude and longitude of the city, and its population at a defined time. The Arc/Info attribute table contains the following fields:

    AREA Arc/Info item PERIMETER Arc/Info item ACPD# Arc/Info item ACPD-ID Arc/Info item ID-NUM Unique number for each city CITY City name COUNTRY Country name CITY-POP Population of city proper YEAR Latest available year of collection

    ACPD comes as an Arc/Info EXPORT file originally called "ACPD.E00" and contains 67 Kb of data. The file has a record length of 80 and a block size of 8000 (blocking factor = 100). The file can be read from tape using Arc/Info's TAPEREAD command or any other generic copy utility. If distributed on a diskette it can be read using the ordinary DOS 'COPY' command. The file has to be converted to Arc/Info internal format using its IMPORT command.

    References to the WCPD data set can be found in:

    • SERLL News, Issue No. 1, January 1991, Birkbeck College, London, UK.
    • D. Rhind. "Cartographically-related research at Birkbeck College 1987-91" in: The Cartographic Journal, Vol. 28, June 1991, pp. 63-66.

    The source of the WCPD data set as held by GRID is Birkbeck College, University of London, Department of Geography, London, UK.

  18. World Population Statistics - 2023

    • kaggle.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavik Jikadara (2024). World Population Statistics - 2023 [Dataset]. https://www.kaggle.com/datasets/bhavikjikadara/world-population-statistics-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 9, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhavik Jikadara
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description
    • The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on Earth, which far exceeds the world population of 7.2 billion in 2015. Our estimate based on UN data shows the world's population surpassing 7.7 billion.
    • China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.
    • The following 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.
    • Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.
    • In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added yearly.
    • This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Content

    • In this Dataset, we have Historical Population data for every Country/Territory in the world by different parameters like Area Size of the Country/Territory, Name of the Continent, Name of the Capital, Density, Population Growth Rate, Ranking based on Population, World Population Percentage, etc. >Dataset Glossary (Column-Wise):
    • Rank: Rank by Population.
    • CCA3: 3 Digit Country/Territories Code.
    • Country/Territories: Name of the Country/Territories.
    • Capital: Name of the Capital.
    • Continent: Name of the Continent.
    • 2022 Population: Population of the Country/Territories in the year 2022.
    • 2020 Population: Population of the Country/Territories in the year 2020.
    • 2015 Population: Population of the Country/Territories in the year 2015.
    • 2010 Population: Population of the Country/Territories in the year 2010.
    • 2000 Population: Population of the Country/Territories in the year 2000.
    • 1990 Population: Population of the Country/Territories in the year 1990.
    • 1980 Population: Population of the Country/Territories in the year 1980.
    • 1970 Population: Population of the Country/Territories in the year 1970.
    • Area (km²): Area size of the Country/Territories in square kilometers.
    • Density (per km²): Population Density per square kilometer.
    • Growth Rate: Population Growth Rate by Country/Territories.
    • World Population Percentage: The population percentage by each Country/Territories.
  19. d

    k-mer-based diversity scales with population size proxies more than...

    • search.dataone.org
    • datadryad.org
    Updated Mar 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Miles Roberts; Emily Josephs (2025). k-mer-based diversity scales with population size proxies more than nucleotide diversity in a meta-analysis of 98 plant species [Dataset]. http://doi.org/10.5061/dryad.s1rn8pkk0
    Explore at:
    Dataset updated
    Mar 28, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Miles Roberts; Emily Josephs
    Description

