82 datasets found
  1. u

    Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    • +4more
    bin
    Updated Jul 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563
    Explore at:
    binAvailable download formats
    Dataset updated
    Jul 23, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  2. Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A...

    • zenodo.org
    bin
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gong Chengjuan; Yin Ranyu; Yin Ranyu; Long Tengfei; Long Tengfei; He Guojin; Jiao Weili; Wang Guizhou; Gong Chengjuan; He Guojin; Jiao Weili; Wang Guizhou (2024). Dataset for "Enhancing Cloud Detection in Sentinel-2 Imagery: A Spatial-Temporal Approach and Dataset" [Dataset]. http://doi.org/10.5281/zenodo.10613705
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 4, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gong Chengjuan; Yin Ranyu; Yin Ranyu; Long Tengfei; Long Tengfei; He Guojin; Jiao Weili; Wang Guizhou; Gong Chengjuan; He Guojin; Jiao Weili; Wang Guizhou
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset is built for time-series Sentinel-2 cloud detection and stored in Tensorflow TFRecord (refer to https://www.tensorflow.org/tutorials/load_data/tfrecord).

    Each file is compressed in 7z format and can be decompressed using Bandzip or 7-zip software.

    Dataset Structure:

    Each filename can be split into three parts using underscores. The first part indicates whether it is designated for training or validation ('train' or 'val'); the second part indicates the Sentinel-2 tile name, and the last part indicates the number of samples in this file.

    For each sample, it includes:

    1. Sample ID;
    2. Array of time series 4 band image patches in 10m resolution, shaped as (n_timestamps, 4, 42, 42);
    3. Label list indicating cloud cover status for the center \(6\times6\) pixels of each timestamp;
    4. Ordinal list for each timestamp;
    5. Sample weight list (reserved);

    Here is a demonstration function for parsing the TFRecord file:

    import tensorflow as tf
    
    # init Tensorflow Dataset from file name
    def parseRecordDirect(fname):
      sep = '/'
      parts = tf.strings.split(fname,sep)
      tn = tf.strings.split(parts[-1],sep='_')[-2]
      nn = tf.strings.to_number(tf.strings.split(parts[-1],sep='_')[-1],tf.dtypes.int64)
      t = tf.data.Dataset.from_tensors(tn).repeat().take(nn)
      t1 = tf.data.TFRecordDataset(fname)
      ds = tf.data.Dataset.zip((t, t1))
      return ds
    
    keys_to_features_direct = {
      'localid': tf.io.FixedLenFeature([], tf.int64, -1),
      'image_raw_ldseries': tf.io.FixedLenFeature((), tf.string, ''),
      'labels': tf.io.FixedLenFeature((), tf.string, ''),
      'dates': tf.io.FixedLenFeature((), tf.string, ''),
      'weights': tf.io.FixedLenFeature((), tf.string, '')
        }
    
    # The Decoder (Optional)
    class SeriesClassificationDirectDecorder(decoder.Decoder):
     """A tf.Example decoder for tfds classification datasets."""
     def _init_(self) -> None:
      super()._init_()
    
     def decode(self, tid, ds):
      parsed = tf.io.parse_single_example(ds, keys_to_features_direct)
      encoded = parsed['image_raw_ldseries']
      labels_encoded = parsed['labels']
      decoded = tf.io.decode_raw(encoded, tf.uint16)
      label = tf.io.decode_raw(labels_encoded, tf.int8)
      dates = tf.io.decode_raw(parsed['dates'], tf.int64)
      weight = tf.io.decode_raw(parsed['weights'], tf.float32)
      decoded = tf.reshape(decoded,[-1,4,42,42])
      sample_dict = {
       'tid': tid, # tile ID
       'dates': dates, # Date list
       'localid': parsed['localid'], # sample ID
       'imgs': decoded, # image array
       'labels': label, # label list
       'weights': weight
      }
      return sample_dict
    
    # simple function 
    def preprocessDirect(tid, record):
      parsed = tf.io.parse_single_example(record, keys_to_features_direct)
      encoded = parsed['image_raw_ldseries']
      labels_encoded = parsed['labels']
      decoded = tf.io.decode_raw(encoded, tf.uint16)
      label = tf.io.decode_raw(labels_encoded, tf.int8)
      dates = tf.io.decode_raw(parsed['dates'], tf.int64)
      weight = tf.io.decode_raw(parsed['weights'], tf.float32)
      decoded = tf.reshape(decoded,[-1,4,42,42])
      return tid, dates, parsed['localid'], decoded, label, weight
    
    t1 = parseRecordDirect('filename here')
    dataset = t1.map(preprocessDirect, num_parallel_calls=tf.data.experimental.AUTOTUNE)
    
    #
    

    Class Definition:

    • 0: clear
    • 1: opaque cloud
    • 2: thin cloud
    • 3: haze
    • 4: cloud shadow
    • 5: snow

    Dataset Construction:

    First, we randomly generate 500 points for each tile, and all these points are aligned to the pixel grid center of the subdatasets in 60m resolution (eg. B10) for consistence when comparing with other products.
    It is because that other cloud detection method may use the cirrus band as features, which is in 60m resolution.

    Then, the time series image patches of two shapes are cropped with each point as the center.
    The patches of shape \(42 \times 42\) are cropped from the bands in 10m resolution (B2, B3, B4, B8) and are used to construct this dataset.
    And the patches of shape \(348 \times 348\) are cropped from the True Colour Image (TCI, details see sentinel-2 user guide) file and are used to interpreting class labels.

    The samples with a large number of timestamps could be time-consuming in the IO stage, thus the time series patches are divided into different groups with timestamps not exceeding 100 for every group.

  3. Z

    Data from: TimeSpec4LULC: A Smart-Global Dataset of Multi-Spectral Time...

