Facebook
TwitterThe Travel Time Tool was created by the MN DNR to use GIS analysis for calculation of hydraulic travel time from gridded surfaces and develop a downstream travel time raster for each cell in a watershed. This hydraulic travel time process, known as Time of Concentration, is a concept from the science of hydrology that measures watershed response to a precipitation event. The analysis uses watershed characteristics such as land-use, geology, channel shape, surface roughness, and topography to measure time of travel for water. Described as Travel Time, it calculates the elapsed time for a simulated drop of water to migrate from its source along a hydraulic path across different surfaces of the replicated watershed landscape, ultimately reaching the watershed outlet. The Travel Time Tool creates a raster whereas each cell is a measure of the length of time (in seconds) that it takes water to flow across it, and then accumulates the time (in hours) from the cell to the outlet of the watershed.
The Travel Time Tool creates an impedance raster from Manning's Equation that determines the velocity of water flowing across the cell as a measure of time (in feet per second). The Flow Length Tool uses the travel time Grid for the impedance factor and determines the downstream flow time from each cell to the outlet of the watershed.
The toolbox works with ArcMap 10.6.1 and newer and ArcGIS Pro. Latest version of the toc2.py script is Version 2.0.1 published 2025/11/07.
For step-by-step instructions on how to use the tool, please view MN DNR Travel Time Guidance.pdf
Facebook
TwitterStamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner
Facebook
TwitterVegetative Difference Image gives an easy to interpret visual representation of vegetative increase/decrease across 2 time periods.This raster function template is used to generate a visual product. The results cannot be used for analysis. This templates generates an NDVI in the backend, hence it requires your imagery to have the red and near infrared bands. In the resulting image, greens indicate increase in vegetation, while the magenta indicates decrease in vegetationReferences:Raster functionsWhen to use this raster function templateThis template is particularly useful when trying to intuitively visualize the increase or decrease in vegetation over two time periods. How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. This index supports many satellite sensors, such as Landsat-8, Sentinel-2, Quickbird, IKONOS, Geoeye-1, and Pleiades-1.Applicable geographiesThe template uses a standard vegetation which is designed to work globally.
Facebook
TwitterThere are many ways to create spatial data. In this tutorial, you'll use an editing tool to draw features on an imagery basemap. The features you create will be saved in a feature class in your project geodatabase.Estimated time: 30 minutesSoftware requirements: ArcGIS Pro
Facebook
TwitterMobile Map Packages (MMPK’s) can be used in the ESRI Field Maps app (no login required), either by direct download in the Field Maps app or by sideloading from your PC. They can also be used in desktop applications that support MMPK’s such as ArcGIS Pro, and ArcGIS Navigator. MMPK’s will expire quarterly and have a warning for the user at that time but will still function afterwards. They are updated quarterly to ensure you have the most up to date data possible. These mobile map packages include the following national datasets along with others. BLM Administrative Unit Boundaries & Points BLM Public Land Survey System (PLSS) TNM Place Names (Geographic Names) BLM National Grazing Allotments BLM Trails (GTLF) BLM Recreation Point Features (RECS) BLM Recreation Site Boundaries BLM National Conservation Lands BLM National Contours (TNM Derived) BLM Surface Management Agency ESRI Navigation Basemap Vector Tile Package (Modified) Last updated 20250929. Contact BLM_Mobile_Apps@blm.gov with any questions, issues or suggestions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer features special areas of interest (AOIs) that have been contributed to Esri Community Maps using the new Community Maps Editor app. The data that is accepted by Esri will be included in selected Esri basemaps, including our suite of Esri Vector Basemaps, and made available through this layer to export and use offline. Export DataThe contributed data is also available for contributors and other users to export (or extract) and re-use for their own purposes. Users can export the full layer from the ArcGIS Online item details page by clicking the Export Data button and selecting one of the supported formats (e.g. shapefile, or file geodatabase (FGDB)). User can extract selected layers for an area of interest by opening in Map Viewer, clicking the Analysis button, viewing the Manage Data tools, and using the Extract Data tool. To display this data with proper symbology and metadata in ArcGIS Pro, you can download and use this layer file.Data UsageThe data contributed through the Community Maps Editor app is primarily intended for use in the Esri Basemaps. Esri staff will periodically (e.g. weekly) review the contents of the contributed data and either accept or reject the data for use in the basemaps. Accepted features will be added to the Esri basemaps in a subsequent update and will remain in the app for the contributor or others to edit over time. Rejected features will be removed from the app.Esri Community Maps Contributors and other ArcGIS Online users can download accepted features from this layer for their internal use or map publishing, subject to the terms of use below.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Mobile Map Packages (MMPK’s) can be used in the ESRI Field Maps app (no login required), either by direct download in the Field Maps app or by sideloading from your PC. They can also be used in desktop applications that support MMPK’s such as ArcGIS Pro, and ArcGIS Navigator. MMPK’s will expire quarterly and have a warning for the user at that time but will still function afterwards. They are updated quarterly to ensure you have the most up to date data possible. These mobile map packages include the following national datasets along with others: Surface Management Agency, Public Land Survey System (PLSS), BLM Recreation Sites, National Conservation Lands, ESRI’s Navigation Basemap and Vector Tile Package. Last updated 20250321. Contact jlzimmer@blm.gov with any questions.
