100+ datasets found
  1. NCHS - Leading Causes of Death: United States

    • catalog.data.gov
    • healthdata.gov
    • +6more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Leading Causes of Death: United States [Dataset]. https://catalog.data.gov/dataset/nchs-leading-causes-of-death-united-states
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.

  2. Top ten causes of global deaths 2019

    • statista.com
    Updated Jun 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Top ten causes of global deaths 2019 [Dataset]. https://www.statista.com/statistics/311925/top-ten-causes-of-death-worldwide/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Worldwide
    Description

    In 2019, the leading causes of death worldwide were ischemic heart disease, stroke, and chronic obstructive pulmonary disease (COPD). That year, ischemic heart disease and stroke accounted for a combined ** percent of all deaths worldwide. Although the leading causes of death worldwide vary by region and country, heart disease is a consistent leading cause of death regardless of income, development, size, or location. Heart disease In 2019, around **** million people worldwide died from ischemic heart disease. In comparison, around **** million people died from lung cancer that year, while *** million died from diabetes. The countries with the highest rates of death due to heart attack and other ischemic heart diseases are Lithuania, Russia, and Slovakia. Although some risk factors for heart disease, such as age and genetics, are unmodifiable, the likelihood of developing heart disease can be greatly reduced through a healthy lifestyle. The biggest modifiable risk factors for heart disease include smoking, an unhealthy diet, being overweight, and a lack of exercise. In 2019, it was estimated that around *** million deaths worldwide due to ischemic heart disease could be attributed to smoking. The leading causes of death in the United States Just as it is the leading cause of death worldwide, heart disease is also the leading cause of death in the United States. In 2023, heart disease accounted for ** percent of all deaths in the United States. Cancer was the second leading cause of death in the U.S. that year, followed by accidents. As of 2023, the odds that a person in the United States will die from heart disease is * in *. However, rates of death due to heart disease have actually declined in the U.S. over the past couple decades. From 2000 to 2022, there was a *** percent decline in heart disease deaths. On the other hand, deaths from Alzheimer’s disease saw an increase of *** percent over this period. Alzheimer’s disease is currently the sixth leading cause of death in the United States, accounting for **** deaths per 100,000 population in 2023.

  3. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  4. Rates of the leading causes of death in the U.S. 2022

    • statista.com
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rates of the leading causes of death in the U.S. 2022 [Dataset]. https://www.statista.com/statistics/248622/rates-of-leading-causes-of-death-in-the-us/
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    The leading causes of death in the United States are heart disease and cancer. However, in 2022, COVID-19 was the fourth leading cause of death in the United States, accounting for around six percent of all deaths that year. In 2022, there were around 45 deaths from COVID-19 per 100,000 population.

    Cardiovascular disease

    Deaths from cardiovascular disease are more common among men than women but have decreased for both sexes over the past few decades. Coronary heart disease accounts for the highest portion of cardiovascular disease deaths in the United States, followed by stroke and high blood pressure. The states with the highest death rates from cardiovascular disease include Oklahoma, Mississippi, and Alabama. Smoking tobacco, physical inactivity, poor diet, stress, and being overweight or obese are all risk factors for developing heart disease.

    Cancer

    Although cancer is the second leading cause of death in the United States, like deaths from cardiovascular disease, deaths from cancer have decreased over the last few decades. The highest death rates from cancer come from lung cancer for both men and women. Breast cancer is the second deadliest cancer for women, while prostate cancer is the second deadliest cancer for men. West Virginia, Mississippi, and Kentucky lead the nation with the highest cancer death rates.

  5. f

    Leading Causes of Death among Asian American Subgroups (2003–2011)