    • data.niaid.nih.gov
    • produccioncientifica.ugr.es
    • +3more
    Updated Feb 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rohaifa Khaldi (2022). TimeSpec4LULC: A Smart-Global Dataset of Multi-Spectral Time Series of MODIS Terra-Aqua from 2000 to 2021 for Training Machine Learning models to perform LULC Mapping [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5020023
    Explore at:
    Dataset updated
    Feb 4, 2022
    Dataset provided by
    Rohaifa Khaldi
    Domingo Alcaraz-Segura
    Siham Tabik
    Yassir Benhammou
    Emilio Guirado
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    TimeSpec4LULC is a smart open-source global dataset of multi-spectral time series for 29 Land Use and Land Cover (LULC) classes ready to train machine learning models. It was built based on the seven spectral bands of the MODIS sensors at 500 m resolution from 2000 to 2021 (262 observations in each time series). Then, was annotated using spatial-temporal agreement across the 15 global LULC products available in Google Earth Engine (GEE).

    TimeSpec4LULC contains two datasets: the original dataset distributed over 6,076,531 pixels, and the balanced subset of the original dataset distributed over 29000 pixels.

    The original dataset contains 30 folders, namely "Metadata", and 29 folders corresponding to the 29 LULC classes. The folder "Metadata" holds 29 different CSV files describing the metadata of the 29 LULC classes. The remaining 29 folders contain the time series data for the 29 LULC classes. Each folder holds 262 CSV files corresponding to the 262 months. Inside each CSV file, we provide the seven values of the spectral bands as well as the coordinates for all the LULC class-related pixels.

    The balanced subset of the original dataset contains the metadata and the time series data for 1000 pixels per class representative of the globe. It holds 29 different JSON files following the names of the 29 LULC classes.

    The features of the dataset are:

    • ".geo": the geometry and coordinates (longitude and latitude) of the pixel center.

    • "ADM0_Code": the GAUL country code.

    • "ADM1_Code": the GAUL first-level administrative unit code.

    • GHM_Index": the average of the global human modification index.

    • "Products_Agreement_Percentage": the agreement percentage over the 15 global LULC products available in GEE.

    • "Temporal_Availability_Percentage": the percentage of non-missing values in each band.

    • "Pixel_TS": the time series values of the seven spectral bands.

  4. f

    Collections of two types of spatial autocorrelation functions and the...

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanguang Chen (2023). Collections of two types of spatial autocorrelation functions and the extended results. [Dataset]. http://doi.org/10.1371/journal.pone.0249589.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yanguang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Collections of two types of spatial autocorrelation functions and the extended results.

  5. m

    Understory species map in Connecticut US

    • data.mendeley.com
    Updated Apr 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiucheng Yang (2023). Understory species map in Connecticut US [Dataset]. http://doi.org/10.17632/rschxhwgvw.3
    Explore at:
    Dataset updated
    Apr 27, 2023
    Authors
    Xiucheng Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut, United States
    Description

    We created maps of four understory classes (i.e., native shrubs of greenbrier and mountain laurel, and invasive shrubs of barberry and the assemblage of mixed invasive) at 10 m resolution in Connecticut’s deciduous forest in 2020. A harmonic time series model and three years of Sentinel-2 time series from 2019 to 2021 were used to classify understory species based on their unique, intra-annual phenology characteristics. The time series model coefficients captured the subtle phenology differences and created synthetic cloud-free images within a short temporal window (e.g., on the 100th and 120th day of year) in the spring prior to canopy leaf-on (hereafter called ‘observe window’), in which Sentinel-2 data penetrated the deciduous overstory canopy and observed the unique trajectories of different understory species due to their phenology differences. As the different conditions of leaf growth in the observation window presented distinct spatial patterns within deciduous forests, we also calculated multiple texture features (i.e., mean, second moment, and contrast from gray level co-occurrence matrix) based on the synthetic images created within the observation window. By using the spectral, temporal, and spatial features as input variables from dense Sentinel-2 data, auxiliary data (i.e., LiDAR and soil drainage layer), a random forest classifier, and a new strategy to iteratively select representative samples (namely ISRS), understory species maps were created with an overall accuracy of approximately 93%, and the user’s and producer’s accuracies varied from 39% to 99% for the three mapped understory species and one assemblage of species. The proposed method created an accurate binary map of understory presence with an overall accuracy of 95%, a producer’s accuracy of 84%, and user’s accuracy of 68%. Additionally, we separated the invasive (i.e. barberry and mixed invasive of multi-flora rose, oriental bittersweet, honeysuckle, winged euonymus, and autumn olive) and native (greenbrier and mountain laurel) species with an overall accuracy of 94%. We estimated that the invasive species cover an area of 649.33±140.59 km2, which occupies a large proportion (~53%) of the shrub understory in Connecticut’s deciduous forests. With enough accurate training data collected, this classification strategy has the potential to be applied at a much larger spatial extent than Connecticut within the Sentinel-2 era.

  6. f

    Datasets of urban population and railway distances in 2000 for calculating...

    • plos.figshare.com
    xlsx
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanguang Chen (2023). Datasets of urban population and railway distances in 2000 for calculating spatial autocorrelation and partial autocorrelation functions. [Dataset]. http://doi.org/10.1371/journal.pone.0249589.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yanguang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This file contains the original or preliminarily processed data of 2000 used in this paper. It provides two complete processes of computing spatial autocorrelation function (ACF) and partial autocorrelation function (PACF). (XLSX)

  7. g

    Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan...

