CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In 2012, the CPUC ordered the development of a statewide map that is designed specifically for the purpose of identifying areas where there is an increased risk for utility associated wildfires. The development of the CPUC -sponsored fire-threat map, herein "CPUC Fire-Threat Map," started in R.08-11-005 and continued in R.15-05-006.
A multistep process was used to develop the statewide CPUC Fire-Threat Map. The first step was to develop Fire Map 1 (FM 1), an agnostic map which depicts areas of California where there is an elevated hazard for the ignition and rapid spread of powerline fires due to strong winds, abundant dry vegetation, and other environmental conditions. These are the environmental conditions associated with the catastrophic powerline fires that burned 334 square miles of Southern California in October 2007. FM 1 was developed by CAL FIRE and adopted by the CPUC in Decision 16-05-036.
FM 1 served as the foundation for the development of the final CPUC Fire-Threat Map. The CPUC Fire-Threat Map delineates, in part, the boundaries of a new High Fire-Threat District (HFTD) where utility infrastructure and operations will be subject to stricter fire‑safety regulations. Importantly, the CPUC Fire-Threat Map (1) incorporates the fire hazards associated with historical powerline wildfires besides the October 2007 fires in Southern California (e.g., the Butte Fire that burned 71,000 acres in Amador and Calaveras Counties in September 2015), and (2) ranks fire-threat areas based on the risks that utility-associated wildfires pose to people and property.
Primary responsibility for the development of the CPUC Fire-Threat Map was delegated to a group of utility mapping experts known as the Peer Development Panel (PDP), with oversight from a team of independent experts known as the Independent Review Team (IRT). The members of the IRT were selected by CAL FIRE and CAL FIRE served as the Chair of the IRT. The development of CPUC Fire-Threat Map includes input from many stakeholders, including investor-owned and publicly owned electric utilities, communications infrastructure providers, public interest groups, and local public safety agencies.
The PDP served a draft statewide CPUC Fire-Threat Map on July 31, 2017, which was subsequently reviewed by the IRT. On October 2 and October 5, 2017, the PDP filed an Initial CPUC Fire-Threat Map that reflected the results of the IRT's review through September 25, 2017. The final IRT-approved CPUC Fire-Threat Map was filed on November 17, 2017. On November 21, 2017, SED filed on behalf of the IRT a summary report detailing the production of the CPUC Fire-Threat Map(referenced at the time as Fire Map 2). Interested parties were provided opportunity to submit alternate maps, written comments on the IRT-approved map and alternate maps (if any), and motions for Evidentiary Hearings. No motions for Evidentiary Hearings or alternate map proposals were received. As such, on January 19, 2018 the CPUC adopted, via Safety and Enforcement Division's (SED) disposition of a Tier 1 Advice Letter, the final CPUC Fire-Threat Map.
Additional information can be found here.
This GIS dataset contains growth tier maps adopted by local (county and municipal) jurisdictions under SB236. Data are generally collected from county and municipal jurisdictions by the Maryland Department of Planning (Planning) or digitized by Planning in coordination with local jurisdictions. For more information about SB236, see Planning’s Septics Law Implementation Website at https://planning.maryland.gov/Pages/OurWork/SB236Implementation.aspxThis document describes standard operating procedures for aggregating growth tier map GIS data. These procedures may not apply to historical data (i.e. records for which both the SRC_DATE and GIS_SRC fields are blank). For example, Planning may have realigned historical data from local jurisdictions to parcel polygon boundaries or used different procedures to represent municipal tiers when municipalities concurred with county tier maps.Planning generally requests updated GIS data once a jurisdiction notifies Planning that a growth tier map has been amended. Aggregated data may be outdated or incomplete if Planning has not yet received or processed GIS updates from jurisdictions. Planning generally does not alter geometries received from the local jurisdictions except to divide municipal tiers at the county boundary (see JURSCODE field description). This dataset may contain overlap where multiple jurisdictions designate tiers in the same area.Fields include:JURSCODE – MdProperty Viewjurisdiction code (four-letter county or Baltimore City code). For tiers designated by counties, this is the jurisdiction responsible for designating the growth tier. For tiers designated by municipalities, this is the jurisdiction in which the growth tier is physically located. Municipal tiers that cross counties are divided at the county boundary so this field can be