21 datasets found
  1. d

    Data from: Metropolitan Travel Survey Archive

    • datadiscoverystudio.org
    resource url
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2001). Metropolitan Travel Survey Archive [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/b483e9edc8ce467cbdef1a5bb7c11bb2/html
    Explore at:
    resource urlAvailable download formats
    Dataset updated
    Feb 1, 2001
    Description

    Link Function: information

  2. d

    Biologic Specimen and Data Repository Information Coordinating Center...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (NIH) (2023). Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) [Dataset]. https://catalog.data.gov/dataset/biologic-specimen-and-data-repository-information-coordinating-center-biolincc
    Explore at:
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    National Institutes of Health (NIH)
    Description

    The goal of BioLINCC is to facilitate and coordinate the existing activities of the NHLBI Biorepository and the Data Repository and to expand their scope and usability to the scientific community through a single web-based user interface.

  3. BENEFIT-REALISE Legacy Soil Profile Dataset

    • data.moa.gov.et
    html
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Institute of Agricultural Research (EIAR) (2023). BENEFIT-REALISE Legacy Soil Profile Dataset [Dataset]. http://doi.org/10.20372/eiar-rdm/HE7KTW
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Ethiopian Institute of Agricultural Research
    Description

    Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,776 observations with 37 variables; Profiles Layer Field = 1,493 observations with 64 variables; Profiles Layer Lab= 1,386 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template (adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Bilateral Ethiopian-Netherlands Effort for Food, Income and Trade (BENEFIT) Partnership which is a portfolio of five programs (ISSD, Cascape, ENTAG, SBN, and REALISE) and is funded by the government of the Kingdom of Netherlands through its embassy in Addis Ababa. The BENEFIT-REALISE program implements its interventions in 60 PSNP weredas in four regions (Tigray, Amhara, Oromia, and SNNPR).Accordingly, in 2019, BENEFIT-REALISE along with the MoA initiated a wereda-wide soil resource characterization and mapping task at1:50,000 scale in 15 BENEFIT-REALISE intervention weredas: 3 of Tigray, 6 of Amhara, 3 of Oromia, and 3 of SNNPR. Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. 10.13140/RG.2.2.31759.41123. Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b.

    TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.

  4. h

    Plasma Drift Database Repository at UML

    • hpde.io
    Updated May 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Plasma Drift Database Repository at UML [Dataset]. https://hpde.io/SMWG/Repository/UML/DriftBase.html
    Explore at:
    Dataset updated
    May 5, 2019
    License

    https://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/

    Description

    The DriftBase repository at University of Massachusetts Lowell is a relational database holding raw drift measurement data and derived Doppler skymap, ionospheric tilt, and bulk plasma drift velocity records for the Global Ionospheric Radio Observatory (GIRO). Public access to the DriftBase resource is arranged via Drift Explorer software available at http://umlcar.uml.edu/Drift-X.html and web access portal http://umlcar.uml.edu/DriftBase/

  5. A compilation of georeferenced and standardized legacy soil profile data for...

    • data.moa.gov.et
    html
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Institute of Agricultural Research (EIAR) (2023). A compilation of georeferenced and standardized legacy soil profile data for Sub Saharan Africa_Layering Ethiopia [Dataset]. http://doi.org/10.20372/eiar-rdm/DTXMXA
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Ethiopian Institute of Agricultural Research
    Area covered
    Ethiopia, Africa, Sub-Saharan Africa
    Description

    Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 1,842 observations with 37 variables; Profiles Layer Field = 6,365 observations with 64 variables; Profiles Layer Lab= 4,575 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template, adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Africa Soil Profile Database (Leenaars et al, 2014): The existing accessible compiled legacy soil profile database of Ethiopia prepared by the Africa soil profile database consisted of 1,842 legacy soil profile observations (Batjas et al., 2020; Leenaars et al., 2014).

    Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. https://hdl.handle.net/10568/110868 Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b. TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.

  6. f

    Data from: RawBeans: A Simple, Vendor-Independent, Raw-Data Quality-Control...