    • dataservices.gfz-potsdam.de
    Updated 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert Behling; Sigrid Roessner (2020). Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan derived from multi-sensor optical satellite time series data (1986 – 2013) [Dataset]. http://doi.org/10.5880/gfz.1.4.2020.002
    Explore at:
    Dataset updated
    2020
    Dataset provided by
    datacite
    GFZ Data Services
    Authors
    Robert Behling; Sigrid Roessner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    German Aerospace Centerhttp://dlr.de/
    Bundesministerium für Bildung und Forschung
    Description

    Multi-temporal landslide inventories are important information for the understanding of landslide dynamics and related predisposing and triggering factors, and thus a crucial prerequisite for probabilistic hazard and risk assessment. Despite the great importance of these inventories, they do not exist for many landslide prone regions in the world. In this context, the recently evolving global-scale availability of high temporal and spatial resolution optical satellite imagery (RapidEye, Sentinel-2A/B, planet) has opened up new opportunities for the creation of these multi-temporal inventories. To derive such multi-temporal landslide inventories, a semi-automated spatiotemporal landslide mapper was developed at the Remote Sensing Section of the GFZ Potsdam being capable of deriving post-failure landslide objects (polygons) from multi-sensor optical satellite time series data (Behling et al., 2016). The developed approach represents an extension of the original methodology (Behling et al., 2014, Behling and Roessner, 2020) and facilitates the integration of optical time series data acquired by different satellite systems. The goal of combining satellite data originating from variable sensor systems has been the establishment of longest possible time series for retrospective systematic assessment of multi-temporal landslide activity at highest possible temporal and spatial resolution. We applied the developed approach to a 2500 km² study area in Southern Kyrgyzstan using an optical satellite database acquired by the Landsat TM/ETM+, SPOT 1/5, IRS1-C LISSIII, ASTER, and RapidEye sensor systems covering a time period between 1986 and 2013. A multi-temporal landslide inventory from 2009-2013 derived from RapidEye satellite time series data is available as separate publications (Behling et al., 2014; Behling and Roessner, 2020). The resulting systematic multi-temporal landslide inventory being subject of this data publication is supplementary to the article of Behling et al. (2016), which describes the extended spatiotemporal landslide mapper in detail. This multi-sensor approach prioritizes most suitable images within the available multi-sensor satellite time series using parameters, such as spatial resolution, cloud coverage, similarity of sensor characteristics and seasonality related to vegetation characteristics with the goal of establishing a robust back-bone time series for initial detection of possible landslide objects. In a second step, this initial analysis gets more refined in order to achieve the best possible approximation of the date of landslide occurrence. For a more detailed description of the methodology of the extended spatiotemporal landslide mapper, please see Behling et al. (2016). In general, this landslide mapper detects landslide objects by analyzing temporal NDVI-based vegetation cover changes and relief-oriented parameters in a rule-based approach combining pixel- and object-based analysis. Typical landslide-related vegetation changes comprise abrupt disturbances of vegetation cover in the result of the actual failure as well as post-failure revegetation which usually happens at a slower pace compared to vegetation growth in the surrounding undisturbed areas, since the displaced landslide masses are susceptible to subsequent erosion and reactivation processes. The resulting landslide-specific temporal surface cover dynamics in form of temporal trajectories is used as input information to identify freshly occurred landslides and to separate them from other temporal variations in the surrounding vegetation cover (e.g., seasonal vegetation changes or changes due to agricultural activities) and from permanently non-vegetated areas (e.g., urban non-vegetated areas, water bodies, rock outcrops). The data are provided in vector format (polygons) in form of a standard shapefile contained in the zip-file 2020-002_Behling_et-al_2016_landslide_inventory_SouthernKyrgyzstan_1986_2013.zip and are described in more detail in the associated data description.

  8. d

    Data from: Cosmos: A data-driven probabilistic time series simulator for...

    • search.dataone.org
    • datadryad.org
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arunava Nag; Floris van Breugel (2025). Cosmos: A data-driven probabilistic time series simulator for chemical plumes across spatial scales [Dataset]. http://doi.org/10.5061/dryad.j3tx95xss
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Arunava Nag; Floris van Breugel
    Description

    The development of robust odor navigation strategies for automated environmental monitoring applications requires realistic simulations of odor time series for agents moving across large spatial scales. Traditional approaches that rely on computational fluid dynamics (CFD) methods can capture the spatiotemporal dynamics of odor plumes, but are impractical for large-scale simulations due to their computational expense. On the other hand, puff-based simulations, although computationally tractable for large scales and capable of capturing the stochastic nature of plumes, fail to reproduce naturalistic odor statistics. Here, we present COSMOS (Configurable Odor Simulation Model over Scalable Spaces), a data-driven probabilistic framework that synthesizes realistic odor time series from spatial and temporal features of real datasets. COSMOS generates similar distributions of key statistical features such as whiff frequency, duration, and concentration as observed in real data, while dramatic..., , # COSMOS: A Data-Driven Probabilistic Time Series Simulator for Chemical Plumes Across Spatial Scales

    The development of robust odor navigation strategies for automated environmental monitoring applications requires realistic simulations of odor time series for agents moving across large spatial scales. Traditional approaches that rely on computational fluid dynamics (CFD) methods can capture the spatiotemporal dynamics of odor plumes, but are impractical for large-scale simulations due to their computational expense. On the other hand, puff-based simulations, although computationally tractable for large scales and capable of capturing the stochastic nature of plumes, fail to reproduce naturalistic odor statistics. Here, we present COSMOS (Configurable Odor Simulation Model over Scalable Spaces), a data-driven probabilistic framework that synthesizes realistic odor time series from spatial and temporal features of real datasets. COSMOS generates similar distributions of key statistical...,

  9. a

    Visualize A Space Time Cube in 3D

    • gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com
    • hub.arcgis.com
    Updated Dec 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Society for Conservation GIS (2020). Visualize A Space Time Cube in 3D [Dataset]. https://gemelo-digital-en-arcgis-gemelodigital.hub.arcgis.com/maps/acddde8dae114381889b436fa0ff4b2f
    Explore at:
    Dataset updated
    Dec 3, 2020
    Dataset authored and provided by
    Society for Conservation GIS
    Description