populated. See the MUNI field for the municipality responsible for designating a municipal tier.County – Full name of the jurisdiction represented by the JURSCODE.MUNI – The name of the municipality responsible for designating the tier. This field will be blank (‘ ‘) if the tier has been designated by a county. The MUNI field is formatted consistently with municipality names in the Planning’s municipal boundary datasets. When municipalities adopt tier maps by concurring with county tiers instead of submitting tier data independently, the MUNI field remains blank within the entire county tier map dataset. Depending on internal needs, an independent municipal tier dataset may or may not be generated by Planning and included within the aggregated tiers.TIER – Growth tier identifier used by the source jurisdiction and standardized as Tier 1, Tier 1A, Tier 2, Tier 2A, Tier 3, and Tier 4. May include additional alphabetical annotations used by the jurisdictions such as Tier 2B. If the TIER_CODE field is 99, the TIER field retains the descriptor provided by the jurisdiction, which may be a blank or null value.TIER_CODE – Integer field containing the growth tier standardized by Planning: 1 (Tier I); 11 (Tier IA or any other annotated version of Tier I, such as IB, etc.); 2 (Tier II), 22 (Tier IIA or any other annotated version of Tier II, such as IIB, etc.); 3 (Tier III); 4 (Tier IV); 44 (Areas annotated as Tier IVA for municipal greenbelts or any other annotated version of Tier IV); 99 – Areas included in the jurisdiction’s growth tier GIS data that are not assigned a tier, such as rights-of-way or water.Adopt_Date – Date growth tier map was adopted or amended. When a local jurisdiction updates its growth tier map, Planning generally requests a comprehensive GIS update to replace all existing data for the jurisdiction.Acres – GIS acres calculated by Planning in NAD83 Meters (EPSG 26985)GIS_SRC (GIS Source) – The original source of the GIS spatial and attribute information Planning obtained, which concatenates the JURSCODE field (or MUNI field for municipal tier maps), followed by a space, followed by the name of the shapefile or feature class received from the jurisdiction. Field contains “MDP” if tiers were digitized by Planning, and is blank (‘ ‘) for historical data.SRC_DATE (GIS Source Date) – The date (YYYYMMDD) the GIS data were obtained by Planning from the local jurisdiction. If the month or day is unknown, the date is YYYY0000. If Planning digitized the growth tier map in coordination with a local jurisdiction, this should be the date Planning’s edits are verified by the jurisdiction. This field will be blank (‘ ’) if Planning’s edits have not been verified or if the dataset is historical and the source is unknown.NOTE – Text field containing additional notes about the dataLast Updated: 7/26/2023This is a Maryland Department of Planning hosted service. Find more information on https://imap.maryland.govMap Service Link: https://mdpgis.mdp.state.md.us/arcgis/rest/services/PlanningCadastre/Septic_Growth_Tiers/MapServer
Map atlas series for select Admin 2 areas showing major settlements (cities, towns and villages) and administrative boundaries at district level whose boundaries are within Shake Intensity: "Moderate" and above. Shake Intensity data from earthquakes on 6th Feb 2023. Note: 115mb zip file containing a PDF map of each area.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In 2012, the CPUC ordered the development of a statewide map that is designed specifically for the purpose of identifying areas where there is an increased risk for utility associated wildfires. The development of the CPUC -sponsored fire-threat map, herein "CPUC Fire-Threat Map," started in R.08-11-005 and continued in R.15-05-006. A multistep process was used to develop the statewide CPUC Fire-Threat Map. The first step was to develop Fire Map 1 (FM 1), an agnostic map which depicts areas of California where there is an elevated hazard for the ignition and rapid spread of powerline fires due to strong winds, abundant dry vegetation, and other environmental conditions. These are the environmental conditions associated with the catastrophic powerline fires that burned 334 square miles of Southern California in October 2007. FM 1 was developed by CAL FIRE and adopted by the CPUC in Decision 16-05-036.FM 1 served as the foundation for the development of the final CPUC Fire-Threat Map. The CPUC Fire-Threat Map delineates, in part, the boundaries of a new High Fire-Threat District (HFTD) where utility infrastructure and operations will be subject to stricter fire‑safety regulations. Importantly, the CPUC Fire-Threat Map (1) incorporates the fire hazards associated with historical powerline wildfires besides the October 2007 fires in Southern California (e.g., the Butte Fire that burned 71,000 acres in Amador and Calaveras Counties in September 2015), and (2) ranks fire-threat areas based on the risks that utility-associated wildfires pose to people and