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katherine G. Hastings; Powell O. Jose; Kristopher I. Kapphahn; Ariel T. H. Frank; Benjamin A. Goldstein; Caroline A. Thompson; Karen Eggleston; Mark R. Cullen; Latha P. Palaniappan (2023). Leading Causes of Death among Asian American Subgroups (2003–2011) [Dataset]. http://doi.org/10.1371/journal.pone.0124341
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Katherine G. Hastings; Powell O. Jose; Kristopher I. Kapphahn; Ariel T. H. Frank; Benjamin A. Goldstein; Caroline A. Thompson; Karen Eggleston; Mark R. Cullen; Latha P. Palaniappan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundOur current understanding of Asian American mortality patterns has been distorted by the historical aggregation of diverse Asian subgroups on death certificates, masking important differences in the leading causes of death across subgroups. In this analysis, we aim to fill an important knowledge gap in Asian American health by reporting leading causes of mortality by disaggregated Asian American subgroups.Methods and FindingsWe examined national mortality records for the six largest Asian subgroups (Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese) and non-Hispanic Whites (NHWs) from 2003-2011, and ranked the leading causes of death. We calculated all-cause and cause-specific age-adjusted rates, temporal trends with annual percent changes, and rate ratios by race/ethnicity and sex. Rankings revealed that as an aggregated group, cancer was the leading cause of death for Asian Americans. When disaggregated, there was notable heterogeneity. Among women, cancer was the leading cause of death for every group except Asian Indians. In men, cancer was the leading cause of death among Chinese, Korean, and Vietnamese men, while heart disease was the leading cause of death among Asian Indians, Filipino and Japanese men. The proportion of death due to heart disease for Asian Indian males was nearly double that of cancer (31% vs. 18%). Temporal trends showed increased mortality of cancer and diabetes in Asian Indians and Vietnamese; increased stroke mortality in Asian Indians; increased suicide mortality in Koreans; and increased mortality from Alzheimer’s disease for all racial/ethnic groups from 2003-2011. All-cause rate ratios revealed that overall mortality is lower in Asian Americans compared to NHWs.ConclusionsOur findings show heterogeneity in the leading causes of death among Asian American subgroups. Additional research should focus on culturally competent and cost-effective approaches to prevent and treat specific diseases among these growing diverse populations.

  6. Leading causes of death among Black U.S. residents from 2020 to 2022

    • statista.com
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading causes of death among Black U.S. residents from 2020 to 2022 [Dataset]. https://www.statista.com/statistics/233310/distribution-of-the-10-leading-causes-of-death-among-african-americans/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death among Black residents in the United States in 2022 included diseases of the heart, cancer, unintentional injuries, and stroke. The leading causes of death for African Americans generally reflects the leading causes of death for the entire United States population. However, a major exception is that death from assault or homicide is the seventh leading cause of death among African Americans, but is not among the ten leading causes for the general population. Homicide among African Americans The homicide rate among African Americans has been higher than that of other races and ethnicities for many years. In 2023, around 9,284 Black people were murdered in the United States, compared to 7,289 white people. A majority of these homicides are committed with firearms, which are easily accessible in the United States. In 2022, around 14,189 Black people died by firearms. However, suicide deaths account for over half of all deaths from firearms in the United States. Cancer disparities There are also major disparities in access to health care and the impact of various diseases. For example, the incidence rate of cancer among African American males is the greatest among all ethnicities and races. Furthermore, although the incidence rate of cancer is lower among African American women than it is among white women, cancer death rates are still higher among African American women.

  7. A

    NCHS - Top Five Leading Causes of Death: United States, 1990, 1950, 2000

    • data.amerigeoss.org
    • data.virginia.gov
    • +6more
    csv, json, rdf, xml
    Updated Jul 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). NCHS - Top Five Leading Causes of Death: United States, 1990, 1950, 2000 [Dataset]. https://data.amerigeoss.org/de/dataset/c44cc582-d650-4b9f-83d2-95f303ebe9f5
    Explore at:
    json, csv, rdf, xmlAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States
    Area covered
    United States
    Description

    This dataset contains information on the number of deaths and age-adjusted death rates for the five leading causes of death in 1900, 1950, and 2000.

    Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).

    SOURCES

    CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).

    REFERENCES

    1. National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.

    2. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.

    3. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.

    4. Arias E, Heron M, and Xu JQ. United States life tables, 2014. National vital statistics reports; vol 66 no 4. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_04.pdf.