    Stamp Out COVID-19An apple a day keeps the doctor away.Linda Angulo LopezDecember 3, 2020https://theconversation.com/coronavirus-where-do-new-viruses-come-from-136105SNAP Participation Rates, was explored and analysed on ArcGIS Pro, the results of which can help decision makers set up further SNAP-D initiatives.In the USA foods are stored in every State and U.S. territory and may be used by state agencies or local disaster relief organizations to provide food to shelters or people who are in need.US Food Stamp Program has been ExtendedThe Supplemental Nutrition Assistance Program, SNAP, is a State Organized Food Stamp Program in the USA and was put in place to help individuals and families during this exceptional time. State agencies may request to operate a Disaster Supplemental Nutrition Assistance Program (D-SNAP) .D-SNAP Interactive DashboardAlmost all States have set up Food Relief Programs, in response to COVID-19.Scroll Down to Learn more about the SNAP Participation Analysis & ResultsSNAP Participation AnalysisInitial results of yearly participation rates to geography show statistically significant trends, to get acquainted with the results, explore the following 3D Time Cube Map:Visualize A Space Time Cube in 3Dhttps://arcg.is/1q8LLPnetCDF ResultsWORKFLOW: a space-time cube was generated as a netCDF structure with the ArcGIS Pro Space-Time Mining Tool : Create a Space Time Cube from Defined Locations, other tools were then used to incorporate the spatial and temporal aspects of the SNAP County Participation Rate Feature to reveal and render statistically significant trends about Nutrition Assistance in the USA.Hot Spot Analysis Explore the results in 2D or 3D.2D Hot Spotshttps://arcg.is/1Pu5WH02D Hot Spot ResultsWORKFLOW: Hot Spot Analysis, with the Hot Spot Analysis Tool shows that there are various trends across the USA for instance the Southeastern States have a mixture of consecutive, intensifying, and oscillating hot spots.3D Hot Spotshttps://arcg.is/1b41T43D Hot Spot ResultsThese trends over time are expanded in the above 3D Map, by inspecting the stacked columns you can see the trends over time which give result to the overall Hot Spot Results.Not all counties have significant trends, symbolized as Never Significant in the Space Time Cubes.Space-Time Pattern Mining AnalysisThe North-central areas of the USA, have mostly diminishing cold spots.2D Space-Time Mininghttps://arcg.is/1PKPj02D Space Time Mining ResultsWORKFLOW: Analysis, with the Emerging Hot Spot Analysis Tool shows that there are various trends across the USA for instance the South-Eastern States have a mixture of consecutive, intensifying, and oscillating hot spots.Results ShowThe USA has counties with persistent malnourished populations, they depend on Food Aide.3D Space-Time Mininghttps://arcg.is/01fTWf3D Space Time Mining ResultsIn addition to obvious planning for consistent Hot-Hot Spot Areas, areas oscillating Hot-Cold and/or Cold-Hot Spots can be identified for further analysis to mitigate the upward trend in food insecurity in the USA, since 2009 which has become even worse since the outbreak of the COVID-19 pandemic.After Notes:(i) The Johns Hopkins University has an Interactive Dashboard of the Evolution of the COVID-19 Pandemic.Coronavirus COVID-19 (2019-nCoV)(ii) Since March 2020 in a Response to COVID-19, SNAP has had to extend its benefits to help people in need. The Food Relief is coordinated within States and by local and voluntary organizations to provide nutrition assistance to those most affected by a disaster or emergency.Visit SNAPs Interactive DashboardFood Relief has been extended, reach out to your state SNAP office, if you are in need.(iii) Follow these Steps to build an ArcGIS Pro StoryMap:Step 1: [Get Data][Open An ArcGIS Pro Project][Run a Hot Spot Analysis][Review analysis parameters][Interpret the results][Run an Outlier Analysis][Interpret the results]Step 2: [Open the Space-Time Pattern Mining 2 Map][Create a space-time cube][Visualize a space-time cube in 2D][Visualize a space-time cube in 3D][Run a Local Outlier Analysis][Visualize a Local Outlier Analysis in 3DStep 3: [Communicate Analysis][Identify your Audience & Takeaways][Create an Outline][Find Images][Prepare Maps & Scenes][Create a New Story][Add Story Elements][Add Maps & Scenes] [Review the Story][Publish & Share]A submission for the Esri MOOCSpatial Data Science: The New Frontier in AnalyticsLinda Angulo LopezLauren Bennett . Shannon Kalisky . Flora Vale . Alberto Nieto . Atma Mani . Kevin Johnston . Orhun Aydin . Ankita Bakshi . Vinay Viswambharan . Jennifer Bell & Nick Giner

  10. f

    Spatial-Temporal Analysis of Environmental Data of North Beijing District...

    • plos.figshare.com
    application/x-rar
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Xiang; Xuezhi Wang; Lihua He; Wenyong Wang; William Moran (2023). Spatial-Temporal Analysis of Environmental Data of North Beijing District Using Hilbert-Huang Transform [Dataset]. http://doi.org/10.1371/journal.pone.0167662
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Yu Xiang; Xuezhi Wang; Lihua He; Wenyong Wang; William Moran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Chaoyang, Beijing
    Description

    Temperature, solar radiation and water are major important variables in ecosystem models which are measurable via wireless sensor networks (WSN). Effective data analysis is necessary to extract significant spatial and temporal information. In this work, information regarding the long term variation of seasonal field environment conditions is explored using Hilbert-Huang transform (HHT) based analysis on the wireless sensor network data collection. The data collection network, consisting of 36 wireless nodes, covers an area of 100 square kilometres in Yanqing, the northwest of Beijing CBD, in China and data collection involves environmental parameter observations taken over a period of three months in 2011. The analysis used the empirical mode decomposition (EMD/EEMD) to break a time sequence of data down to a finite set of intrinsic mode functions (IMFs). Both spatial and temporal properties of data explored by HHT analysis are demonstrated. Our research shows potential for better understanding the spatial-temporal relationships among environmental parameters using WSN and HHT.