property. Primary responsibility for the development of the CPUC Fire-Threat Map was delegated to a group of utility mapping experts known as the Peer Development Panel (PDP), with oversight from a team of independent experts known as the Independent Review Team (IRT). The members of the IRT were selected by CAL FIRE and CAL FIRE served as the Chair of the IRT. The development of CPUC Fire-Threat Map includes input from many stakeholders, including investor-owned and publicly owned electric utilities, communications infrastructure providers, public interest groups, and local public safety agencies. The PDP served a draft statewide CPUC Fire-Threat Map on July 31, 2017, which was subsequently reviewed by the IRT. On October 2 and October 5, 2017, the PDP filed an Initial CPUC Fire-Threat Map that reflected the results of the IRT's review through September 25, 2017. The final IRT-approved CPUC Fire-Threat Map was filed on November 17, 2017. On November 21, 2017, SED filed on behalf of the IRT a summary report detailing the production of the CPUC Fire-Threat Map(referenced at the time as Fire Map 2). Interested parties were provided opportunity to submit alternate maps, written comments on the IRT-approved map and alternate maps (if any), and motions for Evidentiary Hearings. No motions for Evidentiary Hearings or alternate map proposals were received. As such, on January 19, 2018 the CPUC adopted, via Safety and Enforcement Division's (SED) disposition of a Tier 1 Advice Letter, the final CPUC Fire-Threat Map.Additional information can be found here.
This map shows all of Maryland's Tier II high quality stream segments and their associated catchment/watershed. MDE uses Maryland Biological Stream Survey (MBSS) data for designating streams as Tier II. Using all MBSS stations sampled within a stream reach (defined as a section of stream from confluence to confluence), an arithmetic mean of the benthic index of biotic integrity (IBI) and the fish IBI is calculated. Only if the means of both the benthic and fish IBIs are greater than or equal to 4.00 is a stream reach designated as Tier II. As such, Tier II streams represent the best streams in Maryland in terms of water quality, water chemistry, habitat, and biotic assemblages. Tier II stream segments can range in length generally terminating at confluences, impoundment outfalls, and tidal boundaries. However, in planning activities, one should consider the entire upstream watershed to a Tier II stream as any changes to this watershed can potentially have an effect on the water quality of the Tier II stream. It is worth noting that once a stream segment is designated as Tier II, this designation lasts in perpetuity regardless of changes in water quality or local landuse. This map was last updated in Feb 2025.To access the publicly maintained list of all Tier II waters and for further information regarding Maryland's High Quality Tier II Waters, please visit https://mde.maryland.gov/programs/water/tmdl/integrated303dreports/pages/index.aspx
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes.
Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.The layers going from 1:1 to 1:1.5M present the 2010 Census Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000 people per square mile (ppsm) / 500 ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States. The layer going over 1:1.5M presents the urban areas in the United States derived from the urban areas layer of the Digital Chart of the World (DCW). It provides information about the locations, names, and populations of urbanized areas for conducting geographic analysis on national and large regional scales. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Census Urban Areas.
V Map Level 2, or “Smart Map Level 2” is a compilation containing vector data along with encoded information (attributes). It is a vector map corresponding to the information resolution of a traditional topographic map in a scale of 1:50000. Data stored in VMap Level 2 is information about administrative boundaries, terrain, environment, hydrography, industry, transport, physiography, vegetation, aeronautics, buildings, built-up areas, transmission lines.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Terrestrial 30x30 Conserved Areas map layer was developed by the CA Nature working group, providing a statewide perspective on areas managed for the protection or enhancement of biodiversity. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.
Terrestrial and Freshwater Data
• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or small group of parcels which comprise the spatial features of CPAD, generally corresponding to ownership boundaries.
• The California Conservation Easement Database (CCED), managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity.
Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership.
•The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such,
boundaries represented within it may not align with other data sources.