Facebook
TwitterCalculating the total volume of water stored in a landscape can be challenging. In addition to lakes and reservoirs, water can be stored in soil, snowpack, or even inside plants and animals, and tracking the all these different mediums is not generally possible. However, calculating the change in storage is easy - just subtract the water output from the water input. Using the GLDAS layers we can do this calculation for every month from January 2000 to the present day. The precipitation layer tells us the input to each cell and runoff plus evapotranspiration is the output. When the input is higher than the output during a given month, it means water was stored. When output is higher than input, storage is being depleted. Generally the change in storage should be close to the change in soil moisture content plus the change in snowpack, but it will not match up exactly because of the other storage mediums discussed above.Dataset SummaryThe GLDAS Change in Storage layer is a time-enabled image service that shows net monthly change in storage from 2000 to the present, measured in millimeters of water. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!Phenomenon Mapped: Change in Water StorageUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.By applying the "Calculate Anomaly" raster function, it is possible to view these data in terms of deviation from the mean, instead of total change in storage. Mean change in storage for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. By default, it will show the first month from the map's time extent. Or, if time animation is disabled, a time range can be set using the layer's multidimensional settings. If you wish to calculate the average, sum, or min/max change in storage over the time extent, change the mosaic operator used to resolve overlapping pixels. In ArcGIS Online, you do this in the "Image Display Order" tab. In ArcGIS Pro, use the "Data" ribbon. In ArcMap, it is in the 'Mosaic' tab of the layer properties window. The minimum time extent is one month, and the maximum is 8 years. Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Predator-prey interactions can be profoundly influenced by vegetation conditions, particularly when predator and prey prefer different habitats. Although such interactions have proven challenging to study for small and cryptic predators, recent methodological advances substantially improve opportunities for understanding how vegetation influences prey acquisition and strengthen conservation planning for this group. The California Spotted Owl (Strix occidentalis occidentalis) is well-known as an old-forest species of conservation concern, but whose primary prey in many regions – woodrats (Neotoma spp.) – occurs in a broad range of vegetation conditions. Here, we used high-resolution GPS tracking coupled with nest video monitoring to test the hypothesis that prey capture rates vary as a function of vegetation structure and heterogeneity, with emergent, reproductive consequences for Spotted Owls in Southern California. Foraging owls were more successful capturing prey, including woodrats, in taller multilayered forests, in areas with higher heterogeneity in vegetation types, and near forest-chaparral edges. Consistent with these findings, Spotted Owls delivered prey items more frequently to nests in territories with greater heterogeneity in vegetation types and delivered prey biomass at a higher rate in territories with more forest-chaparral edge. Spotted Owls had higher reproductive success in territories with higher mean canopy cover, taller trees, and more shrubby vegetation. Collectively, our results provide additional and compelling evidence that a mosaic of large tree forests with complex canopy and shrubby vegetation increases access to prey with potential reproductive benefits to Spotted Owls in landscapes where woodrats are a primary prey item. We suggest that forest management activities that enhance forest structure and vegetation heterogeneity could help curb declining Spotted Owl populations while promoting resilient ecosystems in some regions. Methods See README DOCUMENT Naming conventions *RSF or prey refers to prey capture analysis *delivery in a file name refers to delivery rate analysis *repro in a filename means that file is for the delivery rate analysis
Setup *files with vegetation data should work with minimal alteration(will need to specify working directory) with associated R code for each analysis *Shapefiles were made in ArcGIS pro but they can be opened with any GIS software such as QGIS.
Locational data files
NOTE LOCATIONAL DATA IS SHIFTED AND ROTATED FROM THE ORIGINAL -due to the sensitive nature of this species. The locational_data includes: * All_2021_owls_shifted * Point file showing all GPS tag locations for prey capture analysis * Attributes include: * TERRITORY ID: Numerical identifier for each bird * Year: year GPS tag was recorded * Month: month GPS tag was recorded * Day: Day GPS tag was recorded * Hour: Hour GPS tag was recorded * Minute: minute GPS tag was recorded * All_linked_polygons_shifted * Polygon file showing capture polygons for prey capture analysis * Attributes include * Territory ID: numerical identifier for each bird * Polygon id: numerical identifier for each capture polygon for each bird * Shape area: area of each polygon * SBNF_camera_nests_shifted * Point file showing spotted owl nests for prey capture analysis * Attributes include * Territory id: numerical identifier for each bird * C95_KDE_2021_socal_shifted * Polygon file of owls 95% kernel density estimate for prey delivery rate analysis * Attributes include * Id: numerical identifier for each territory(bird) * Area: area of each polygon * San_bernardino_territory_centers * Point file showing Territory centers for historical SBNF territories – shifted for repro success analysis * Attributes include * Repro Territory id: unique identifier for each territory in broader set of territories
Besides the sifted locational data we have included - For the Resource selection function vegetation data, for the delivery analysis we have included an overview of prey deliveries by territory and vegetation data used, and for the reproductive analysis we have again included vegetation data as well as an overview of reproductive success. these are labled as follows:
Files for the prey capture analysis
*description: Text file with vegetation data paired with capture locations both buffered polygons used in prey capture analysis and the unbuffered ones which were not used.(Pair with Socal_rsf_code R script) *format: .txt *Dimensions: 2641 X 35
*Variables:
*ORIG_fid: completely unique identifier for each row
*unique_id: unique identifier for each capture polygon(shared between a buffered capture location and its unbuffered pair)
*territory_id: unique numerical idenifier of territory
*Polygon_id: within territory unique prey capture polygon id
*buff: bianary buffered or unbuffered (1=buffered, 0=unbuffered)
*used: bianary used=1 available=0
*prey_type: prey species associated with polygon unkn:unknown, flsq:flying squirel, wora:woodrat, umou:mouse, pogo:pocketgopher, grsq: grey squirel, ubrd: unknown bird, umol:unknown mole, uvol, unknown vole.