    • acs.figshare.com
    • ebi.ac.uk
    • +1more
    zip
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Morgenstern; Rotem Barzilay; Yishai Levin (2023). RawBeans: A Simple, Vendor-Independent, Raw-Data Quality-Control Tool [Dataset]. http://doi.org/10.1021/acs.jproteome.0c00956.s002
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    ACS Publications
    Authors
    David Morgenstern; Rotem Barzilay; Yishai Levin
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Every laboratory performing mass-spectrometry-based proteomics strives to generate high-quality data. Among the many factors that impact the outcome of any experiment in proteomics is the LC–MS system performance, which should be monitored within each specific experiment and also long term. This process is termed quality control (QC). We present an easy-to-use tool that rapidly produces a visual, HTML-based report that includes the key parameters needed to monitor the LC–MS system performance, with a focus on monitoring the performance within an experiment. The tool, named RawBeans, generates a report for individual files or for a set of samples from a whole experiment. We anticipate that it will help proteomics users and experts evaluate raw data quality independent of data processing. The tool is available at https://bitbucket.org/incpm/prot-qc/downloads. The mass-spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD022816.

  7. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  8. Z

    Data from: MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark...

    • data.niaid.nih.gov
    • explore.openaire.eu
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiancheng Yang (2023). MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4269851
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset provided by
    Rui Shi
    Bingbing Ni
    Jiancheng Yang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data repository for MedMNIST v1 is out of date! Please check the latest version of MedMNIST v2.

    Abstract

    We present MedMNIST, a collection of 10 pre-processed medical open datasets. MedMNIST is standardized to perform classification tasks on lightweight 28x28 images, which requires no background knowledge. Covering the primary data modalities in medical image analysis, it is diverse on data scale (from 100 to 100,000) and tasks (binary/multi-class, ordinal regression and multi-label). MedMNIST could be used for educational purpose, rapid prototyping, multi-modal machine learning or AutoML in medical image analysis. Moreover, MedMNIST Classification Decathlon is designed to benchmark AutoML algorithms on all 10 datasets; We have compared several baseline methods, including open-source or commercial AutoML tools. The datasets, evaluation code and baseline methods for MedMNIST are publicly available at https://medmnist.github.io/.

    Please note that this dataset is NOT intended for clinical use.

    We recommend our official code to download, parse and use the MedMNIST dataset:

    pip install medmnist

    Citation and Licenses

    If you find this project useful, please cite our ISBI'21 paper as: Jiancheng Yang, Rui Shi, Bingbing Ni. "MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis," arXiv preprint arXiv:2010.14925, 2020.

    or using bibtex: @article{medmnist, title={MedMNIST Classification Decathlon: A Lightweight AutoML Benchmark for Medical Image Analysis}, author={Yang, Jiancheng and Shi, Rui and Ni, Bingbing}, journal={arXiv preprint arXiv:2010.14925}, year={2020} }

    Besides, please cite the corresponding paper if you use any subset of MedMNIST. Each subset uses the same license as that of the source dataset.

    PathMNIST

    Jakob Nikolas Kather, Johannes Krisam, et al., "Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study," PLOS Medicine, vol. 16, no. 1, pp. 1–22, 01 2019.

    License: CC BY 4.0

    ChestMNIST

    Xiaosong Wang, Yifan Peng, et al., "Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases," in CVPR, 2017, pp. 3462–3471.

    License: CC0 1.0

    DermaMNIST

    Philipp Tschandl, Cliff Rosendahl, and Harald Kittler, "The ham10000 dataset, a large collection of multisource dermatoscopic images of common pigmented skin lesions," Scientific data, vol. 5, pp. 180161, 2018.

    Noel Codella, Veronica Rotemberg, Philipp Tschandl, M. Emre Celebi, Stephen Dusza, David Gutman, Brian Helba, Aadi Kalloo, Konstantinos Liopyris, Michael Marchetti, Harald Kittler, and Allan Halpern: “Skin Lesion Analysis Toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration (ISIC)”, 2018; arXiv:1902.03368.

    License: CC BY-NC 4.0

    OCTMNIST/PneumoniaMNIST

    Daniel S. Kermany, Michael Goldbaum, et al., "Identifying medical diagnoses and treatable diseases by image-based deep learning," Cell, vol. 172, no. 5, pp. 1122 – 1131.e9, 2018.

    License: CC BY 4.0

    RetinaMNIST

    DeepDR Diabetic Retinopathy Image Dataset (DeepDRiD), "The 2nd diabetic retinopathy – grading and image quality estimation challenge," https://isbi.deepdr.org/data.html, 2020.