• Numerous datasets representing designated boundaries for entities such as
National Parks and Monuments, Wild and Scenic Rivers, Wilderness Areas,
and others, were downloaded from publicly available sources, typically
hosted by the managing agency.
Methodology
1.CPAD and CCED represent the most accurate location and ownership information for
parcels in California which contribute to the preservation of open space
and cultural and biological resources.
2. Superunits are collections of parcels (Holdings) within CPAD which share a name,
manager, and access policy. Most Superunits are also managed with a
generally consistent strategy for biodiversity conservation. Examples of
Superunits include Yosemite National Park, Giant Sequoia National
Monument, and Anza-Borrego Desert State Park.
3. Some Superunits, such as those owned and managed by the Bureau of Land
Management, U.S. Forest Service, or National Park Service , are
intersected by one or more designations, each of which may have a
distinct management emphasis with regards to biodiversity. Examples of
such designations are Wilderness Areas, Wild and Scenic Rivers, or
National Monuments.
4. CPAD Superunits and CCED easements were
intersected with all designation boundary files to create the operative
spatial units for conservation analysis, henceforth 'Conservation
Units,' which make up the Terrestrial 30x30 Conserved Areas map layer. Each easement was functionally considered to be a Superunit.
5. Each Conservation Unit was intersected with the PAD-US dataset in order to
determine the management emphasis with respect to biodiversity, i.e.,
the GAP code. Because PAD-US is national in scope and not specifically
parcel aligned with California assessors' surveys, a direct spatial
extraction of GAP codes from PAD-US would leave tens of thousands of GAP
code data slivers within the 30x30 Conserved Areas map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single
GAP code was uniformly assigned that code. Additionally, the total area
of GAP codes 1 and 2 were summed for the remaining uncoded Conservation
Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2.
6.Subsequent to this stage of analysis, certain Conservation Units remained uncoded,
either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset.
7.These uncoded Conservation Units were then broken down into their
constituent, finer resolution Holdings, which were then analyzed
according to the above workflow.
8. Areas remaining uncoded following the two-step process of coding at the Superunit and
then Holding levels were assigned a GAP code of 4. This is consistent
with the definition of GAP Code 4: areas unknown to have a biodiversity
management focus.
9. Greater than 90% of all areas in the Terrestrial 30x30 Conserved
Areas map layer were GAP coded at the level of CPAD Superunits intersected by designation boundaries, the coarsest land units of analysis. By adopting these coarser analytical units, the Terrestrial 30X30 Conserved Areas map layer avoids hundreds of thousands of spatial slivers that result from intersecting designations with smaller, more numerous parcel records. In most cases, individual parcels reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.
10. PAD-US is a principal data source for understanding the spatial distribution of GAP coded lands, but it is national in scope, and may not always be the most current source of data with respect to California holdings. GreenInfo Network, which develops and maintains the CPAD and CCED datasets, has taken a lead role in establishing communication with land stewards across California in order to make GAP attribution of these lands as current and accurate as possible. The tabular attribution of these datasets is analyzed in addition to PAD-US in order to understand whether a holding may be considered conserved.
Tracking Conserved Areas
The total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing
improvements in our understanding of existing biodiversity conservation
efforts. The California Nature Project is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to investigate how their lands are represented in the Terrestrial 30X30 Conserved Areas Map Layer. This can be accomplished by using the Conserved Areas Explorer web application, developed by the CA Nature working group. Users can zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data.