*area_sqm: area of polygon in square meters
*CanCov_2020_buff: average canopy cover in polygon
*CanHeight_2020_buff: average canopy height in polygon
*Canlayer_2020_buff: average number of canopy layers in polygon
*Understory_density_2020_buff: average brushy vegetation density in polygon
*pix_COUNT: count of pixels in polygon (not needed for analysis)
*p_chaparral: percent of polygon comprised of chaparral habitat
*p_conifer: percent of polygon comprised of conifer habitat
*p_hardwood: percent of polygon comprised of hardwood habitat
*p_other: percent of polygon comprised of other habitat types
*Calveg_cap_CHt_gt10_CC_30to70_intersect_buff: percent of polygon comprised of trees taller than 10m with 30-70percent canopy cover (used to check data)
*Calveg_cap_CHt_gt10_CCgt70_intersect_buff: percent of polygon comprised of trees taller than 10m with greater than 70percent canopy cover (used to check data)
*Calveg_cap_CHt_lt10_intersect_buff:percent of polygon comprised of trees less than 10m (used to check data)
*p_sm_conifer: percent of polygon comprised of conifer trees less than 10m (used to calculate diversity)
*p_lrg_conifer_sc: percent of polygon comprised of conifer forests >10m tall with sparse canopy(used to calculate diversity)
*p_large_conifer_dc: percent of polygon comprised of conifer forests greater than 10m tall with dense canopy (used to calculate diversity)
*p_sm_hard: percent of polygon comprised of hardwood trees less than 10m (used to calculate diversity)
*p_lrg_hard_sc: percent of polygon comprised of hardwood forests greater than 10m with sparse canopy(used to calculate diversity)
*p_lrg_hard_dc: percent of polygon comprised of hardwood forests greater than 10m dense canopy (used to calculate diversity)
*p_forests_gt10_verysparse_CC: percent of polygon comprised of trees less than 10m with very sparse canopies (used to calculate diversity)
*primary_edge: total distance in meters of primary edge in a polygon
*normalized_by_area_primary_edge: total distance in m of primary edge in a polygon divided by the area of the polygon
*secondary_edge: total distance in meters of secondary edge in a polygon
*normalized_by_area_secondary_edge:total distance in m of secondary edge in a polygon divided by the area of the polygon
*coarse_diversity: shannon diversity in each polygon (see methods below)
*fine_diversity: shannon diversity in each polygon (see methods below)
*nest_distance: distance from polygon center to nest for each polygon in meters
For the Delivery analysis
note: For information on determining average prey biomass see methods as well as zulla et al 2022 for flying squirels and woodrat masses Zulla CJ, Jones GM, Kramer HA, Keane JJ, Roberts KN, Dotters BP, Sawyer SC, Whitmore SA, Berigan WJ, Kelly KG, Gutiérrez RJ, Peery MZ. Forest heterogeneity outweighs movement costs by enhancing hunting success and fitness in spotted owls. doi:10.21203/rs.3.rs-1370884/v1. PPR:PPR470028.
prey_deliveries_byterritory.csv *Description: overview file of prey delivered to each nest *format: .csv *dimensions:332 x 8
*Variables:
*SITE: Unique numerical identifier for each territory
*DATE: date prey was delivered (in UTC)
*CAMERA TIME: time in UTC prey was delivered
*VIDEO TIME: time on video prey was delivered - unrelated to real time just original file
*PREY ITEM: prey species delivered to nest unkn:unknown, uncr: unknown if delivery(removed from eventual analysis due to
Facebook
Twitter
Facebook
TwitterDealing with large Notebooks can be daunting. Wouldn’t it be nice to import existing logic from other Modules and Code Libraries just like you can with standalone installs of Python? Well, now you can! The Manage Notebook Code Dependencies (MNCD) tool allows you to manage a cache of Python ‘Code Sample’ and ‘Notebook’ item content in your user home folder. Once cached, the content from these items can be imported into your Notebook using the Python import statement, just like your standalone scripts do. Once you import the Python modules from these items, they become ‘Code Dependencies’ to your Notebook and local scripts.This Python logic contains Functions that manage caching Python 'Code Sample' and 'Notebook' item types from ArcGIS Online or Enterprise Portal, unpacking and storing their contents in your Notebook home directory. This makes them accessible to the Notebook Kernel and Python.Once the Python objects are stored, their locations are then added to Python's import path, allowing Python to import the locally cached Modules, Classes, and Functions right to your logic.This enables you to build or leverage existing libraries of reusable code or just offload the bulk of your Notebook logic as a modular Python Script, greatly simplifying your Notebook. Share your IDE developed Python code as a 'Python Code Sample' item, call the manageDependents function to load the item contents, and then import what you need. Later, when updating your Code Sample, the manageDependents function will automatically update the cached Module next time you run the Notebook or call the function.During the MNCD import process, the logic will check for and apply updates to the MNCD logic automatically, just like it does for any managed item.RevisionsOct 20, 2020: Version 1.1 provides the abilty to import logic from other Pyton Notebooks. By default, this will extract any Function or Class Code Block it finds, focusing on modular use. Disable this option when caching a Notebook item to allow full import of available code.May 23, 2023: Version 1.2 includes a new 'getDependentCode' function to handle loading code into the local namespace or scope. It also includes improvements that allow you to provide a gis connection or it can discover an active connection when managing items.Jun 23, 2023: Version 1.3 includes updates that allow support for ArcGIS Enterprise Portal, ArcGIS Pro, and local Python use. Added 'setCachePath' function to support custom cache storage locations.To get started, launch the Installer Notebook and install this Python logic in your user home, accessible to the Notebook Kernel. A ReadMe document has been provided in the install folder. Be sure to review the examples available in the Installer Notebook.Review the MNCD documentation before you installTo get started, use the Installer Notebook to deploy the MNCD tool to ArcGIS Online or Enterprise PortalUsage:Run Installer to add the MNCD logic to your account home folder. Or you can download and store MNCD locally for use in ArcGIS Pro and Python.Import the MNCD module in your Notebook or Python logic using: import mncdWhen ready, call mncd.manageDependents function and provide the Online Item Id(s) you wish MNCD to cache and manageNow use standard Python import command to import the Functions and Classes from the cached Module(s), just like you would from a standalone script.If a cached item is no longer needed, call mncd.removeDependents function and incude the Item Id(s) you wish to remove from the cacheIf the Managed Notebook Code Dependencies logic is no longer required, run the Installer once again to remove
Facebook
TwitterMobile Map Packages (MMPK’s) can be used in the ESRI Field Maps app (no login required), either by direct download in the Field Maps app or by sideloading from your PC. They can also be used in desktop applications that support MMPK’s such as ArcGIS Pro, and ArcGIS Navigator. MMPK’s will expire quarterly and have a warning for the user at that time but will still function afterwards. They are updated quarterly to ensure you have the most up to date data possible. These mobile map packages include the following national datasets along with others. BLM Administrative Unit Boundaries & Points BLM Public Land Survey System (PLSS) TNM Place Names (Geographic Names) BLM National Grazing Allotments BLM Trails (GTLF) BLM Recreation Point Features (RECS) BLM Recreation Site Boundaries BLM National Conservation Lands BLM National Contours (TNM Derived) BLM Surface Management Agency ESRI Navigation Basemap Vector Tile Package (Modified) Last updated 20250929. Contact BLM_Mobile_Apps@blm.gov with any questions, issues or suggestions.