    5. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  8. NCHS - Injury Mortality: United States

    • catalog.data.gov
    • data.virginia.gov
    • +7more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Injury Mortality: United States [Dataset]. https://catalog.data.gov/dataset/nchs-injury-mortality-united-states
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes injury mortality in the United States beginning in 1999. Two concepts are included in the circumstances of an injury death: intent of injury and mechanism of injury. Intent of injury describes whether the injury was inflicted purposefully (intentional injury) and, if purposeful, whether the injury was self-inflicted (suicide or self-harm) or inflicted by another person (homicide). Injuries that were not purposefully inflicted are considered unintentional (accidental) injuries. Mechanism of injury describes the source of the energy transfer that resulted in physical or physiological harm to the body. Examples of mechanisms of injury include falls, motor vehicle traffic crashes, burns, poisonings, and drownings (1,2). Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia. Age-adjusted death rates (per 100,000 standard population) are based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of injury death are classified by the International Classification of Diseases, Tenth Revision (ICD–10). Categories of injury intent and injury mechanism generally follow the categories in the external-cause-of-injury mortality matrix (1,2). Cause-of-death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. ICD–10: External cause of injury mortality matrix. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf. Miniño AM, Anderson RN, Fingerhut LA, Boudreault MA, Warner M. Deaths: Injuries, 2002. National vital statistics reports; vol 54 no 10. Hyattsville, MD: National Center for Health Statistics. 2006.

  9. Leading causes of death among children aged 5-9 years in the United States...

    • statista.com
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading causes of death among children aged 5-9 years in the United States 2020-2022 [Dataset]. https://www.statista.com/statistics/1017949/distribution-of-the-10-leading-causes-of-death-among-children-five-to-nine/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death among children aged 5 to 9 years in the United States in 2022 were unintentional injuries, cancer, and congenital malformations, deformations and chromosomal abnormalities. At that time, unintentional injuries accounted for around 28 percent of all deaths among this age group. Child abuse in the U.S. Sadly, assault or homicide, was the fourth leading cause of death among those aged 5 to 9 years in the United States in 2022, accounting for around 9.4 percent of all deaths. That year, there were around 113,259 cases of child abuse in the U.S. among children aged 6 to 9 years and 129,846 cases among children aged 2 to 5 years. In 2022, there were around 5.36 child deaths per day in the United States due to abuse and neglect. Suicide among children Assault or homicide was also among the top five leading causes of death among children aged 10 to 14 years, but perhaps even more troubling is that suicide is the second leading cause of death among this age group. As with younger children, unintentional injuries are the leading cause of death among those aged 10 to 14 years, however, suicide accounts for around 13 percent of all deaths among this age group. Comparatively, suicide is not among the ten-leading causes of death among children from the age 1 to 9 years.

  10. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(16301), csv(5034), csv(463460), csv(2026589), csv(5401561), csv(164006), csv(200270), csv(419332), csv(406971), zipAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  11. Leading causes of death among teenagers aged 15-19 years in the United...

    • statista.com
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading causes of death among teenagers aged 15-19 years in the United States 2020-22 [Dataset]. https://www.statista.com/statistics/1017959/distribution-of-the-10-leading-causes-of-death-among-teenagers/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    As of 2022, the third leading cause of death among teenagers aged 15 to 19 years in the United States was intentional self-harm or suicide, contributing around 17 percent of deaths among age group. The leading cause of death at that time was unintentional injuries, contributing to around 37.4 percent of deaths, while 21.8 percent of all deaths in this age group were due to assault or homicide. Cancer and heart disease, the overall leading causes of death in the United States, are also among the leading causes of death among U.S. teenagers. Adolescent suicide in the United States In 2021, around 22 percent of students in grades 9 to 12 reported that they had seriously considered attempting suicide in the past year. Female students were around twice as likely to report seriously considering suicide compared to male students. In 2022, Montana had the highest rate of suicides among U.S. teenagers with around 39 deaths per 100,000 teenagers, followed by South Dakota with a rate of 33 per 100,000. The states with the lowest death rates among adolescents are New York and New Jersey. Mental health treatment Suicidal thoughts are a clear symptom of mental health issues. Mental health issues are not rare among children and adolescents, and treatment for such issues has become increasingly accepted and accessible. In 2021, around 15 percent of boys and girls aged 5 to 17 years had received some form of mental health treatment in the past year. At that time, around 35 percent of youths aged 12 to 17 years in the United States who were receiving specialty mental health services were doing so because they had thought about killing themselves or had already tried to kill themselves.