CPAD, CCED, and PAD-US are built from the ground up. Data is derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Terrestrial 30X30 Conserved Areas map layer, please use this link to initiate a review.The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Terrestrial 30x30 Conserved Areas map layer was developed by the CA Nature working group, providing a statewide perspective on areas managed for the protection or enhancement of biodiversity. Understanding the spatial distribution and extent of these durably protected and managed areas is a vital aspect of tracking and achieving the “30x30” goal of conserving 30% of California's lands and waters by 2030.Terrestrial and Freshwater Data• The California Protected Areas Database (CPAD), developed and managed by GreenInfo Network, is the most comprehensive collection of data on open space in California. CPAD data consists of Holdings, a single parcel or small group of parcels, such that the spatial features of CPAD correspond to ownership boundaries. • The California Conservation Easement Database (CCED), managed by GreenInfo Network, aggregates data on lands with easements. Conservation Easements are legally recorded interests in land in which a landholder sells or relinquishes certain development rights to their land in perpetuity. Easements are often used to ensure that lands remain as open space, either as working farm or ranch lands, or areas for biodiversity protection. Easement restrictions typically remain with the land through changes in ownership. • The Protected Areas Database of the United States (PAD-US), hosted by the United States Geological Survey (USGS), is developed in coordination with multiple federal, state, and non-governmental organization (NGO) partners. PAD-US, through the Gap Analysis Project (GAP), uses a numerical coding system in which GAP codes 1 and 2 correspond to management strategies with explicit emphasis on protection and enhancement of biodiversity. PAD-US is not specifically aligned to parcel boundaries and as such, boundaries represented within it may not align with other data sources. • Numerous datasets representing designated boundaries for entities such as National Parks and Monuments, Wild and Scenic Rivers, Wilderness Areas, and others, were downloaded from publicly available sources, typically hosted by the managing agency.Methodology1. CPAD and CCED represent the most accurate location and ownership information for parcels in California which contribute to the preservation of open space and cultural and biological resources.2. Superunits are collections of parcels (Holdings) within CPAD which share a name, manager, and access policy. Most Superunits are also managed with a generally consistent strategy for biodiversity conservation. Examples of Superunits include Yosemite National Park, Giant Sequoia National Monument, and Anza-Borrego Desert State Park. 3. Some Superunits, such as those owned and managed by the Bureau of Land Management, U.S. Forest Service, or National Park Service , are intersected by one or more designations, each of which may have a distinct management emphasis with regards to biodiversity. Examples of such designations are Wilderness Areas, Wild and Scenic Rivers, or National Monuments.4. CPAD Superunits and CCED easements were intersected with all designation boundary files to create the operative spatial units for conservation analysis, henceforth 'Conservation Units,' which make up the Terrestrial 30x30 Conserved Areas map layer. Each easement was functionally considered to be a Superunit. 5. Each Conservation Unit was intersected with the PAD-US dataset in order to determine the management emphasis with respect to biodiversity, i.e., the GAP code. Because PAD-US is national in scope and not specifically parcel aligned with California assessors' surveys, a direct spatial extraction of GAP codes from PAD-US would leave tens of thousands of GAP code data slivers within the 30x30 Conserved Areas map. Consequently, a generalizing approach was adopted, such that any Conservation Unit with greater than 80% areal overlap with a single GAP code was uniformly assigned that code. Additionally, the total area of GAP codes 1 and 2 were summed for the remaining uncoded Conservation Units. If this sum was greater than 80% of the unit area, the Conservation Unit was coded as GAP 2. 6. Subsequent to this stage of analysis, certain Conservation Units remained uncoded, either due to the lack of a single GAP code (or combined GAP codes 1&2) overlapping 80% of the area, or because the area was not sufficiently represented in the PAD-US dataset. 7. These uncoded Conservation Units were then broken down into their constituent, finer resolution Holdings, which were then analyzed according to the above workflow. 8. Areas remaining uncoded following the two-step process of coding at the Superunit and then Holding levels were assigned a GAP code of 4. This is consistent with the definition of GAP Code 4: areas unknown to have a biodiversity management focus. 9. Greater than 90% of all areas in the Terrestrial 30x30 Conserved Areas map layer were GAP coded at the level of CPAD Superunits intersected by designation boundaries, the coarsest land units of analysis. By adopting these coarser analytical units, the Terrestrial 30X30 Conserved Areas map layer avoids hundreds of thousands of spatial slivers that result from intersecting designations with smaller, more numerous parcel records. In most cases, individual parcels reflect the management scenario and GAP status of the umbrella Superunit and other spatially coincident designations.Tracking Conserved AreasThe total acreage of conserved areas will increase as California works towards its 30x30 goal. Some changes will be due to shifts in legal protection designations or management status of specific lands and waters. However, shifts may also result from new data representing improvements in our understanding of existing biodiversity conservation efforts. The California Nature Project is expected to generate a great deal of excitement regarding the state's trajectory towards achieving the 30x30 goal. We also expect it to spark discussion about how to shape