Facebook
TwitterThe Federal Emergency Management Agency (FEMA) produces Flood Insurance Rate maps and identifies Special Flood Hazard Areas as part of the National Flood Insurance Program's floodplain management. Special Flood Hazard Areas have regulations that include the mandatory purchase of flood insurance for holders of federally regulated mortgages. In addition, this layer can help planners and firms avoid areas of flood risk and also avoid additional cost to carry insurance for certain planned activities. Dataset SummaryPhenomenon Mapped: Flood Hazard AreasGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WGS 1984 Albers (Alaska), Hawaii Albers Equal Area Conic (Hawaii), Western Pacific Albers Equal Area Conic (Guam, Northern Mariana Islands, and American Samoa)Cell Sizes: 10 meters (default), 30 meters, and 90 metersUnits: NoneSource Type: ThematicPixel Type: Unsigned integerSource: Federal Emergency Management Agency (FEMA)Update Frequency: AnnualPublication Date: May 7, 2025 This layer is derived from the May 7, 2025 version Flood Insurance Rate Map feature class S_FLD_HAZ_AR. The vector data were then flagged with an index of 94 classes, representing a unique combination of values displayed by three renderers. (In three resolutions the three renderers make nine processing templates.) Repair Geometry was run on the set of features, then the features were rasterized using the 94 class index at a resolutions of 10, 30, and 90 meters, using the Polygon to Raster tool and the "MAXIMUM_COMBINED_AREA" option. Not every part of the United States is covered by flood rate maps. This layer compiles all the flood insurance maps available at the time of publication. To make analysis easier, areas that were NOT mapped by FEMA for flood insurance rates no longer are served as NODATA but are filled in with a value of 250, representing any unmapped areas which appear in the US Census boundary of the USA states and territories. The attribute table corresponding to value 250 will indicate that the area was not mapped.What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application. Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "flood hazard areas" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "flood hazard areas" in the search box, browse to the layer then click OK. In ArcGIS Pro you can use the built-in raster functions to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one. Processing TemplatesCartographic Renderer - The default. These are meaningful classes grouped by FEMA which group its own Flood Zone Type and Subtype fields. This renderer uses FEMA's own cartographic interpretations of its flood zone and zone subtype fields to help you identify and assess risk. Flood Zone Type Renderer - Specifically renders FEMA FLD_ZONE (flood zone) attribute, which distinguishes the original, broadest categories of flood zones. This renderer displays high level categories of flood zones, and is less nuanced than the Cartographic Renderer. For example, a fld_zone value of X can either have moderate or low risk depending on location. This renderer will simply render fld_zone X as its own color without identifying "500 year" flood zones within that category.Flood Insurance Requirement Renderer - Shows Special Flood Hazard Area (SFHA) true-false status. This may be helpful if you want to show just the places where flood insurance is required. A value of True means flood insurance is mandatory in a majority of the area covered by each 10m pixel. Each of these three renderers have templates at three different raster resolutions depending on your analysis needs. To include the layer in web maps to serve maps and queries, the 10 meter renderers are the preferred option. These are served with overviews and render at all resolutions. However, when doing analysis of larger areas, we now offer two coarser resolutions of 30 and 90 meters in processing templates for added convenience and time savings.Data DictionaryMaking a copy of your area of interest using copyraster in arcgis pro will copy the layer's attribute table to your network alongside the local output raster. The raster attribute table in the copied raster will contain the flood zone, zone subtype, and special flood hazard area true/false flag which corresponds to each value in the layer for your area of interest. For your convienence, we also included a table in CSV format in the box below as a data dictionary you can use as an index to every value in the layer. Value,FLD_ZONE,ZONE_SUBTY,SFHA_TF 2,A,, 3,A,,F 4,A,,T 5,A,,T 6,A,,T 7,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 8,A,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 9,A,ADMINISTRATIVE FLOODWAY,T 10,A,COASTAL FLOODPLAIN,T 11,A,FLOWAGE EASEMENT AREA,T 12,A99,,T 13,A99,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 14,AE,,F 15,AE,,T 16,AE,,T 17,AE,,T 18,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,T 19,AE,1 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,T 20,AE,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",T 