    License: CC BY 4.0

    BreastMNIST

    Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy, "Dataset of breast ultrasound images," Data in Brief, vol. 28, pp. 104863, 2020.

    License: CC BY 4.0

    OrganMNIST_{Axial,Coronal,Sagittal}

    Patrick Bilic, Patrick Ferdinand Christ, et al., "The liver tumor segmentation benchmark (lits)," arXiv preprint arXiv:1901.04056, 2019.

    Xuanang Xu, Fugen Zhou, et al., "Efficient multiple organ localization in ct image using 3d region proposal network," IEEE Transactions on Medical Imaging, vol. 38, no. 8, pp. 1885–1898, 2019.

    License: CC BY 4.0

  9. New York Times US Coronavirus Database

    • redivis.com
    application/jsonl +7
    Updated May 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Columbia Data Platform Demo (2022). New York Times US Coronavirus Database [Dataset]. https://redivis.com/datasets/mgcj-asjsw1awy
    Explore at:
    application/jsonl, stata, sas, arrow, parquet, avro, spss, csvAvailable download formats
    Dataset updated
    May 10, 2022
    Dataset provided by
    Redivis Inc.
    Authors
    Columbia Data Platform Demo
    Time period covered
    Jan 21, 2020 - Mar 1, 2021
    Area covered
    Description

    Abstract

    Data collecting by local state and local health agencies. Compiled and visualized by The New York Times.

    Documentation

    This is the US Coronavirus data repository from The New York Times here U.S. coronavirus interactive site. This data includes COVID-19 cases and deaths reported by state and county. The New York Times compiled this data based on reports from state and local health agencies. More information on the data repository is available. For additional reporting and data visualizations, see The New York Times’ Interactive coronavirus data tool.

    Data source: https://github.com/nytimes/covid-19-data

  10. m

    Data from: Using Monitoring and Mechanistic Modeling to Improve...

    • data.mendeley.com
    Updated Jun 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finnian Cashel (2023). Using Monitoring and Mechanistic Modeling to Improve Understanding of Eutrophication in a Shallow New England Estuary [Dataset]. http://doi.org/10.17632/vywyyks4r6.1
    Explore at:
    Dataset updated
    Jun 7, 2023
    Authors
    Finnian Cashel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New England
    Description

    This data repository has been created to support Cashel et al. 2023 publication titled “Using Monitoring and Mechanistic Modeling to Understanding of Eutrophication in a Shallow New England Estuary”. This research served to explore the applicability of observed data and a dynamic, mechanistic fate and transport water quality model to assess eutrophication and hypoxia in the Pawcatuck River Estuary (New England, USA). Associated files include inputs from the Wood-Pawcatuck Watershed HSPF model, atmospheric forcing functions, continuous and discrete observed data in the Pawcatuck River Estuary, and additional information used to support this research. Refer to Section 6 of the Supplementary Materials associated with this research paper for a description of the contents of each file.

  11. o

    MIDAS Data User Guide for UK Land Observations, v1.1

    • explore.openaire.eu
    Updated Jul 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sunter Martyn (2020). MIDAS Data User Guide for UK Land Observations, v1.1 [Dataset]. http://doi.org/10.5281/zenodo.7357323
    Explore at:
    Dataset updated
    Jul 29, 2020
    Authors
    Sunter Martyn
    Area covered
    United Kingdom
    Description

    Previously curated at: http://cedadocs.ceda.ac.uk/1484/ The publish date on this item was its original published date. This item was previously associated with content (as an official url) at: https://www.metoffice.gov.uk/. This work was funded by: Met Office. Main files in this record: MIDAS_User_Guide_for_UK_Land_Observations_Version1.1.pdf Item originally deposited with Centre for Environmental Data Analysis (CEDA) document repository by Mr Martyn Sunter. Transferred to CEDA document repository community on Zenodo on 2022-11-24 This version been superseded. See related identifiers on this record. Background information on using data from the Met Office climate database, MIDAS. This version has minor updates to sections 2 and 3.

  12. u

    Institutional Repository Collection Metadata Facets

    • lib.uidaho.edu
    json
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Institutional Repository Collection Metadata Facets [Dataset]. https://www.lib.uidaho.edu/digital/ir/data.html
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 2, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Unique values and counts of metadata facet fields.