  11. d

    i12 CalSIMII InflowData Timeseries

    • catalog.data.gov
    • data.ca.gov
    • +4more
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i12 CalSIMII InflowData Timeseries [Dataset]. https://catalog.data.gov/dataset/i12-calsimii-inflowdata-timeseries-589a4
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset provided by
    California Department of Water Resources
    Description

    The i12_InflowData dataset is a point feature class containing 33 point locations representing approximate reservoir inflow locations. Spatial references were developed during the Water Storage Investment Program (WSIP) climate change study conducted in 2016. A related table of timeseries data is provided that corresponds to each of these point locations. Timeseries data reflect a simulation period from 10/31/1921 through 9/30/2011.

  12. u

    Landscape Change Monitoring System (LCMS) Alaska Annual Change

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +2more
    bin
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) Alaska Annual Change [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_Southeast_Alaska_Annual_Change_Image_Service_/25974103
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It supplies LCMS Change classes for each year that are a refinement of the modeled LCMS Change classes (Slow Loss, Fast Loss, and Gain) and provide information on the cause of landscape change. See additional information about Change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS Change, Land Cover, and Land Use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, Cloud Score + (Pasquarella et al., 2023), and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: Change, Land Cover, and Land Use. At its foundation, Change maps areas of Disturbance, Vegetation Successional Growth, and Stable landscape. More detailed levels of Change products are available and are intended to address needs centered around monitoring causes and types of variations in vegetation cover, water extent, or snow/ice extent that may or may not result in a transition of land cover and/or land use. Change, Land Cover, and Land Use are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Helmer, E. H., Ramos, O., del MLopez, T., Quinonez, M., and Diaz, W. (2002). Mapping the forest type and Land Cover of Puerto Rico, a component of the Caribbean biodiversity hotspot. Caribbean Journal of Science, (Vol. 38, Issue 3/4, pp. 165-183)Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pasquarella, V. J., Brown, C. F., Czerwinski, W., and Rucklidge, W. J. (2023). Comprehensive Quality Assessment of Optical Satellite Imagery Using Weakly Supervised Video Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2124-2134)Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual Land Cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261Pesaresi, M. and Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: http://data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EAStehman, S.V. (2014). Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. In International Journal of Remote Sensing (Vol. 35, pp. 4923-4939). https://doi.org/10.1080/01431161.2014.930207USDA National Agricultural Statistics Service Cropland Data Layer (2023). Published crop-specific data layer [Online]. Available at https://nassgeodata.gmu.edu/CropScape/ (accessed 2024). USDA-NASS, Washington, DC.U.S. Geological Survey (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mU.S. Geological Survey (2023). Landsat Collection 2 Known Issues, accessed March 2023 at https://www.usgs.gov/landsat-missions/landsat-collection-2-known-issuesWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAYang, L., Jin, S., Danielson, P., Homer, C., Gass, L., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Grannemann, B., Rigge, M., and Xian, G. (2018). A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies (https://www.sciencedirect.com/science/article/abs/pii/S092427161830251X), (pp. 108-123)Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of Land Cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011 This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  13. u

    Landscape Change Monitoring System (LCMS) CONUS Change Attribution (Image...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    bin
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Landscape Change Monitoring System (LCMS) CONUS Change Attribution (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Change_Attribution_Image_Service_/25973089
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS modeled land use classes for each year. See additional information about land use in the Entity_and_Attribute_Information section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include annual Landsat and Sentinel 2 composites, outputs from the LandTrendr and CCDC change detection algorithms, and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). The raw composite values, LandTrendr fitted values, pair-wise differences, segment duration, change magnitude, and slope, and CCDC September 1 sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences, along with elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the National Elevation Dataset (NED), are used as independent predictor variables in a Random Forest (Breiman, 2001) model. Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss, fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the Landsat time series and serve as the foundational products for LCMS.References:Breiman, L. (2001). Machine Learning (Vol. 45, Issue 3, pp. 261-277). https://doi.org/10.1023/a:1017934522171 Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012 Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010 Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031 Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Weiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoServiceFor complete information, please visit https://data.gov.

  14. f

    Data from: Bayesian Nonparametric Joint Mixture Model for Clustering...

    • tandf.figshare.com
    • search.datacite.org
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Youngmin Lee; Heeyoung Kim (2023). Bayesian Nonparametric Joint Mixture Model for Clustering Spatially Correlated Time Series [Dataset]. http://doi.org/10.6084/m9.figshare.8327048.v3
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Youngmin Lee; Heeyoung Kim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We develop a Bayesian nonparametric joint mixture model for clustering spatially correlated time series based on both spatial and temporal similarities. In the temporal perspective, the pattern of a time series is flexibly modeled as a mixture of Gaussian processes, with a Dirichlet process (DP) prior over mixture components. In the spatial perspective, the spatial location is incorporated as a feature for clustering, like a time series being incorporated as a feature. Namely, we model the spatial distribution of each cluster as a DP Gaussian mixture density. For the proposed model, the number of clusters does not need to be specified in advance, but rather is automatically determined during the clustering procedure. Moreover, the spatial distribution of each cluster can be flexibly modeled with multiple modes, without determining the number of modes or specifying spatial neighborhood structures in advance. Variational inference is employed for the efficient posterior computation of the proposed model. We validate the proposed model using simulated and real-data examples. Supplementary materials for the article are available online.

  15. GeoPlant: Spatial Plant Species Prediction Dataset

    • kaggle.com
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    picekl (2025). GeoPlant: Spatial Plant Species Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/picekl/geoplant
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 17, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    picekl
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    🌿 Welcome to the GeoPlant dataset hub on Kaggle! 🌍

    This dataset provides pre-extracted features from multimodal environmental data and expert-verified species observations, ready to be integrated into your models. Whether you're here for research, experimentation, or competition, you're in the right place!

