100+ datasets found
  1. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jun 20, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  2. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Jun 23, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3382 points on June 23, 2025, gaining 0.65% from the previous session. Over the past month, the index has climbed 1.04% and is up 14.12% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.

  3. b

    Stock Prices Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Stock Prices Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-price
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  4. T

    BSE SENSEX Stock Market Index Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, BSE SENSEX Stock Market Index Data [Dataset]. https://tradingeconomics.com/india/stock-market
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 3, 1979 - Jun 24, 2025
    Area covered
    India
    Description

    India's main stock market index, the SENSEX, rose to 82080 points on June 24, 2025, gaining 0.22% from the previous session. Over the past month, the index has declined 0.12%, though it remains 5.16% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on June of 2025.

  5. M

    Exxon - 41 Year Stock Price History | XOM

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Exxon - 41 Year Stock Price History | XOM [Dataset]. https://www.macrotrends.net/stocks/charts/XOM/exxon/stock-price-history
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    The latest closing stock price for Exxon as of June 02, 2025 is 103.05. An investor who bought $1,000 worth of Exxon stock at the IPO in 1984 would have $40,929 today, roughly 41 times their original investment - a 9.54% compound annual growth rate over 41 years. The all-time high Exxon stock closing price was 122.12 on October 07, 2024. The Exxon 52-week high stock price is 126.34, which is 22.6% above the current share price. The Exxon 52-week low stock price is 97.80, which is 5.1% below the current share price. The average Exxon stock price for the last 52 weeks is 112.83. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.

  6. k

    DJ US Healthcare: Poised for Recovery? (Forecast)

    • kappasignal.com
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). DJ US Healthcare: Poised for Recovery? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dj-us-healthcare-poised-for-recovery.html
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    DJ US Healthcare: Poised for Recovery?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Jun 24, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 7628 points on June 24, 2025, gaining 1.20% from the previous session. Over the past month, the index has declined 2.55% and is down 0.45% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on June of 2025.

  8. History of MAG7 stocks (20 years)

    • kaggle.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IttiphoN (2025). History of MAG7 stocks (20 years) [Dataset]. https://www.kaggle.com/datasets/ittiphon/history-of-mag7-stocks-20-years
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    IttiphoN
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    1. Overview

    This dataset provides monthly stock price data for the MAG7 over the past 20 years (2004โ€“2024). The data includes key financial metrics such as opening price, closing price, highest and lowest prices, trading volume, and percentage change. The dataset is valuable for financial analysis, stock trend forecasting, and portfolio optimization.

    2. What is MAG7 ?

    MAG7 refers to the seven largest and most influential technology companies in the U.S. stock market : - Microsoft (MSFT) - Apple (AAPL) - Google (Alphabet, GOOGL) - Amazon (AMZN) - Nvidia (NVDA) - Meta (META) - Tesla (TSLA)

    These companies are known for their market dominance, technological innovation, and significant impact on global stock indices such as the S&P 500 and Nasdaq-100.

    3. Dataset Details

    The dataset consists of historical monthly stock prices of MAG7, retrieved from Investing.com. It provides an overview of how these stocks have performed over two decades, reflecting market trends, economic cycles, and technological shifts.

    4. Columns Descriptions

    • Date The recorded month and year (DD-MM-YYYY)
    • Price The closing price of the stock at the end of the month
    • Open The price at which the stock opened at the beginning of the month
    • High The highest stock price recorded in the month
    • Low The lowest stock price recorded in the month
    • Vol. The total trading volume for the month
    • Change % The percentage change in stock price compared to the previous month # 5. Data Source & Format The dataset was obtained from Investing.com and downloaded in CSV format. The data has been processed to ensure consistency and accuracy, with date formats standardized for time-series analysis. # 6. Potential Use Cases This dataset can be used for :
    • ๐Ÿ“ˆ Stock price trend analysis over 20 years
    • ๐Ÿ“Š Building financial models for long-term investing
    • ๐Ÿ”Ž Machine learning applications in stock market prediction
    • ๐Ÿ“‰ Evaluating market volatility and economic impact on MAG7 stocks

    7. Limitations & Considerations

    • โš ๏ธ The dataset is limited to monthly data, meaning short-term price fluctuations are not captured.
    • โš ๏ธ Trading volume (Vol.) may vary in availability due to differences in reporting.
    • โš ๏ธ External factors such as stock splits, dividends, and market crashes are not explicitly noted but may impact historical trends.
  9. d

    TagX - Stock market data | End of Day Pricing Data | Shares, Equities &...