  13. u

    Institutional Repository Collection metadata subject counts

    • lib.uidaho.edu
    csv, json
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Institutional Repository Collection metadata subject counts [Dataset]. https://www.lib.uidaho.edu/digital/ir/data.html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 2, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Unique values and counts of metadata subject fields.

  14. n

    ia-reality-call

    • networkrepository.com
    csv
    Updated Oct 30, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Network Data Repository (2018). ia-reality-call [Dataset]. https://networkrepository.com/ia-reality-call.php
    Explore at:
    csvAvailable download formats
    Dataset updated
    Oct 30, 2018
    Dataset authored and provided by
    Network Data Repository
    License

    https://networkrepository.com/policy.phphttps://networkrepository.com/policy.php

    Description

    user-calls-user - Reality mining network data consists of human mobile phone call events between a small set of core users at the Massachusetts Institute of Technology (MIT) whom actually were assigned mobile phones for which all calls were collected. The data also contains calls from users outside this small set of users to other phones of individuals that were not actively monitored and thus these nodes generally have fewer edges than nodes within the small set of users at MIT that participated in the experiment and were assigned phones. The data was collected collected by the Reality Mining experiment performed in 2004 as part of the Reality Commons project. The data was collected over 9 months using 100 mobile phones. A node represents a person; an edge indicates a phone call or voicemail between two users. See http://realitycommons.media.mit.edu/realitymining.html for more details.

  15. CDC Text Corpora for Learners: HTML Mirrors of MMWR, EID, and PCD -...

    • healthdata.gov
    application/rdfxml +5
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). CDC Text Corpora for Learners: HTML Mirrors of MMWR, EID, and PCD - phng-4wgn - Archive Repository [Dataset]. https://healthdata.gov/dataset/CDC-Text-Corpora-for-Learners-HTML-Mirrors-of-MMWR/m453-dx8q
    Explore at:
    tsv, xml, csv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 28, 2025
    Description

    This dataset tracks the updates made on the dataset "CDC Text Corpora for Learners: HTML Mirrors of MMWR, EID, and PCD" as a repository for previous versions of the data and metadata.

  16. Crop response dataset collated from peer reviewed articles.

    • data.moa.gov.et
    • ethiopia.lsc-hubs.org
    html
    Updated Dec 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Institute of Agricultural Research (EIAR) (2023). Crop response dataset collated from peer reviewed articles. [Dataset]. http://doi.org/10.20372/eiar-rdm/DSRHTK
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Ethiopian Institute of Agricultural Research
    Description

    Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The crop response dataset (N=946 observations) is extracted, transformed, and uploaded into a harmonized template, consisting of 76 variables. "A comprehensive dataset specifically on crop response to fertilizers and is obtained from published journal articles, thesis and proceedings spanning at least 5 decades. It represents all the agriculturally productive regions of Ethiopia. The data contains information on region, crop type and soil type under which experiments were conducted, as well as application rates of nutrients (N, P, K, and other nutrients) as well as yields of the control and fertilized treatment on which crop response ratios are derived."

    Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. 10.13140/RG.2.2.31759.41123. Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.

  17. VHA Data Sharing Agreement Repository

    • catalog.data.gov
    • data.va.gov
    • +4more
    Updated May 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2021). VHA Data Sharing Agreement Repository [Dataset]. https://catalog.data.gov/dataset/vha-data-sharing-agreement-repository
    Explore at:
    Dataset updated
    May 1, 2021
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The VHA Data Sharing Agreement Repository serves as a centralized location to collect and report on agreements that share VHA data with entities outside of VA. It provides senior management an overall view of existing data sharing agreements; fosters productive sharing of health information with VHA's external partners; and streamlines data acquisition to improve data management responsibilities overall. Agreements that VHA has established with entities within the VA are not candidates for this Repository.