    🔎 Check out the key resources below to get started: | Resource | Description | Link | | ------------------------------ | -------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------- | | 📄 Dataset Paper | NeurIPS 2024 paper detailing the dataset, benchmark setup, etc. | NeurIPS Paper (PDF) | | | 🧠 GitHub Repository | Codebase with data loaders, baseline models, and utilities | GeoPlant Repo | | 🚀 Starter Notebooks | Baseline models, multimodal pipelines, and training scripts | GeoPlant Code on Kaggle | | 📦 Full Dataset | All provided data including the Presence-Only (PO) species observations. | GeoPlant Seafile |

    Observations data

    The species related training data comprises: 1. Presence-Absence (PA) surveys: including around 90 thousand surveys with roughly 10,000 species of the European flora. The presence-absence data (PA) is provided to compensate for the problem of false-absences of PO data and calibrate models to avoid associated biases. 2. Presence-Only (PO) occurrences: combines around five million observations from numerous datasets gathered from the Global Biodiversity Information Facility (GBIF, www.gbif.org). This data constitutes the larger piece of the training data and covers all countries of our study area, but it has been sampled opportunistically (without standardized sampling protocol), leading to various sampling biases. The local absence of a species among PO data doesn't mean it is truly absent. An observer might not have reported it because it was difficult to "see" it at this time of the year, to identify it as not a monitoring target, or just unattractive.

    There are two CSVs with species occurrence data on the Seafile available for training. The detailed description is provided again on SeaFile in separate ReadME files in relevant folders. - The PO metadata are available in PresenceOnlyOccurences/GLC24_PO_metadata_train.csv. - The PA metadata are available in PresenceAbsenceSurveys/GLC24_PA_metadata_train.csv.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1518097%2Fcf0b0ee7f4ab8c1f7944fd7b3cd89d81%2FDataComposition.png?generation=1718369587083645&alt=media" alt="">

    Environmental data

    Besides species data, we provide spatialized geographic and environmental data as additional input variables (see Figure 1). More precisely, For each species observation location, we provide: 1. Satellite image patches: 3-band (RGB) and 1-band (NIR) 128x128 images at 10m resolution. 2. Satellite time series: Up to 20 years of values for six satellite bands (R, G, B, NIR, SWIR1, and SWIR2). 3. Environmental rasters Various climatic, pedologic, land use, and human footprint variables at the European scale. We provide scalar values, time-series, and original rasters from which you may extract local 2D images.

    There are three separate folders with the relevant data on the Seafile available for training. The detailed description is provided below and again on SeaFile in separate "Readme" files in relevant folders. - The Satellite image patches in ./SatellitePatches/. - The Satellite time series in ./SatelliteTimeSeries/. - The Environmental rasters in ./EnvironmentalRasters/.

    Figure. Illustration of of the environmental data for an occurrence (glcID=4859165) collected in northern Switzerland (lon=8.5744;lat=47.7704) in 2021. A. The 1280x1280m satellite image patches were sampled in 2021 around the observation. B. Quarterly time series of six satellite ...

  16. v

    Data on Factors Affecting Spatial and Temporal Variations of Annual Summer...

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data on Factors Affecting Spatial and Temporal Variations of Annual Summer Median Water Yields in Southwestern Michigan, 1945-2015 [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/data-on-factors-affecting-spatial-and-temporal-variations-of-annual-summer-median-wat-1945
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Michigan
    Description

    Median summer water yields and resultant flows are used in Michigan to regulate large water withdrawals to help prevent negative effects on characteristic fish populations. Large water withdrawals commonly are associated with irrigation in rural areas. In an earlier statewide report, an index-flow statistic for the period of record, defined as the median flow during the summer month of lowest flow, was used to characterize median summer flows and associated water yields. In this report, the annual series of median summer water yields for the period July 1 through September 30 within the period of record is used to characterize median summer water yields. For 27 streamgages included in both reports, the average index water yield was at the 37th percentile of the distribution of median summer water yields. In contrast to an index statistic, an annual time series provides a basis for detecting trends in median summer water yields and for determining basin, climatic, and irrigation factors affecting spatial and temporal variations in summer water yields. Daily flow data from 40 selected U.S. Geological Survey streamgages in southwestern Michigan were used in this analysis. Two mixed models were identified to estimate median summer water yields based on fixed basin characteristics and temporally varying climatic factors for 1945-2015. No irrigation data were available prior to 1970, so no irrigation variables were included in the mixed models for 1945-2015. Then, two mixed models were developed for 1970-2015, a period in which a partial annual series of county-level irrigation data also were available. One of the 1970-2015 mixed models provides a basis for estimating median summer water yields at sites in southwestern Michigan using an estimated trend component, and selected basin, climatic, and irrigation factors. Re-estimation of model parameters in this mixed model with more spatially precise information on irrigation withdrawals may improve model accuracy.

  17. Spatial and temporal patterns of plantation forests in the United States...

    • doi.pangaea.de
    • search.dataone.org
    • +1more
    html, tsv
    Updated Mar 16, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guangsheng Chen; Shufen Pan; Daniel J Hayes; Hanqin Tian (2017). Spatial and temporal patterns of plantation forests in the United States since the 1930s, links to gridded result files in different formats [Dataset]. http://doi.org/10.1594/PANGAEA.873558
    Explore at:
    tsv, htmlAvailable download formats
    Dataset updated
    Mar 16, 2017
    Dataset provided by
    PANGAEA
    Authors
    Guangsheng Chen; Shufen Pan; Daniel J Hayes; Hanqin Tian
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Variables measured
    File name, File size, File format, File content, Uniform resource locator/link to file
    Description

    Plantation forest area in the conterminous United States (CONUS) ranked second among the world's nations in the land area apportioned to forest plantation management. As compared to the naturally-regenerated forests, plantation forests demonstrate significant differences in biophysical characteristics, and biogeochemical and hydrological cycles as a result of more intensive management practices. Inventory data have been reported for multiple time periods at plot, state and regional scales across the CONUS, but there lacks the requisite annual and spatially-explicit plantation data set over a long-term period for analysis of the role of plantation management at regional or national scale. Through synthesizing multiple inventory data sources, this study developed methods to spatialize the time series plantation forest and tree species distribution data for the CONUS over the 1928-2012 time period. According to this new data set, plantation forest area increased from near zero in the 1930s to 268.27 thousand km2 by 2012, accounting for 8.65% of the total area of forest land area in the CONUS by 2012. Regionally, the South contained the highest proportion of plantation forests, accounting for about 19.34% of total forest land area in 2012. This time series and gridded data set developed here can be readily applied in regional Earth system modeling frameworks for assessing the impacts of plantation management practices on forest productivity, carbon and nitrogen stocks, and greenhouse gas (e.g., CO2, CH4 and N2O) and water fluxes at regional or national scales.