    A key prediction of neutral theory is that the level of genetic diversity in a population should scale with population size. However, as was noted by Richard Lewontin in 1974 and reaffirmed by later studies, the slope of the population size-diversity relationship in nature is much weaker than expected under neutral theory. We hypothesize that one contributor to this paradox is that current methods relying on single nucleotide polymorphisms (SNPs) called from aligning short reads to a reference genome underestimate levels of genetic diversity in many species. As a first step to testing this idea, we calculated nucleotide diversity (Ï€) and k-mer-based metrics of genetic diversity across 112 plant species, amounting to over 205 terabases of DNA sequencing data from 27,488 individuals. , The workflow we used to create these datasets is packaged as a snakemake workflow stored here: https://github.com/milesroberts-123/tajimasDacrossSpecies Please see the file named lewontin_paradox_methods_figures.pdf in the Zenodo submission attached to this repository for a full breakdown on the methods and references we used for SNP-calling, k-mer-counting, and scraping literature for genome size and life history variables. Some figures showing plots of the data in TableS2.xlsx are also included for reference., , # k-mer-based diversity scales with population size proxies more than nucleotide diversity in a meta-analysis of 98 plant species

    Dataset DOI: https://doi.org/10.5061/dryad.s1rn8pkk0

    Data description

    This dataset contains k-mer count matrices and SNP calls in VCF format for 112 different plant species. It also includes one table of covariates and a phylogeny of all the species included in the study, which was used for final statistical analyses.

    Files and variables

    TableS2.xlsx

    This excel table contains two sheets named TableS2 and metadata. All of the final covariate values we used for statistical analyses are in the sheet named TableS2. Each row corresponds to one of the 112 species included in our dataset. The sheet named "metadata" describes what each of the columns in mean in the sheet named TableS2. The sheet named metadata is reproduced below for reference:

    | species | Name of species ...,

  20. Countries with the highest fertility rates 2025

    • statista.com
    • ai-chatbox.pro
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the highest fertility rates 2025 [Dataset]. https://www.statista.com/statistics/262884/countries-with-the-highest-fertility-rates/
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Worldwide
    Description

    In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Statistics (DoS) (2021). Population and Family Health Survey 2012 - Jordan [Dataset]. https://microdata.unhcr.org/index.php/catalog/405

Population and Family Health Survey 2012 - Jordan

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 19, 2021
Dataset authored and provided by
Department of Statistics (DoS)
Time period covered
2012
Area covered
Jordan
Description

Abstract

The Jordan Population and Family Health Survey (JPFHS) is part of the worldwide Demographic and Health Surveys Program, which is designed to collect data on fertility, family planning, and maternal and child health.

The primary objective of the 2012 Jordan Population and Family Health Survey (JPFHS) is to provide reliable estimates of demographic parameters, such as fertility, mortality, family planning, and fertility preferences, as well as maternal and child health and nutrition, that can be used by program managers and policymakers to evaluate and improve existing programs. The JPFHS data will be useful to researchers and scholars interested in analyzing demographic trends in Jordan, as well as those conducting comparative, regional, or cross-national studies.

Geographic coverage

National coverage

Analysis unit

  • Household
  • Women age 15-49

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample Design The 2012 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, urban and rural areas, each of the 12 governorates, and for the two special domains: the Badia areas and people living in refugee camps. To facilitate comparisons with previous surveys, the sample was also designed to produce estimates for the three regions (North, Central, and South). The grouping of the governorates into regions is as follows: the North consists of Irbid, Jarash, Ajloun, and Mafraq governorates; the Central region consists of Amman, Madaba, Balqa, and Zarqa governorates; and the South region consists of Karak, Tafiela, Ma'an, and Aqaba governorates.

The 2012 JPFHS sample was selected from the 2004 Jordan Population and Housing Census sampling frame. The frame excludes the population living in remote areas (most of whom are nomads), as well as those living in collective housing units such as hotels, hospitals, work camps, prisons, and the like. For the 2004 census, the country was subdivided into convenient area units called census blocks. For the purposes of the household surveys, the census blocks were regrouped to form a general statistical unit of moderate size (30 households or more), called a "cluster", which is widely used in surveys as a primary sampling unit (PSU).