  18. Cascape Legacy Soil Profile Dataset

    • data.moa.gov.et
    html
    Updated Dec 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ethiopian Institute of Agricultural Research (EIAR) (2023). Cascape Legacy Soil Profile Dataset [Dataset]. http://doi.org/10.20372/eiar-rdm/WJR9W1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 30, 2023
    Dataset provided by
    Ethiopian Institute of Agricultural Research
    Description

    Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 2,612 observations with 37 variables; Profiles Layer Field = 6,150 observations with 64 variables; Profiles Layer Lab= 4,575 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template (adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Bilateral Ethiopian-Netherlands Effort for Food, Income and Trade (BENEFIT) Partnership which is a portfolio of five programs (ISSD, Cascape, ENTAG, SBN, and REALISE) and is funded by the government of the Kingdom of Netherlands through its embassy in Addis Ababa. The Cascape program has conducted several studies, including soil surveys and mappings in AGP weredas in Tigray, Amhara, Oromia,and SNNPR in Ethiopia. The program (then Cascape project) as a collaborator of MoA/ATA has produced a map-database and soildataset of the major soil types (at 250-m resolution) of the landscapes of the 30 Cascape intervention-AGP weredas studied in 2013-2015: 5 of Tigray, 5 of Amhara, 15 of Oromia, and 5 of SNNPR.

    Reference: Although soil and agronomy data collection in Ethiopia has begun over 60 years ago, the data are hardly accessible as they are scattered across different organizations, mostly held in the hands of individuals (Ashenafi et al.,2020; Tamene et al.,2022), which makes them vulnerable to permanent loss. Cognizant of the problem, the Coalition of the Willing (CoW) for data sharing and access was created in 2018 with joint support and coordination of the Alliance Bioversity-CIAT and GIZ (https://www.ethioagridata.com/index.html). Mobilizing its members, the CoW has embarked on data rescue operations including data ecosystem mapping, collation, and curation of the legacy data, which was put into the central data repository for its members and the wider data user’s community according to the guideline developed based on the FAIR data principles and approved by the CoW. So far, CoW managed to collate and rescue about 20,000 legacy soil profile data and over 38,000 crop responses to fertilizer data (Tamene et al.,2022). The legacy soil profile dataset (consisting of Profiles Site = 2,612 observations with 37 variables; Profiles Layer Field = 6,150 observations with 64 variables; Profiles Layer Lab= 4,575 observations with 76 variables) is extracted, transformed, and uploaded into a harmonized template (adapted from Batjes 2022; Leenaars et al, 2014) from the below source: Bilateral Ethiopian-Netherlands Effort for Food, Income and Trade (BENEFIT) Partnership which is a portfolio of five programs (ISSD, Cascape, ENTAG, SBN, and REALISE) and is funded by the government of the Kingdom of Netherlands through its embassy in Addis Ababa. The Cascape program has conducted several studies, including soil surveys and mappings in AGP weredas in Tigray, Amhara, Oromia,and SNNPR in Ethiopia. The program (then Cascape project) as a collaborator of MoA/ATA has produced a map-database and soildataset of the major soil types (at 250-m resolution) of the landscapes of the 30 Cascape intervention-AGP weredas studied in 2013-2015: 5 of Tigray, 5 of Amhara, 15 of Oromia, and 5 of SNNPR.

    Reference: Ashenafi, A., Tamene, L., and Erkossa, T. 2020. Identifying, Cataloguing, and Mapping Soil and Agronomic Data in Ethiopia. CIAT Publication No. 506. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 42 p. https://hdl.handle.net/10568/110868 Ashenafi, A., Erkossa, T., Gudeta, K., Abera, W., Mesfin, E., Mekete, T., Haile, M., Haile, W., Abegaz, A., Tafesse, D. and Belay, G., 2022. Reference Soil Groups Map of Ethiopia Based on Legacy Data and Machine Learning Technique: EthioSoilGrids 1.0. EGUsphere, pp.1-40. https://doi.org/10.5194/egusphere-2022-301 Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen, 2020b. TERMS: Access to the data is limited to the CoW members until the national soil and agronomy data-sharing directive of MoA is registered by the Ministry of Justice and released for implementation. DISCLAIMER: The dataset populated in the harmonized template consisting of 76 variables is extracted, transformed, and uploaded from the source document by the CoW. Hence, if any irregularities are observed, the data users have referred to the source document uploaded along with the dataset. Use of the dataset and any consequences arising from using it is the user’s sole responsibility.