that trajectory, and how to strategize and optimize outcomes. We encourage landowners, managers, and stakeholders to investigate how their lands are represented in the Terrestrial 30X30 Conserved Areas Map Layer. This can be accomplished by using the Conserved Areas Explorer web application, developed by the CA Nature working group. Users can zoom into the locations they understand best and share their expertise with us to improve the data representing the status of conservation efforts at these sites. The Conserved Areas Explorer presents a tremendous opportunity to strengthen our existing data infrastructure and the channels of communication between land stewards and data curators, encouraging the transfer of knowledge and improving the quality of data. CPAD, CCED, and PAD-US are built from the ground up. Data is derived from available parcel information and submissions from those who own and manage the land. So better data starts with you. Do boundary lines require updating? Is the GAP code inconsistent with a Holding’s conservation status? If land under your care can be better represented in the Terrestrial 30X30 Conserved Areas map layer, please use this link to initiate a review. The results of these reviews will inform updates to the California Protected Areas Database, California Conservation Easement Database, and PAD-US as appropriate for incorporation into future updates to CA Nature and tracking progress to 30x30.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
On October 30, 2015 Governor Brown issued an emergency declaration requiring public agencies to identify areas of tree mortality that hold the greatest potential to result in wildfire and/or falling trees and threaten people and property in these areas. Once identified, these areas will be prioritized for removal of dead and dying trees that present a threat to public safety. Tier Two high hazard zones are defined by watersheds (HUC 12, average 24,000 acres) that have significant tree mortality as well as significant community and natural resource assets. Work at the Tier Two level addresses the immediate threat of falling trees and fire risk, and also supports broader forest health and landscape level fire planning issues.This service represents the latest official release of HHZ. It will be updated annually when a new version is released. As of June 2019, it represents HighHazardZones19_1.
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
Map atlas of district boundaries (admin level 2) within region (admin level 1) and main settlements
Statistical analyses and maps representing mean, high, and low water-level conditions in the surface water and groundwater of Miami-Dade County were made by the U.S. Geological Survey, in cooperation with the Miami-Dade County Department of Regulatory and Economic Resources, to help inform decisions necessary for urban planning and development. Sixteen maps were created that show contours of (1) the mean of daily water levels at each site during October and May for the 2000-2009 water years; (2) the 25th, 50th, and 75th percentiles of the daily water levels at each site during October and May and for all months during 2000-2009; and (3) the differences between mean October and May water levels, as well as the differences in the percentiles of water levels for all months, between 1990-1999 and 2000-2009. The 80th, 90th, and 96th percentiles of the annual maximums of daily groundwater levels during 1974-2009 (a 35-year period) were computed to provide an indication of unusually high groundwater-level conditions. These maps and statistics provide a generalized understanding of the variations of water levels in the aquifer, rather than a survey of concurrent water levels. Water-level measurements from 473 sites in Miami-Dade County and surrounding counties were analyzed to generate statistical analyses. The monitored water levels included surface-water levels in canals and wetland areas and groundwater levels in the Biscayne aquifer. Maps were created by importing site coordinates, summary water-level statistics, and completeness of record statistics into a geographic information system, and by interpolating between water levels at monitoring sites in the canals and water levels along the coastline. Raster surfaces were created from these data by using the triangular irregular network interpolation method. The raster surfaces were contoured by using geographic information system software. These contours were imprecise in some areas because the software could not fully evaluate the hydrology given available information; therefore, contours were manually modified where necessary. The ability to evaluate differences in water levels between 1990-1999 and 2000-2009 is limited in some areas because most of the monitoring sites did not have 80 percent complete records for one or both of these periods. The quality of the analyses was limited by (1) deficiencies in spatial coverage; (2) the combination of pre- and post-construction water levels in areas where canals, levees, retention basins, detention basins, or water-control structures were installed or removed; (3) an inability to address the potential effects of the vertical hydraulic head gradient on water levels in wells of different depths; and (4) an inability to correct for the differences between daily water-level statistics. Contours are dashed in areas where the locations of contours have been approximated because of the uncertainty caused by these limitations. Although the ability of the maps to depict differences in water levels between 1990-1999 and 2000-2009 was limited by missing data, results indicate that near the coast water levels were generally higher in May during 2000-2009 than during 1990-1999; and that inland water levels were generally lower during 2000-2009 than during 1990-1999. Generally, the 25th, 50th, and 75th percentiles of water levels from all months were also higher near the coast and lower inland during 2000–2009 than during 1990-1999. Mean October water levels during 2000-2009 were generally higher than during 1990-1999 in much of western Miami-Dade County, but were lower in a large part of eastern Miami-Dade County.