    • datarade.ai
    .json, .csv, .xls
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2024). TagX - Stock market data | End of Day Pricing Data | Shares, Equities & bonds | Global Coverage | 10 years historical data [Dataset]. https://datarade.ai/data-products/stock-market-data-end-of-day-pricing-data-shares-equitie-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    TagX
    Area covered
    Kiribati, Guadeloupe, Equatorial Guinea, Pakistan, Guam, Japan, Niue, Germany, Mauritius, Yemen
    Description

    TagX is your trusted partner for stock market and financial data solutions. We specialize in delivering real-time and end-of-day data feeds that power software, trading algorithms, and risk management systems globally. Whether you're a financial institution, hedge fund, or individual investor, our reliable datasets provide essential insights into market trends, historical pricing, and key financial metrics.

    TagX is committed to precision and reliability in stock market data. Our comprehensive datasets include critical information such as date, open/close/high/low prices, trading volume, EPS, P/E ratio, dividend yield, and more. Tailor your dataset to match your specific requirements, choosing from a wide range of parameters and coverage options across primary listings on NASDAQ, AMEX, NYSE, and ARCA exchanges.

    Key Features of TagX Stock Market Data:

    Custom Dataset Requests: Customize your data feed to focus on specific metrics and parameters crucial to your trading strategy.

    Extensive Coverage: Access data from reputable exchanges and market participants, ensuring accuracy and completeness in your analyses.

    Flexible Pricing Models: Choose pricing structures based on your selected parameters, offering cost-effective solutions tailored to your needs.

    Why Choose TagX? Partner with TagX for precise, dependable, and customizable stock market data solutions. Whether you require real-time updates or end-of-day valuations, our datasets are designed to support informed decision-making and enhance your competitive edge in the financial markets. Trust TagX to deliver the data integrity and accuracy essential for maximizing your trading potential.

  10. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Jun 24, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, rose to 5316 points on June 24, 2025, gaining 1.80% from the previous session. Over the past month, the index has declined 1.48%, though it remains 7.69% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on June of 2025.

  11. k

    Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead?...

    • kappasignal.com
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/dow-jones-us-financial-services-index.html
    Explore at:
    Dataset updated
    Mar 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones U.S. Financial Services Index: Strength or Weakness Ahead?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. T

    Spain Stock Market Index (ES35) Data

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 21, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2012). Spain Stock Market Index (ES35) Data [Dataset]. https://tradingeconomics.com/spain/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Nov 21, 2012
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 6, 1991 - Jun 24, 2025
    Area covered
    Spain
    Description

    Spain's main stock market index, the ES35, rose to 14035 points on June 24, 2025, gaining 1.41% from the previous session. Over the past month, the index has declined 1.31%, though it remains 26.23% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Spain. Spain Stock Market Index (ES35) - values, historical data, forecasts and news - updated on June of 2025.

  13. H

    Dhaka Stock Exchange Historical Data (1999-2025)

    • dataverse.harvard.edu
    Updated Apr 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MD Abu Sayed Sunny (2025). Dhaka Stock Exchange Historical Data (1999-2025) [Dataset]. http://doi.org/10.7910/DVN/XIFYT1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    MD Abu Sayed Sunny
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Dhaka
    Description

    Dhaka Stock Exchange Historical Data Overview This dataset contains historical technical data from the Dhaka Stock Exchange (DSE), primarily collected from the official DSE website and supplemented with other publicly available online sources. It is intended solely for informational and research purposes. While every effort has been made to ensure the accuracy and completeness of the data, some inconsistencies or errors may still exist. Users are advised to independently verify any critical information before use. Data Summary: This dataset provides historical trading data for over 700 listed companies on the Dhaka Stock Exchange (DSE), covering the period from January 1999 to April 2025. The dataset consists of 1,684,249 rows and 7 columns, including the following fields: Trading Code: Ticker symbol of the company Date: Trading date Open: Opening price High: Highest price during the day Low: Lowest price during the day Close: Closing price Volume: Total shares traded on that day Notable Findings: The dataset reflects significant market cycles, including bullish and bearish trends, over two decades. Includes major economic events, such as: 2008 global financial crisis impact on DSE The 2010โ€“11 market crash in Bangladesh The effects of COVID-19 (2020โ€“21) on trading volume and volatility Historical price trajectories of major companies like BEXIMCO, SQUARE, GP, BATBC, etc., are well captured. Value of the Data: Offers a comprehensive, time-rich view of Bangladeshโ€™s capital market over 25+ years. Useful for quantitative finance, econometrics, and machine learning applications in time series forecasting. Enables comparative studies across sectors like banking, pharmaceuticals, telecom, textiles, etc. Suitable for academic research, policy analysis, and investment strategy development. Acts as a benchmark dataset for algorithm testing, especially in emerging market scenarios. Potential Use Cases: Financial modeling and stock price forecasting using machine learning Volatility and risk analysis across different timeframes Impact studies of global/regional events on stock performance Development of automated trading systems for the Bangladesh market Training data for university courses in finance, statistics, or data science Backtesting investment strategies and portfolio simulations Data visualization projects to explore long-term market trends