    Tamene L; Erkossa T; Tafesse T; Abera W; Schultz S. 2021. A coalition of the Willing - Powering data-driven solutions for Ethiopian Agriculture. CIAT Publication No. 518. International Center for Tropical Agriculture (CIAT). Addis Ababa, Ethiopia. 34 p. https://www.ethioagridata.com/Resources/Powering%20Data-Driven%20Solutions%20for%20Ethiopian%20Agriculture.pdf. The Coalition of the Willing (CoW) website: https://www.ethioagridata.com/index.html. Batjes, N.H., 2022. Basic principles for compiling a profile dataset for consideration in WoSIS. CoP report, ISRIC–World Soil Information, Wageningen. Contents Summary, 4(1), p.3. Carvalho Ribeiro, E.D. and Batjes, N.H., 2020. World Soil Information Service (WoSIS)-Towards the standardization and harmonization of world soil data: Procedures Manual 2020. Elias, E.: Soils of the Ethiopian Highlands: Geomorphology and Properties, CASCAPE Project, 648 ALTERRA, Wageningen UR, the Netherlands, library.wur.nl/WebQuery/isric/2259099, 649 2016. Leenaars, J. G. B., van Oostrum, A.J.M., and Ruiperez ,G.M.: Africa Soil Profiles Database, Version 1.2. A compilation of georeferenced and standardised legacy soil profile data for Sub Saharan Africa (with dataset), ISRIC Report 2014/01, Africa Soil Information Service (AfSIS) project and ISRIC – World Soil Information, Wageningen, library.wur.nl/WebQuery/isric/2259472, 2014. Leenaars, J. G. B., Eyasu, E., Wösten, H., Ruiperez González, M., Kempen, B.,Ashenafi, A., and Brouwer, F.: Major soil-landscape resources of the cascape intervention woredas, Ethiopia: Soil information in support to scaling up of evidence-based best practices in agricultural production (with dataset), CASCAPE working paper series No. OT_CP_2016_1, Cascape. https://edepot.wur.nl/428596, 2016. Leenaars, J. G. B., Elias, E., Wösten, J. H. M., Ruiperez-González, M., and Kempen, B.: Mapping the major soil-landscape resources of the Ethiopian Highlands using random forest, Geoderma, 361, https://doi.org/10.1016/j.geoderma.2019.114067, 2020a. 740 . Leenaars, J. G. B., Ruiperez, M., González, M., Kempen, B., and Mantel, S.: Semi-detailed soil resource survey and mapping of REALISE woredas in Ethiopia, Project report to the BENEFIT-REALISE programme, December, ISRIC-World Soil Information, Wageningen,

  19. SOA - Service Registry and Repository

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated May 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). SOA - Service Registry and Repository [Dataset]. https://catalog.data.gov/dataset/soa-service-registry-and-repository-a2d95
    Explore at:
    Dataset updated
    May 22, 2025
    Dataset provided by
    Social Security Administrationhttp://www.ssa.gov/
    Description

    SOA is an approach utilizing reusable components or services in order to build applications by plugging in the appropriate components. It utilizes COTS databases as part of the SOA approach and architecture. A Services Registry and Repository is used to support the automation requirements for software distribution and management. The data contained is used for Web Service, Framework Component, and Legacy Utility, including technical information, such as interfaces for web services, as well as business information including application names, descriptions, owning organizations, and contact information.

  20. d

    Biospecimen Repository Access and Data Sharing (BRADS)

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (NIH) (2023). Biospecimen Repository Access and Data Sharing (BRADS) [Dataset]. https://catalog.data.gov/dataset/biospecimen-repository-access-and-data-sharing-brads
    Explore at:
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    National Institutes of Health (NIH)
    Description

    BRADS is a repository for data and biospecimens from population health research initiatives and clinical or interventional trials designed and implemented by NICHD’s Division of Intramural Population Health Research (DIPHR). Topics include human reproduction and development, pregnancy, child health and development, and women’s health. The website is maintained by DIPHR.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2001). Metropolitan Travel Survey Archive [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/b483e9edc8ce467cbdef1a5bb7c11bb2/html

Data from: Metropolitan Travel Survey Archive

Repository URL

Related Article
Explore at:
resource urlAvailable download formats
Dataset updated
Feb 1, 2001
Description

Link Function: information

Search
Clear search
Close search
Google apps
Main menu