  12. O

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-and-Deaths-by-Race-Ethnicity-ARCHIV/7rne-efic
    Explore at:
    xml, tsv, csv, application/rdfxml, json, application/rssxmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf

    Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  13. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  14. Deaths and age-specific mortality rates, by selected grouped causes

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths and age-specific mortality rates, by selected grouped causes [Dataset]. http://doi.org/10.25318/1310039201-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.

  15. f

    S1 Data -

    • plos.figshare.com
    xlsx
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gbenga Olorunfemi; Elena Libhaber; Oliver Chukwujekwu Ezechi; Eustasius Musenge (2025). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0313487.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 24, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Gbenga Olorunfemi; Elena Libhaber; Oliver Chukwujekwu Ezechi; Eustasius Musenge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundEndometrial cancer is the sixth leading cause of cancer among females and about 97,000 global deaths of endometrial cancer. The changes in the trends of obesity, fertility rates and other risk factors in South Africa (SA) may impact the endometrial cancer trends. The aim of this study was to utilise the age period cohort and join point regression modelling to evaluate the national and ethnic trends in endometrial cancer mortality in South Africa over a 20year period (1999–2018).MethodsData from Statistics South Africa was obtained to calculate the annual number of deaths, and annual crude and age standardised mortality rates (ASMR) of endometrial cancer from 1999–2018. The overall and ethnic trends of endometrial cancer mortality was assessed using the Join point regression model, while Age-period-cohort (APC) regression modelling was conducted to estimate the effect of age, calendar period and birth cohort.ResultsDuring the period 1999–2018, 4,877 deaths were due to endometrial cancer which constituted about 3.6% of breast and gynecological cancer deaths (3.62%, 95% CI: 3.52%–3.72%) in South Africa. The ASMR of endometrial cancer doubled from 0.76 deaths per 100,000 women in 1999 to 1.5 deaths per 100,000 women in 2018, with an average annual rise of 3.6% per annum. (Average Annual Percentage change (AAPC): 3.6%, 95%CI:2.7–4.4, P-value < 0.001). In 2018, the overall mean age at death for endometrial cancer was was 67.40 ± 11.04 years and, the ASMR of endometrial cancer among Indian/Asians (1.69 per 100,000 women), Blacks (1.63 per 100,000 women) and Coloreds (1.39 per 100,000 women) was more than doubled the rates among Whites (0.66 deaths per 100,000 women). Indian/Asians had stable rates while other ethnic groups had increased rates. The Cohort mortality risk ratio (RR) of endometrial cancer increased with successive birth cohort from 1924 to 1963 (RR increased from 0.2 to 1.00), and subsequently declined among successive cohorts from 1963 to 1998 (1.00 to 0.09). There was strong age and cohort but not period effect among the South African women. Ethnic disparity showed that there was age effect among all the ethnic groups; Cohort effect among Blacks and Coloureds only, while Period effect occurred only among Blacks.ConclusionsThe mortality rates of endometrial cancer doubled over a twenty-year period in South Africa from 1999–2018. There was strong ethnic disparity, with age and cohort effect on endometrial cancer trends. Thus, targeted efforts geared towards prevention and prompt treatment of endometrial cancer among the high-risk groups should be pursued by stake holders.

  16. Leading causes of death Philippines 2024, by disease

    • statista.com
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading causes of death Philippines 2024, by disease [Dataset]. https://www.statista.com/statistics/1120528/philippines-leading-causes-mortality-by-disease/
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2024 - Sep 2024
    Area covered
    Philippines
    Description

    Preliminary figures between January to September 2024 indicated that ischaemic heart disease was the leading cause of death in the Philippines. The number of people who died from this illness was estimated at 75,500. Following this, cancer resulted in the deaths of about 43,000 people. Eating habits Heart diseases have been linked to high meat consumption, among others. In the Philippines, pork has been the most consumed meat type, followed closely by chicken. While pork meat is typically produced domestically, the country also imports pork to supplement its supply. However, plant-based food has started gaining popularity among Filipinos. In fact, a 2024 survey revealed that 69 percent of surveyed Filipinos consumed plant-based products, including meat alternatives. Common diseases in the Philippines Aside from heart and cerebrovascular diseases, the Filipino population is also exposed to infections, diabetes, skin diseases, and illnesses resulting from high meat consumption. In 2020, over 700,000 Filipinos contracted acute respiratory tract infections, followed by over 400,000 diagnosed with hypertension. In areas with high exposure to rain, dengue infections and leptospirosis have also become prevalent.