21,AE,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",T 22,AE,ADMINISTRATIVE FLOODWAY,T 23,AE,AREA OF SPECIAL CONSIDERATION,T 24,AE,COASTAL FLOODPLAIN,T 25,AE,COLORADO RIVER FLOODWAY,T 26,AE,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 27,AE,COMMUNITY ENCROACHMENT,T 28,AE,COMMUNITY ENCROACHMENT AREA,T 29,AE,DENSITY FRINGE AREA,T 30,AE,FLOODWAY,T 31,AE,FLOODWAY CONTAINED IN CHANNEL,T 32,AE,FLOODWAY CONTAINED IN STRUCTURE,T 33,AE,FLOWAGE EASEMENT AREA,T 34,AE,RIVERINE FLOODWAY IN COMBINED RIVERINE AND COASTAL ZONE,T 35,AE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 36,AE,STATE ENCROACHMENT AREA,T 37,AH,,T 38,AH,,T 39,AH,FLOODWAY,T 40,AO,,T 41,AO,COASTAL FLOODPLAIN,T 42,AO,FLOODWAY,T 43,AREA NOT INCLUDED,,F 44,AREA NOT INCLUDED,,T 45,AREA NOT INCLUDED,,U 46,D,,F 47,D,,T 48,D,AREA WITH FLOOD RISK DUE TO LEVEE,F 49,OPEN WATER,,F 50,OPEN WATER,,T 51,OPEN WATER,,U 52,V,,T 53,V,COASTAL FLOODPLAIN,T 54,VE,,T 55,VE,,T 56,VE,COASTAL FLOODPLAIN,T 57,VE,RIVERINE FLOODWAY SHOWN IN COASTAL ZONE,T 58,X,,F 59,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,F 60,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,T 61,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD,U 62,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN CHANNEL,F 63,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD CONTAINED IN STRUCTURE,F 64,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COASTAL ZONE,F 65,X,0.2 PCT ANNUAL CHANCE FLOOD HAZARD IN COMBINED RIVERINE AND COASTAL ZONE,F 66,X,"1 PCT CONTAINED IN STRUCTURE, COMMUNITY ENCROACHMENT",F 67,X,"1 PCT CONTAINED IN STRUCTURE, FLOODWAY",F 68,X,1 PCT DEPTH LESS THAN 1 FOOT,F 69,X,1 PCT DRAINAGE AREA LESS THAN 1 SQUARE MILE,F 70,X,1 PCT FUTURE CONDITIONS,F 71,X,1 PCT FUTURE CONDITIONS CONTAINED IN STRUCTURE,F 72,X,"1 PCT FUTURE CONDITIONS, COMMUNITY ENCROACHMENT",F 73,X,"1 PCT FUTURE CONDITIONS, FLOODWAY",F 74,X,"1 PCT FUTURE IN STRUCTURE, COMMUNITY ENCROACHMENT",F 75,X,"1 PCT FUTURE IN STRUCTURE, FLOODWAY",F 76,X,AREA OF MINIMAL FLOOD HAZARD, 77,X,AREA OF MINIMAL FLOOD HAZARD,F 78,X,AREA OF MINIMAL FLOOD HAZARD,T 79,X,AREA OF MINIMAL FLOOD HAZARD,U 80,X,AREA OF SPECIAL CONSIDERATION,F 81,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,F 82,X,AREA WITH REDUCED FLOOD RISK DUE TO LEVEE,T 83,X,FLOWAGE EASEMENT AREA,F 84,X,1 PCT FUTURE CONDITIONS,T 85,AH,COASTAL FLOODPLAIN,T 86,AE,,U 87,AE,FLOODWAY,F 88,X,AREA WITH REDUCED FLOOD HAZARD DUE TO ACCREDITED LEVEE SYSTEM,F 89,X,530,F 90,VE,100,T 91,AE,100,T 92,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO LEVEE SYSTEM,T 93,A99,AREA WITH REDUCED FLOOD HAZARD DUE TO NON-ACCREDITED LEVEE SYSTEM,T 94,A,COMBINED RIVERINE AND COASTAL FLOODPLAIN,T 250,AREA NOT INCLUDED,Not Mapped by FEMA, Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
Facebook
TwitterThe National Insect and Disease Risk map identifies areas with risk of significant tree mortality due to insects and plant diseases. The layer identifies lands in three classes: areas with risk of tree mortality from insects and disease between 2013 and 2027, areas with lower tree mortality risk, and areas that were formerly at risk but are no longer at risk due to disturbance (human or natural) between 2012 and 2018. Areas with risk of tree mortality are defined as places where at least 25% of standing live basal area greater than one inch in diameter will die over a 15-year time frame (2013 to 2027) due to insects and diseases.The National Insect and Disease Risk map, produced by the US Forest Service FHAAST, is part of a nationwide strategic assessment of potential hazard for tree mortality due to major forest insects and diseases. Dataset Summary Phenomenon Mapped: Risk of tree mortality due to insects and diseaseUnits: MetersCell Size: 30 meters in Hawaii and 240 meters in Alaska and the Contiguous USSource Type: DiscretePixel Type: 2-bit unsigned integerData Coordinate System: NAD 1983 Albers (Contiguous US), WGS 1984 Albers (Alaska), Hawaii Albers (Hawaii)Mosaic Projection: North America Albers Equal Area ConicExtent: Alaska, Hawaii, and the Contiguous United States Source: National Insect Disease Risk MapPublication Date: 2018ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/This layer was created from the 2018 version of the National Insect Disease Risk Map.What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "insects and disease" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "insects and disease" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use raster functions to create your own custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro. For example, Zonal Statistics as Table tool can be used to summarize risk of tree mortality across several watersheds, counties, or other areas that you may be interested in such as areas near homes.In ArcGIS Online you can change then layer's symbology in the image display control, set the layer's transparency, and control the visible scale range.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Facebook
TwitterThis template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.