The "Map Image Layer - Watershed Boundaries" is the Map Image Layer of Watershed Boundaries. It has been designed specifically for use in ArcGIS Online (and will not directly work in ArcMap or ArcPro). This data has been modified from the original source data to serve a specific business purpose. This data is for cartographic purposes only.The Watershed Boundaries Data Group contains the following layers: DNR Catchments (MnDNR)HUC 12 Boundaries (USGS)HUC 12 IWM Group Boundaries (MPCA)HUC 10 Boundaries (USGS)HUC 8 Boundaries (USGS): HUC 8s represent part or all of a surface drainage basin, a combination of drainage basins, or a distinct hydrologic feature. There are 80 HUC 2s in Minnesota. (i.e. Zumbro (07040004))HUC 6 Boundaries (USGS): HUC 6s are areas which divide the subregions into more than 350 hydrologic accounting units. Minnesota has 17 of the nations hydrologic accounting units: Northwestern Lake Superior (040101), St. Louis (040102), Southwestern Lake Superior (040103), Mississippi Headwaters (070101), Upper Mississippi-Crow-Rum (070102), Minnesota (070200), St. Croix (070300), Upper Mississippi-Black-Root (070400), Upper Mississippi-Maquoketa-Plum (070600), Upper Mississippi-Skunk-Wapsipinicon (070801), Iowa (070802), Des Moines (071000), Upper Red (090201), Lower Red (090203), Rainy (090300), Big Sioux (101702), Missouri-Little Sioux (102300).HUC 4 Boundaries (USGS): HUC 4s are geographic subregions which are drained by a river system, a reach of river and its tributaries in that reach, a closed basin, or a group of streams forming a coastal drainage areas. Minnesota has 12 of the nations 222 subregions: Western Lake Superior (0401), Mississippi Headwaters (0701), Minnesota (0702), St. Croix (0703), Upper Mississippi-Black-Root (0704), Upper Mississippi-Maquoketa-Plum (0706), Upper Mississippi-Iowa-Skunk-Wapsipinicon (0708), Des Moines (0710), Red (0902), Rainy (0903), Missouri-Big Sioux (1017), Missouri-Little Sioux (1023).HUC 2 Boundaries (USGS): HUC 2s are geographic regions which contain the drainage of a major river or a series of rivers. Minnesota has 4 of the nations 21 regions: Great Lakes (R04), Upper Mississippi (R07), Souris-Red-Rainy (R09), and Missouri (R10).These datasets have not been optimized for fast display (but rather they maintain their original shape/precision), therefore it is recommend that filtering is used to show only the features of interest. For more information about using filters please see "Work with map layers: Apply Filters": https://doc.arcgis.com/en/arcgis-online/create-maps/apply-filters.htmFor additional information about the Watershed Boundary Dataset please see:United States Geological Survey Water-Supply Paper 2294: https://pubs.usgs.gov/wsp/wsp2294/Hydrologic Units, The National Atlas of the United State of America: https://pubs.usgs.gov/gip/hydrologic_units/pdf/hydrologic_units.pdfNational Hydrography Dataset, Watershed Boundary Dataset: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/watershed-boundary-dataset
Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
Important Note: This item is in mature support as of June 2024 and will be retired in December 2026. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. Areas protected from conversion include areas that are permanently protected and managed for biodiversity such as Wilderness Areas and National Parks. In addition to protected lands, portions of areas protected from conversion includes multiple-use lands that are subject to extractive uses such as mining, logging, and off-highway vehicle use. These areas are managed to maintain a mostly undeveloped landscape including many areas managed by the Bureau of Land Management and US Forest Service.The Protected Areas Database of the United States classifies lands into four GAP Status classes. This layer displays lands managed for biodiversity conservation (GAP Status 1 and 2) and multiple-use lands (GAP Status 3). Dataset SummaryPhenomenon Mapped: Protected and multiple-use lands (GAP Status 1, 2, and 3)Units: MetersCell Size: 30.92208102 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, Guam, Northern Mariana Islands and American Samoa.Source: USGS National Gap Analysis Program PAD-US version 3.0Publication Date: July 2022ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/This layer displays protected areas from the Protected Areas Database of the United States version 3.0 created by