  17. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 31, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  18. O

    COVID-19 Tests, Cases, Hospitalizations, and Deaths (Statewide) - ARCHIVE

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 Tests, Cases, Hospitalizations, and Deaths (Statewide) - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-Tests-Cases-Hospitalizations-and-Deaths-S/rf3k-f8fg
    Explore at:
    tsv, application/rdfxml, xml, json, csv, application/rssxmlAvailable download formats
    Dataset updated
    Jun 24, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    COVID-19 tests, cases, and associated deaths that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Hospitalization data were collected by the Connecticut Hospital Association and reflect the number of patients currently hospitalized with laboratory-confirmed COVID-19. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update.

    Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 COVID-19 deaths in this report are defined as those for which the death certificate has an ICD-10 code of U07.1 as either a primary (underlying) or a contributing cause of death. More information on COVID-19 mortality can be found at the following link: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Mortality/Mortality-Statistics

    Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports.

    Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

    Starting April 4, 2022, negative rapid antigen and rapid PCR test results for SARS-CoV-2 are no longer required to be reported to the Connecticut Department of Public Health as of April 4. Negative test results from laboratory based molecular (PCR/NAAT) results are still required to be reported as are all positive test results from both molecular (PCR/NAAT) and antigen tests.

    On 5/16/2022, 8,622 historical cases were included in the data. The date range for these cases were from August 2021 – April 2022.”

  19. f

    Data from: Widening Educational Disparities in Premature Death Rates in...

    • datasetcatalog.nlm.nih.gov
    Updated Jul 20, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jemal, Ahmedin; Anderson, Robert N.; Ma, Jiemin; Xu, Jiaquan (2012). Widening Educational Disparities in Premature Death Rates in Twenty Six States in the United States, 1993–2007 [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001149648
    Explore at:
    Dataset updated
    Jul 20, 2012
    Authors
    Jemal, Ahmedin; Anderson, Robert N.; Ma, Jiemin; Xu, Jiaquan
    Area covered
    United States
    Description

    BackgroundEliminating socioeconomic disparities in health is an overarching goal of the U.S. Healthy People decennial initiatives. We present recent trends in mortality by education among working-aged populations. Methods and FindingsAge-standardized death rates and their average annual percent change for all-cause and five major causes (cancer, heart disease, stroke, diabetes, and accidents) were calculated from 1993 through 2007 for individuals aged 25–64 years by educational attainment as a marker of socioeconomic status, using national vital registration data for 26 states with consistent educational information on the death certificates. Rate ratios and rate differences were used to assess disparities (≤12 versus ≥16 years of education) for 1993 through 2007. From 1993 through 2007, relative educational disparities in all-cause mortality continued to increase among working-aged men and women in the U.S., due to larger decreases of mortality rates among the most educated coupled with smaller decreases or even worsening trends in the less educated. For example, the rate ratios of all-cause mortality increased from 2.5 (95% confidence interval (CI), 2.4–2.6) in 1993 to 3.6 (95% CI, 3.5–3.7) in 2007 in men and from 1.9 (95% CI, 1.8–2.0) to 3.0 (95% CI, 2.9–3.1) in women. Generally, the rate differences (per 100,000 persons) of all-cause mortality increased from 415.5 (95% CI, 399.1–431.9) in 1993 to 472.7 (95% CI, 460.2–485.2) in 2007 in men and from 165.4 (95% CI, 154.5–176.2) to 256.2 (95% CI, 248.3–264.2) in women. Disparity patterns varied largely across the five specific causes considered in this study, with the largest increases of relative disparities for accidents, especially in women. ConclusionsRelative educational differentials in mortality continued to widen among men and women despite emphasis on reducing disparities in the U.S. Healthy People decennial initiatives.