Facebook
TwitterNotice: this is not the latest Heat Island Anomalies image service.This layer contains the relative degrees Fahrenheit difference between any given pixel and the mean heat value for the city in which it is located, for every city in the contiguous United States, Alaska, Hawaii, and Puerto Rico. This 30-meter raster was derived from Landsat 8 imagery band 10 (ground-level thermal sensor) from the summer of 2022, with patching from summer of 2021 where necessary.Federal statistics over a 30-year period show extreme heat is the leading cause of weather-related deaths in the United States. Extreme heat exacerbated by urban heat islands can lead to increased respiratory difficulties, heat exhaustion, and heat stroke. These heat impacts significantly affect the most vulnerable—children, the elderly, and those with preexisting conditions.The purpose of this layer is to show where certain areas of cities are hotter or cooler than the average temperature for that same city as a whole. This dataset represents a snapshot in time. It will be updated yearly, but is static between updates. It does not take into account changes in heat during a single day, for example, from building shadows moving. The thermal readings detected by the Landsat 8 sensor are surface-level, whether that surface is the ground or the top of a building. Although there is strong correlation between surface temperature and air temperature, they are not the same. We believe that this is useful at the national level, and for cities that don’t have the ability to conduct their own hyper local temperature survey. Where local data is available, it may be more accurate than this dataset. Dataset SummaryThis dataset was developed using proprietary Python code developed at The Trust for Public Land, running on the Descartes Labs platform through the Descartes Labs API for Python. The Descartes Labs platform allows for extremely fast retrieval and processing of imagery, which makes it possible to produce heat island data for all cities in the United States in a relatively short amount of time.In order to click on the image service and see the raw pixel values in a map viewer, you must be signed in to ArcGIS Online, then Enable Pop-Ups and Configure Pop-Ups.Using the Urban Heat Island (UHI) Image ServicesThe data is made available as an image service. There is a processing template applied that supplies the yellow-to-red or blue-to-red color ramp, but once this processing template is removed (you can do this in ArcGIS Pro or ArcGIS Desktop, or in QGIS), the actual data values come through the service and can be used directly in a geoprocessing tool (for example, to extract an area of interest). Following are instructions for doing this in Pro.In ArcGIS Pro, in a Map view, in the Catalog window, click on Portal. In the Portal window, click on the far-right icon representing Living Atlas. Search on the acronyms “tpl” and “uhi”. The results returned will be the UHI image services. Right click on a result and select “Add to current map” from the context menu. When the image service is added to the map, right-click on it in the map view, and select Properties. In the Properties window, select Processing Templates. On the drop-down menu at the top of the window, the default Processing Template is either a yellow-to-red ramp or a blue-to-red ramp. Click the drop-down, and select “None”, then “OK”. Now you will have the actual pixel values displayed in the map, and available to any geoprocessing tool that takes a raster as input. Below is a screenshot of ArcGIS Pro with a UHI image service loaded, color ramp removed, and symbology changed back to a yellow-to-red ramp (a classified renderer can also be used): A typical operation at this point is to clip out your area of interest. To do this, add your polygon shapefile or feature class to the map view, and use the Clip Raster tool to export your area of interest as a geoTIFF raster (file extension ".tif"). In the environments tab for the Clip Raster tool, click the dropdown for "Extent" and select "Same as Layer:", and select the name of your polygon. If you then need to convert the output raster to a polygon shapefile or feature class, run the Raster to Polygon tool, and select "Value" as the field.Other Sources of Heat Island InformationPlease see these websites for valuable information on heat islands and to learn about exciting new heat island research being led by scientists across the country:EPA’s Heat Island Resource CenterDr. Ladd Keith, University of ArizonaDr. Ben McMahan, University of Arizona Dr. Jeremy Hoffman, Science Museum of Virginia Dr. Hunter Jones, NOAA Daphne Lundi, Senior Policy Advisor, NYC Mayor's Office of Recovery and ResiliencyDisclaimer/FeedbackWith nearly 14,000 cities represented, checking each city's heat island raster for quality assurance would be prohibitively time-consuming, so The Trust for Public Land checked a statistically significant sample size for data quality. The sample passed all quality checks, with about 98.5% of the output cities error-free, but there could be instances where the user finds errors in the data. These errors will most likely take the form of a line of discontinuity where there is no city boundary; this type of error is caused by large temperature differences in two adjacent Landsat scenes, so the discontinuity occurs along scene boundaries (see figure below). The Trust for Public Land would appreciate feedback on these errors so that version 2 of the national UHI dataset can be improved. Contact Dale.Watt@tpl.org with feedback.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Raw lidar data consist of positions (x, y) and intensity values. They must undergo a classification process before individual points can be identified as belonging to ground, building, vegetation, etc., features. By completing this tutorial, you will become comfortable with the following skills:Converting .zlas files to .las for editing,Reassigning LAS class codes,Using automated lidar classification tools, andUsing 2D and 3D features to classify lidar data.Software Used: ArcGIS Pro 3.3Time to Complete: 60 - 90 minutesFile Size: 57mbDate Created: September 25, 2020Last Updated: September 27, 2024
Facebook
TwitterMeasure and Map Access to Grocery StoresFrom the perspective of the people living in each neighborhood How do people in your city get to the grocery store? The answer to that question depends on the person and where they live. This collection of layers, maps and apps help answer the question.Some live in cities and stop by a grocery store within a short walk or bike ride of home or work. Others live in areas where car ownership is more prevalent, and so they drive to a store. Some do not own a vehicle, and rely on a friend or public transit. Others rely on grocery delivery for their needs. And, many live in rural areas far from town, so a trip to a grocery store is an infrequent event involving a long drive.This map from Esri shows which areas are within a ten minute walk (in green) or ten minute drive (in blue) of a grocery store in the United States and Puerto Rico. Darker color indicates access to more stores. Summarizing this data shows that 20% of U.S. population live within a 10 minute walk of a grocery store, and 90% of the population live within a 10 minute drive of a grocery store. Click on the map to see a summary for each state.Every census block is scored with a count of walkable and drivable stores nearby, making this a map suitable for a dashboard for any city, or any of the 50 states, DC and Puerto Rico. Two colorful layers visualize this definition of access, one for walkable access (suitable for looking at a city neighborhood by neighborhood) and one for drivable access (suitable for looking across a city, county, region or state).On the walkable layer, shades of green define areas within a ten minute walk of one or more grocery stores. The colors become more intense and trend to a blue-green color for the busiest neighborhoods, such as downtown San Francisco. As you zoom in, a layer of Census block points