  18. h

    Fully Automatic Spatiotemporal Segmentation of 3D LiDAR Time Series for the...

    • heidata.uni-heidelberg.de
    zip
    Updated Feb 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Anders; Lukas Winiwarter; Hubert Mara; Roderik Lindenbergh; Sander E. Vos; Bernhard Höfle; Katharina Anders; Lukas Winiwarter; Hubert Mara; Roderik Lindenbergh; Sander E. Vos; Bernhard Höfle (2021). Fully Automatic Spatiotemporal Segmentation of 3D LiDAR Time Series for the Extraction of Natural Surface Changes [Source Code, Validation Material and Validation Results] [Dataset]. http://doi.org/10.11588/DATA/4HJHAA
    Explore at:
    zip(6405262913), zip(33717), zip(1169)Available download formats
    Dataset updated
    Feb 12, 2021
    Dataset provided by
    heiDATA
    Authors
    Katharina Anders; Lukas Winiwarter; Hubert Mara; Roderik Lindenbergh; Sander E. Vos; Bernhard Höfle; Katharina Anders; Lukas Winiwarter; Hubert Mara; Roderik Lindenbergh; Sander E. Vos; Bernhard Höfle
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/4HJHAAhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/4HJHAA

    Description

    This dataset comprises the source code to perform fully automatic spatiotemporal segmentation in time series of topographic surface change data (Python scripts). Further provided is the validation material of the resulting extraction of 4D objects-by-change at the study site of a sandy beach in The Netherlands, together with results of the validation as aggregated expert evaluations. Details on the method and workflow are given in the corresponding paper: Geographic observation benefits from the increasing availability of time series of 3D geospatial data, which allow analysis of change processes at high temporal detail and over extensive periods. In this context, the demand for advanced methods to detect and extract topographic surface changes from these 4D geospatial data emerges. Changes in natural scenes occur with varying magnitude, duration, spatial extent, and change rate, and the timing of their occurrence is not known. Standard pairwise change detection requires the selection of fixed analysis periods and the specification of magnitude thresholds to determine accumulation or erosion forms. In settings with continuous surface morphology and dynamic changes to the surface due to material transport, such change forms are typically temporary and may be missed or aggregated if they occur with spatial and/or temporal overlap. This is overcome with the extraction of 4D objects-by-change (4D-OBCs). These objects are obtained by firstly detecting surface changes in the temporal domain at locations in the scene. Subsequently, they are spatially delineated by considering the full history of surface change during region growing from the seed location of a detected change. To perform this spatio¬temporal segmentation systematically for entire 3D time series, we develop a fully automatic approach of seed detection and selection, combined with locally adaptive thresholding for region growing of individual objects with varying change properties. We apply our workflow to a five-months hourly time series of around 3,000 terrestrial laser scanning point clouds acquired for coastal monitoring at a sandy beach in The Netherlands. This provides 2,021 4D-OBCs as extracted accumulation or erosion forms. Results are validated through majority agreement of six expert analysts, who evaluate the segmentation performance at sample locations throughout the scene. Accordingly, our method extracts surface changes with an error of omission of 4.7 % and an error of commission of 16.6 %. We examine the results and provide considerations how postprocessing of segments can further improve the change analysis workflow. The developed approach thereby provides a powerful tool for automatic change analysis in 4D geospatial data, namely to detect and delineate natural surface changes across space and time.

  19. g

    Area by type of land cover and different spatial characteristics | gimi9.com...

    • gimi9.com
    Updated Jan 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Area by type of land cover and different spatial characteristics | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_51cda876-1d7f-4664-bb9a-3b2b1a8cacf3-stadt-zurich/
    Explore at:
    Dataset updated
    Jan 4, 2024
    Description

    In this data set, the area by land cover type is offered as a time series, namely by city district, by urban district, by entire city, per total area, per land area without forest and per settlement area. The data on the number of persons by land cover type can be found in the dataset «Population density according to different spatial characteristics» at https://data.stadt-zuerich.ch/dataset/bev_bestand_jahr_bevoelkerungsdichten_od5802

  20. National Land Cover Database (NLCD) Tree Canopy Cover (TCC) Conterminous...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Aug 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). National Land Cover Database (NLCD) Tree Canopy Cover (TCC) Conterminous United States [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/National_Land_Cover_Database_NLCD_Tree_Canopy_Cover_TCC_CONUS_Image_Service_/25973374
    Explore at:
    binAvailable download formats
    Dataset updated
    Aug 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    The USDA Forest Service (USFS) builds two versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass conterminous United States (CONUS), Coastal Alaska, Hawaii, and Puerto Rico and U.S. Virgin Islands (PRUSVI). The two versions of data within the v2023-5 TCC product suite include: The initial model outputs referred to as the Science data; And a modified version built for the National Land Cover Database and referred to as NLCD data. The NLCD product suite includes data for years 1985 through 2023. The NCLD data are processed to mask TCC from non-treed features such as water and non-tree crops, and to reduce interannual noise and smooth the NLCD time series. TCC pixel values range from 0 to 100 percent. The non-processing area is represented by value 254, and the background is represented by the value 255. The Science and NLCD tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms. For information on the Science data and processing steps see the Science metadata. Information on the NLCD data and processing steps are included here. Data Download and Methods Documents: - https://data.fs.usda.gov/geodata/rastergateway/treecanopycover/ This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Landscape_Change_Monitoring_System_LCMS_CONUS_Cause_of_Change_Image_Service_/26885563

Landscape Change Monitoring System (LCMS) CONUS Cause of Change (Image Service)