the USGS National Gap Analysis Program. This layer displays areas managed for biodiversity where natural disturbances are allowed to proceed or are mimicked by management (GAP Status 1), areas managed for biodiversity where natural disturbance is suppressed (GAP Status 2), and multiple-use lands where extract activities are allowed (GAP Status 3). The source data for this layer are available here. A feature layer published from this dataset is also available.The polygon vector layer was converted to raster layers using the Polygon to Raster Tool using the National Elevation Dataset 1 arc second product as a snap raster.The service behind this layer was published with 8 functions allowing the user to select different views of the service. Other layers created from this service using functions include:USA Protected AreasUSA Unprotected AreasUSA Protected Areas - Gap Status 1-4USA Protected Areas - Gap Status 1USA Protected Areas - Gap Status 2USA Protected Areas - Gap Status 3USA Protected Areas - Gap Status 4What can you do with this layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "Protected from Land Cover Conversion" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "Protected from Land Cover Conversion" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In 2012, the CPUC ordered the development of a statewide map that is designed specifically for the purpose of identifying areas where there is an increased risk for utility associated wildfires. The development of the CPUC -sponsored fire-threat map, herein "CPUC Fire-Threat Map," started in R.08-11-005 and continued in R.15-05-006.
A multistep process was used to develop the statewide CPUC Fire-Threat Map. The first step was to develop Fire Map 1 (FM 1), an agnostic map which depicts areas of California where there is an elevated hazard for the ignition and rapid spread of powerline fires due to strong winds, abundant dry vegetation, and other environmental conditions. These are the environmental conditions associated with the catastrophic powerline fires that burned 334 square miles of Southern California in October 2007. FM 1 was developed by CAL FIRE and adopted by the CPUC in Decision 16-05-036.
FM 1 served as the foundation for the development of the final CPUC Fire-Threat Map. The CPUC Fire-Threat Map delineates, in part, the boundaries of a new High Fire-Threat District (HFTD) where utility infrastructure and operations will be subject to stricter fire‑safety regulations. Importantly, the CPUC Fire-Threat Map (1) incorporates the fire hazards associated with historical powerline wildfires besides the October 2007 fires in Southern California (e.g., the Butte Fire that burned 71,000 acres in Amador and Calaveras Counties in September 2015), and (2) ranks fire-threat areas based on the risks that utility-associated wildfires pose to people and property.
Primary responsibility for the development of the CPUC Fire-Threat Map was delegated to a group of utility mapping experts known as the Peer Development Panel (PDP), with oversight from a team of independent experts known as the Independent Review Team (IRT). The members of the IRT were selected by CAL FIRE and CAL FIRE served as the Chair of the IRT. The development of CPUC Fire-Threat Map includes input from many stakeholders, including investor-owned and publicly owned electric utilities, communications infrastructure providers, public interest groups, and local public safety agencies.
The PDP served a draft statewide CPUC Fire-Threat Map on July 31, 2017, which was subsequently reviewed by the IRT. On October 2 and October 5, 2017, the PDP filed an Initial CPUC Fire-Threat Map that reflected the results of the IRT's review through September 25, 2017. The final IRT-approved CPUC Fire-Threat Map was filed on November 17, 2017. On November 21, 2017, SED filed on behalf of the IRT a summary report detailing the production of the CPUC Fire-Threat Map(referenced at the time as Fire Map 2). Interested parties were provided opportunity to submit alternate maps, written comments on the IRT-approved map and alternate maps (if any), and motions for Evidentiary Hearings. No motions for Evidentiary Hearings or alternate map proposals were received. As such, on January 19, 2018 the CPUC adopted, via Safety and Enforcement Division's (SED) disposition of a Tier 1 Advice Letter, the final CPUC Fire-Threat Map.
Additional information can be found here.