visualizes the local population with or without walkable access. As you zoom out to see the entire city, the map adds a light blue - to dark blue layer, showing which parts of the region fall within ten minutes' drive of one or more grocery stores. As a result, the map is useful at all scales, from national to regional, state and local levels. It becomes easier to spot grocery stores that sit within a highly populated area, and grocery stores that sit in a shopping center far away from populated areas. This view of a city begins to hint at the question: how many people have each type of access to grocery stores? And, what if they are unable to walk a mile regularly, or don't own a car? How to Use This MapUse this map to introduce the concepts of access to grocery stores in your city or town. This is the kind of map where people will want to look up their home or work address to validate what the map is saying against their own experiences. The map was built with that use in mind. Many maps of access use straight-line, as-the-crow-flies distance, which ignores real-world barriers to walkability like rivers, lakes, interstates and other characteristics of the built environment. Block analysis using a network data set and Origin-Destination analysis factors these barriers in, resulting in a more realistic depiction of access. There is data behind the map, which can be summarized to show how many people have walkable access to local grocery stores. The map includes a feature layer of population in Census block points, which are visible when you zoom in far enough. This feature layer of Census block centroids can be plugged into an app like this one that summarizes the population with/without walkable or drivable access. Lastly, this map can serve as backdrop to other community resources, like food banks, farmers markets (example), and transit (example). Add a transit layer to immediately gauge its impact on the population's grocery access. You can also use this map to see how it relates to communities of concern. Add a layer of any block group or tract demographics, such as Percent Senior Population (examples), or Percent of Households with Access to 0 Vehicles (examples). The map is a useful visual and analytic resource for helping community leaders, business and government leaders see their town from the perspective of its residents, and begin asking questions about how their community could be improved. Data sourcesPopulation data is from the 2020 U.S. Census blocks. Each census block has a count of stores within a 10 minute walk, and a count of stores within a ten minute drive. Census blocks known to be unpopulated are given a score of 0. The layer is available as a hosted feature layer. Grocery store locations are from SafeGraph, reflecting what was in the data as of September 2024. For this project, ArcGIS StreetMap Premium was used for the street network in the origin-destination analysis work, because it has the necessary attributes on each street segment to identify which streets are considered walkable, and supports a wide variety of driving parameters. The walkable access layer and drivable access layers are rasters, whose colors were chosen to allow the drivable access layer to serve as backdrop to the walkable access layer. Data PreparationArcGIS Network Analyst was used to set up a network street layer for analysis. ArcGIS StreetMap Premium was installed to a local hard drive and selected in the Origin-Destination workflow as the network data source. This allows the origins (Census block centroids) and destinations (SafeGraph grocery stores) to be connected to that network, to allow origin-destination analysis. The Census blocks layer contains the centroid of each Census block. The data allows a simple popup to be created. This layer's block figures can be summarized further, to tract, county and state levels. The SafeGraph grocery store locations were provided by SafeGraph. The source data included NAICS code 445110 and 452311 as an initial screening. The CSV file was imported using the Data Interoperability geoprocessing tools in ArcGIS Pro, where a definition query was applied to the layer to exclude any records that were not grocery stores. The final layer used in the analysis had approximately 63,000 records. In this map, this layer is included as a vector tile layer. MethodologyEvery census block in the U.S. was assigned two access scores, whose numbers are simply how many grocery stores are within a 10 minute walk and a 10 minute drive of that census block. Every census block has a score of 0 (no stores), 1, 2 or more stores. The count of accessible stores was determined using Origin-Destination Analysis in ArcGIS Network Analyst, in ArcGIS Pro. A set of Tools in this ArcGIS Pro package allow a similar analysis to be conducted for any city or other area. The Tools step through the data prep and analysis steps. Download the Pro package, open it and substitute your own layers for Origins and Destinations. Parcel centroids are a suggested option for Origins, for example. Origin-Destination analysis was configured, using ArcGIS StreetMap Premium as the network data source. Census block centroids with population greater than zero were used as the Origins, and grocery store locations were used as the Destinations. A cutoff of 10 minutes was used with the Walk Time option. Only one restriction was applied to the street network: Walkable, which means Interstates and other non-walkable street segments were treated appropriately. You see the results in the map: wherever freeway overpasses and underpasses are present near a grocery store, the walkable area extends across/through that pass, but not along the freeway. A cutoff of 10 minutes was used with the Drive Time option. The default restrictions were applied to the street network, which means a typical vehicle's access to all types of roads was factored in. The results for each analysis were captured in a Lines layer, which shows which origins are within the 10 minute cutoff of each destination over the street network, given the assumptions about that network (walking, or driving a vehicle). The Lines layer is not published but is used to count how many stores each origin has access to over the road network. The Lines layer was then summarized by census block ID to capture the Maximum value of the Destination_Rank field. A census block within 10 minutes of 3 stores would have 3 records in the Lines layer, but only one value in the summarized table, with a MAX_Destination_Rank field value of 3. This is the number of stores accessible to that census block in the 10 minutes measured, for walking and driving. These data were joined to the block centroids layer and given unique names. At this point, all blocks with zero population or null values in the MAX_Destination_Rank fields were given a store count of 0, to help the next step. Walkable and Drivable areas are calculated into a raster layer, using Nearest Neighbor geoprocessing tool on the count of stores within a 10 minute walk, and a count of stores within a ten minute drive, respectively. This tool used a 100 meter grid and interpolates the values between each census block. A census tracts layer containing all water polygons "erased" from the census tract boundaries was used as an environment setting, to help constrain interpolation into/across bodies of water. The same layer use used to "shoreline" the Nearest Neighbor results, to eliminate any interpolation into the ocean or Great Lakes. This helped but was not perfect. Notes and LimitationsThe map provides a baseline for discussing access to grocery stores in a city. It does not presume local population has the desire or means to walk or drive to obtain groceries. It does not take elevation gain or loss into account. It does not factor time of day nor weather, seasons, or other variables that affect a person's commute choices. Walking and driving are just two ways people get to a grocery store. Some people ride a bike, others take public transit, have groceries delivered, or rely on a friend with a vehicle.