Explore at:
binAvailable download formats
Dataset updated
Jul 23, 2025
Dataset authored and provided by
U.S. Forest Service
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This product is part of the Landscape Change Monitoring System (LCMS) data suite. It shows LCMS change attribution classes for each year. See additional information about change in the Entity_and_Attribute_Information or Fields section below.LCMS is a remote sensing-based system for mapping and monitoring landscape change across the United States. Its objective is to develop a consistent approach using the latest technology and advancements in change detection to produce a "best available" map of landscape change. Because no algorithm performs best in all situations, LCMS uses an ensemble of models as predictors, which improves map accuracy across a range of ecosystems and change processes (Healey et al., 2018). The resulting suite of LCMS change, land cover, and land use maps offer a holistic depiction of landscape change across the United States over the past four decades.Predictor layers for the LCMS model include outputs from the LandTrendr and CCDC change detection algorithms and terrain information. These components are all accessed and processed using Google Earth Engine (Gorelick et al., 2017). To produce annual composites, the cFmask (Zhu and Woodcock, 2012), cloudScore, and TDOM (Chastain et al., 2019) cloud and cloud shadow masking methods are applied to Landsat Tier 1 and Sentinel 2a and 2b Level-1C top of atmosphere reflectance data. The annual medoid is then computed to summarize each year into a single composite. The composite time series is temporally segmented using LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018; Cohen et al., 2018). All cloud and cloud shadow free values are also temporally segmented using the CCDC algorithm (Zhu and Woodcock, 2014). LandTrendr, CCDC and terrain predictors can be used as independent predictor variables in a Random Forest (Breiman, 2001) model. LandTrendr predictor variables include fitted values, pair-wise differences, segment duration, change magnitude, and slope. CCDC predictor variables include CCDC sine and cosine coefficients (first 3 harmonics), fitted values, and pairwise differences from the Julian Day of each pixel used in the annual composites and LandTrendr. Terrain predictor variables include elevation, slope, sine of aspect, cosine of aspect, and topographic position indices (Weiss, 2001) from the USGS 3D Elevation Program (3DEP) (U.S. Geological Survey, 2019). Reference data are collected using TimeSync, a web-based tool that helps analysts visualize and interpret the Landsat data record from 1984-present (Cohen et al., 2010).Outputs fall into three categories: change, land cover, and land use. Change relates specifically to vegetation cover and includes slow loss (not included for PRUSVI), fast loss (which also includes hydrologic changes such as inundation or desiccation), and gain. These values are predicted for each year of the time series and serve as the foundational products for LCMS. References: Breiman, L. (2001). Random Forests. In Machine Learning (Vol. 45, pp. 5-32). https://doi.org/10.1023/A:1010933404324Chastain, R., Housman, I., Goldstein, J., Finco, M., and Tenneson, K. (2019). Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM top of atmosphere spectral characteristics over the conterminous United States. In Remote Sensing of Environment (Vol. 221, pp. 274-285). https://doi.org/10.1016/j.rse.2018.11.012Cohen, W. B., Yang, Z., and Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2911-2924). https://doi.org/10.1016/j.rse.2010.07.010Cohen, W. B., Yang, Z., Healey, S. P., Kennedy, R. E., and Gorelick, N. (2018). A LandTrendr multispectral ensemble for forest disturbance detection. In Remote Sensing of Environment (Vol. 205, pp. 131-140). https://doi.org/10.1016/j.rse.2017.11.015Foga, S., Scaramuzza, P.L., Guo, S., Zhu, Z., Dilley, R.D., Beckmann, T., Schmidt, G.L., Dwyer, J.L., Hughes, M.J., Laue, B. (2017). Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sensing of Environment, 194, 379-390. http://doi.org/10.1016/j.rse.2017.03.026Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. In Remote Sensing of Environment (Vol. 202, pp. 18-27). https://doi.org/10.1016/j.rse.2017.06.031Healey, S. P., Cohen, W. B., Yang, Z., Kenneth Brewer, C., Brooks, E. B., Gorelick, N., Hernandez, A. J., Huang, C., Joseph Hughes, M., Kennedy, R. E., Loveland, T. R., Moisen, G. G., Schroeder, T. A., Stehman, S. V., Vogelmann, J. E., Woodcock, C. E., Yang, L., and Zhu, Z. (2018). Mapping forest change using stacked generalization: An ensemble approach. In Remote Sensing of Environment (Vol. 204, pp. 717-728). https://doi.org/10.1016/j.rse.2017.09.029Kennedy, R. E., Yang, Z., and Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr - Temporal segmentation algorithms. In Remote Sensing of Environment (Vol. 114, Issue 12, pp. 2897-2910). https://doi.org/10.1016/j.rse.2010.07.008Kennedy, R., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W., and Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. In Remote Sensing (Vol. 10, Issue 5, p. 691). https://doi.org/10.3390/rs10050691Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., and Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42-57). https://doi.org/10.1016/j.rse.2014.02.015Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. W., Stehman, S. V., Horton, J. A., Dockter, D. J., Schroeder, T. A., Yang, Z., Cohen, W. B., Healey, S. P., and Loveland, T. R. (2020). Quality control and assessment of interpreter consistency of annual land cover reference data in an operational national monitoring program. In Remote Sensing of Environment (Vol. 238, p. 111261). https://doi.org/10.1016/j.rse.2019.111261U.S. Geological Survey. (2019). USGS 3D Elevation Program Digital Elevation Model, accessed August 2022 at https://developers.google.com/earth-engine/datasets/catalog/USGS_3DEP_10mWeiss, A.D. (2001). Topographic position and landforms analysis Poster Presentation, ESRI Users Conference, San Diego, CAZhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. In Remote Sensing of Environment (Vol. 118, pp. 83-94). https://doi.org/10.1016/j.rse.2011.10.028Zhu, Z., and Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. In Remote Sensing of Environment (Vol. 144, pp. 152-171). https://doi.org/10.1016/j.rse.2014.01.011This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

Search
Clear search
Close search
Google apps
Main menu