Stratification was achieved by first separating each governorate into urban and rural areas and then, within each urban and rural area, by Badia areas, refugee camps, and other. A two-stage sampling procedure was employed. In the first stage, 806 clusters were selected with probability proportional to the cluster size, that is, the number of residential households counted in the 2004 census. A household listing operation was then carried out in all of the selected clusters, and the resulting lists of households served as the sampling frame for the selection of households in the second stage. In the second stage of selection, a fixed number of 20 households was selected in each cluster with an equal probability systematic selection. A subsample of two-thirds of the selected households was identified for anthropometry measurements.

Refer to Appendix A in the final report (Jordan Population and Family Health Survey 2012) for details of sampling weights calculation.

Mode of data collection

Face-to-face [f2f]

Research instrument

The 2012 JPFHS used two questionnaires, namely the Household Questionnaire and the Woman’s Questionnaire (see Appendix D). The Household Questionnaire was used to list all usual members of the sampled households, and visitors who slept in the household the night before the interview, and to obtain information on each household member’s age, sex, educational attainment, relationship to the head of the household, and marital status. In addition, questions were included on the socioeconomic characteristics of the household, such as source of water, sanitation facilities, and the availability of durable goods. Moreover, the questionnaire included questions about child discipline. The Household Questionnaire was also used to identify women who were eligible for the individual interview (ever-married women age 15-49 years). In addition, all women age 15-49 and children under age 5 living in the subsample of households were eligible for height and weight measurement and anemia testing.

The Woman’s Questionnaire was administered to ever-married women age 15-49 and collected information on the following topics: • Respondent’s background characteristics • Birth history • Knowledge, attitudes, and practice of family planning and exposure to family planning messages • Maternal health (antenatal, delivery, and postnatal care) • Immunization and health of children under age 5 • Breastfeeding and infant feeding practices • Marriage and husband’s background characteristics • Fertility preferences • Respondent’s employment • Knowledge of AIDS and sexually transmitted infections (STIs) • Other health issues specific to women • Early childhood development • Domestic violence

In addition, information on births, pregnancies, and contraceptive use and discontinuation during the five years prior to the survey was collected using a monthly calendar.

The Household and Woman’s Questionnaires were based on the model questionnaires developed by the MEASURE DHS program. Additions and modifications to the model questionnaires were made in order to provide detailed information specific to Jordan. The questionnaires were then translated into Arabic.

Anthropometric data were collected during the 2012 JPFHS in a subsample of two-thirds of the selected households in each cluster. All women age 15-49 and children age 0-4 in these households were measured for height using Shorr height boards and for weight using electronic Seca scales. In addition, a drop of capillary blood was taken from these women and children in the field to measure their hemoglobin level using the HemoCue system. Hemoglobin testing was used to estimate the prevalence of anemia.

Cleaning operations

Fieldwork and data processing activities overlapped. Data processing began two weeks after the start of the fieldwork. After field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman, where they were registered and stored. Special teams were formed to carry out office editing and coding of the openended questions.

Data entry and verification started after two weeks of office data processing. The process of data entry, including 100 percent reentry, editing, and cleaning, was done by using PCs and the CSPro (Census and Survey Processing) computer package, developed specially for such surveys. The CSPro program allows data to be edited while being entered. Data processing operations were completed by early January 2013. A data processing specialist from ICF International made a trip to Jordan in February 2013 to follow up on data editing and cleaning and to work on the tabulation of results for the survey preliminary report, which was published in March 2013. The tabulations for this report were completed in April 2013.

Response rate

In all, 16,120 households were selected for the survey and, of these, 15,722 were found to be occupied households. Of these households, 15,190 (97 percent) were successfully interviewed.

In the households interviewed, 11,673 ever-married women age 15-49 were identified and interviews were completed with 11,352 women, or 97 percent of all eligible women.

Sampling error estimates

The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2012 Jordan Population and Family Health Survey (JPFHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2012 JPFHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling error is a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2012 JPFHS sample is the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulae. The computer

Search
Clear search
Close search
Google apps
Main menu