  20. o

    Deaths Involving COVID-19 by Vaccination Status

    • data.ontario.ca
    • gimi9.com
    • +3more
    csv, docx, xlsx
    Updated Dec 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health (2024). Deaths Involving COVID-19 by Vaccination Status [Dataset]. https://data.ontario.ca/dataset/deaths-involving-covid-19-by-vaccination-status
    Explore at:
    docx(26086), docx(29332), xlsx(10972), csv(321473), xlsx(11053)Available download formats
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Health
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Nov 14, 2024
    Area covered
    Ontario
    Description

    This dataset reports the daily reported number of the 7-day moving average rates of Deaths involving COVID-19 by vaccination status and by age group.

    Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak.

    Effective November 14, 2024 this page will no longer be updated. Information about COVID-19 and other respiratory viruses is available on Public Health Ontario’s interactive respiratory virus tool: https://www.publichealthontario.ca/en/Data-and-Analysis/Infectious-Disease/Respiratory-Virus-Tool

    Data includes:

    • Date on which the death occurred
    • Age group
    • 7-day moving average of the last seven days of the death rate per 100,000 for those not fully vaccinated
    • 7-day moving average of the last seven days of the death rate per 100,000 for those fully vaccinated
    • 7-day moving average of the last seven days of the death rate per 100,000 for those vaccinated with at least one booster

    Additional notes

    As of June 16, all COVID-19 datasets will be updated weekly on Thursdays by 2pm.

    As of January 12, 2024, data from the date of January 1, 2024 onwards reflect updated population estimates. This update specifically impacts data for the 'not fully vaccinated' category.

    On November 30, 2023 the count of COVID-19 deaths was updated to include missing historical deaths from January 15, 2020 to March 31, 2023.

    CCM is a dynamic disease reporting system which allows ongoing update to data previously entered. As a result, data extracted from CCM represents a snapshot at the time of extraction and may differ from previous or subsequent results. Public Health Units continually clean up COVID-19 data, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes and current totals being different from previously reported cases and deaths. Observed trends over time should be interpreted with caution for the most recent period due to reporting and/or data entry lags.

    The data does not include vaccination data for people who did not provide consent for vaccination records to be entered into the provincial COVaxON system. This includes individual records as well as records from some Indigenous communities where those communities have not consented to including vaccination information in COVaxON.

    “Not fully vaccinated” category includes people with no vaccine and one dose of double-dose vaccine. “People with one dose of double-dose vaccine” category has a small and constantly changing number. The combination will stabilize the results.

    Spikes, negative numbers and other data anomalies: Due to ongoing data entry and data quality assurance activities in Case and Contact Management system (CCM) file, Public Health Units continually clean up COVID-19, correcting for missing or overcounted cases and deaths. These corrections can result in data spikes, negative numbers and current totals being different from previously reported case and death counts.

    Public Health Units report cause of death in the CCM based on information available to them at the time of reporting and in accordance with definitions provided by Public Health Ontario. The medical certificate of death is the official record and the cause of death could be different.

    Deaths are defined per the outcome field in CCM marked as “Fatal”. Deaths in COVID-19 cases identified as unrelated to COVID-19 are not included in the Deaths involving COVID-19 reported.

    Rates for the most recent days are subject to reporting lags

    All data reflects totals from 8 p.m. the previous day.

    This dataset is subject to change.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Centers for Disease Control and Prevention (2025). NCHS - Leading Causes of Death: United States [Dataset]. https://catalog.data.gov/dataset/nchs-leading-causes-of-death-united-states
Organization logo

NCHS - Leading Causes of Death: United States

Explore at:
Dataset updated
Apr 23, 2025
Dataset provided by
Centers for Disease Control and Preventionhttp://www.cdc.gov/
Area covered
United States
Description

This dataset presents the age-adjusted death rates for the 10 leading causes of death in the United States beginning in 1999. Data are based on information from all resident death certificates filed in the 50 states and the District of Columbia using demographic and medical characteristics. Age-adjusted death rates (per 100,000 population) are based on the 2000 U.S. standard population. Populations used for computing death rates after 2010 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for non-census years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Causes of death classified by the International Classification of Diseases, Tenth Revision (ICD–10) are ranked according to the number of deaths assigned to rankable causes. Cause of death statistics are based on the underlying cause of death. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Murphy SL, Xu JQ, Kochanek KD, Curtin SC, and Arias E. Deaths: Final data for 2015. National vital statistics reports; vol 66. no. 6. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_06.pdf.

Search
Clear search
Close search
Google apps
Main menu