Facebook
TwitterCalculating the total volume of water stored in a landscape can be challenging. In addition to lakes and reservoirs, water can be stored in soil, snowpack, or even inside plants and animals, and tracking the all these different mediums is not generally possible. However, calculating the change in storage is easy - just subtract the water output from the water input. Using the GLDAS layers we can do this calculation for every month from January 2000 to the present day. The precipitation layer tells us the input to each cell and runoff plus evapotranspiration is the output. When the input is higher than the output during a given month, it means water was stored. When output is higher than input, storage is being depleted. Generally the change in storage should be close to the change in soil moisture content plus the change in snowpack, but it will not match up exactly because of the other storage mediums discussed above.Dataset SummaryThe GLDAS Change in Storage layer is a time-enabled image service that shows net monthly change in storage from 2000 to the present, measured in millimeters of water. It is calculated by NASA using the Noah land surface model, run at 0.25 degree spatial resolution using satellite and ground-based observational data from the Global Land Data Assimilation System (GLDAS-2.1). The model is run with 3-hourly time steps and aggregated into monthly averages. Review the complete list of model inputs, explore the output data (in GRIB format), and see the full Hydrology Catalog for all related data and information!Phenomenon Mapped: Change in Water StorageUnits: MillimetersTime Interval: MonthlyTime Extent: 2000/01/01 to presentCell Size: 28 kmSource Type: ScientificPixel Type: Signed IntegerData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: Global Land SurfaceSource: NASAUpdate Cycle: SporadicWhat can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS for Desktop. It is useful for scientific modeling, but only at global scales.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.By applying the "Calculate Anomaly" raster function, it is possible to view these data in terms of deviation from the mean, instead of total change in storage. Mean change in storage for a given month is calculated over the entire period of record - 2000 to present.Time: This is a time-enabled layer. By default, it will show the first month from the map's time extent. Or, if time animation is disabled, a time range can be set using the layer's multidimensional settings. If you wish to calculate the average, sum, or min/max change in storage over the time extent, change the mosaic operator used to resolve overlapping pixels. In ArcGIS Online, you do this in the "Image Display Order" tab. In ArcGIS Pro, use the "Data" ribbon. In ArcMap, it is in the 'Mosaic' tab of the layer properties window. The minimum time extent is one month, and the maximum is 8 years. Important: You must switch from the cartographic renderer to the analytic renderer in the processing template tab in the layer properties window before using this layer as an input to geoprocessing tools.
Facebook
TwitterThis large-format map, created for Discover Gilbert, showcases the town’s unique features and history through bright photography and engaging callouts. It highlights riparian preserves, foodie destinations, and a vibrant arts and culture scene, while a photojournalistic timeline traces Gilbert’s evolution from “Hay Shipping Capital” to “Phoenix’s Coolest Suburb.” Parks, golf courses, and cultural landmarks are located via a reference grid aligned to the town’s original surveyed Sections, a design choice that marries cartographic function with place-based storytelling. The design adopts Discover Gilbert’s lively palette and distinctive fonts, with locator insets for the greater Phoenix area, and drive time and direction. A silhouette of the Superstitions and the iconic Water Tower anchors the map in its sense of place.This map was almost entirely created in ArcGIS Pro. One of my favorite features is the reference grid that uses the street network. Fun fact: the purple alphanumeric tabs around the edges of the map are repeated in the side panels to help locate points of interest, and use text formatting tags for background, border, color, and font to show the coordinates in a purple box in-line with the text. Other fine cartographic details include the timeline, where the distribution of years is to scale, and the Drive Time and Direction map, where destinations and surrounding towns are placed accurately along concentric circles representing hours from Gilbert, positioned in the correct direction as the crow flies. Data sources include the HIFLD (now deprecated), Maricopa County, Town of Gilbert, Maricopa Association of Governments (a source that I discovered via the AGIC listserv!), Maricopa County Assessor, FAA, USGS NHD, OpenStreetMap, AZ GeoHub (thanks, AGIC!), NHPN, and Esri.
Facebook
TwitterThe Travel Time Tool was created by the MN DNR to use GIS analysis for calculation of hydraulic travel time from gridded surfaces and develop a downstream travel time raster for each cell in a watershed. This hydraulic travel time process, known as Time of Concentration, is a concept from the science of hydrology that measures watershed response to a precipitation event. The analysis uses watershed characteristics such as land-use, geology, channel shape, surface roughness, and topography to measure time of travel for water. Described as Travel Time, it calculates the elapsed time for a simulated drop of water to migrate from its source along a hydraulic path across different surfaces of the replicated watershed landscape, ultimately reaching the watershed outlet. The Travel Time Tool creates a raster whereas each cell is a measure of the length of time (in seconds) that it takes water to flow across it, and then accumulates the time (in hours) from the cell to the outlet of the watershed.
The Travel Time Tool creates an impedance raster from Manning's Equation that determines the velocity of water flowing across the cell as a measure of time (in feet per second). The Flow Length Tool uses the travel time Grid for the impedance factor and determines the downstream flow time from each cell to the outlet of the watershed.
The toolbox works with ArcMap 10.6.1 and newer and ArcGIS Pro. Latest version of the toc2.py script is Version 2.0.1 published 2025/11/07.
For step-by-step instructions on how to use the tool, please view MN DNR Travel Time Guidance.pdf