  14. BITCOIN Historical Datasets 2018-2025 Binance API

    • kaggle.com
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Novandra Anugrah (2025). BITCOIN Historical Datasets 2018-2025 Binance API [Dataset]. https://www.kaggle.com/datasets/novandraanugrah/bitcoin-historical-datasets-2018-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 11, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Novandra Anugrah
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Bitcoin Historical Data (2018-2024) - 15M, 1H, 4H, and 1D Timeframes

    Dataset Overview

    This dataset contains historical price data for Bitcoin (BTC/USDT) from January 1, 2018, to the present. The data is sourced using the Binance API, providing granular candlestick data in four timeframes: - 15-minute (15M) - 1-hour (1H) - 4-hour (4H) - 1-day (1D)

    This dataset includes the following fields for each timeframe: - Open time: The timestamp for when the interval began. - Open: The price of Bitcoin at the beginning of the interval. - High: The highest price during the interval. - Low: The lowest price during the interval. - Close: The price of Bitcoin at the end of the interval. - Volume: The trading volume during the interval. - Close time: The timestamp for when the interval closed. - Quote asset volume: The total quote asset volume traded during the interval. - Number of trades: The number of trades executed within the interval. - Taker buy base asset volume: The volume of the base asset bought by takers. - Taker buy quote asset volume: The volume of the quote asset spent by takers. - Ignore: A placeholder column from Binance API, not used in analysis.

    Data Sources

    Binance API: Used for retrieving 15-minute, 1-hour, 4-hour, and 1-day candlestick data from 2018 to the present.

    File Contents

    1. btc_15m_data_2018_to_present.csv: 15-minute interval data from 2018 to the present.
    2. btc_1h_data_2018_to_present.csv: 1-hour interval data from 2018 to the present.
    3. btc_4h_data_2018_to_present.csv: 4-hour interval data from 2018 to the present.
    4. btc_1d_data_2018_to_present.csv: 1-day interval data from 2018 to the present.

    Automated Daily Updates

    This dataset is automatically updated every day using a custom Python program.
    The source code for the update script is available on GitHub:
    ๐Ÿ”— Bitcoin Dataset Kaggle Auto Updater

    Licensing

    This dataset is provided under the CC0 Public Domain Dedication. It is free to use for any purpose, with no restrictions on usage or redistribution.

  15. k

    Dow Jones Financials Capped: A Spike or a Dive? (Forecast)

    • kappasignal.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones Financials Capped: A Spike or a Dive? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-financials-capped-spike-or.html
    Explore at:
    Dataset updated
    Apr 15, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones Financials Capped: A Spike or a Dive?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. WAVES-ETH Stock Market @Kraken

    • kaggle.com
    Updated Mar 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    olmatz (2022). WAVES-ETH Stock Market @Kraken [Dataset]. https://www.kaggle.com/datasets/olmatz/waveseth-stock-market-kraken/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 8, 2022
    Dataset provided by
    Kaggle
    Authors
    olmatz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Real and up to date stock market exchange of cryptocurrencies can be quite expensive and are hard to get. However, historical financial data are the starting point to develop algorithm(s) to analyze market trend and why not beat the market by predicting market movement.

    Content

    Data provided in this dataset are historical data from the beginning of WAVES-ETH pair market on Kraken exchange up to the present (2021 December). This data comes frome real trades on one of the most popular cryptocurrencies exchange.

    Trading history

    Historical market data, also known as trading history, time and sales or tick data, provides a detailed record of every trade that happens on Kraken exchange, and includes the following information: - Timestamp - The exact date and time of each trade. - Price - The price at which each trade occurred. - Volume - The amount of volume that was traded.

    OHLCVT

    In addition, OHLCVT data are provided for the most common period interval: 1 min, 5 min, 15 min, 1 hour, 12 hours and 1 day. OHLCVT stands for Open, High, Low, Close, Volume and Trades and represents the following trading information for each time period: - Open - The first traded price - High - The highest traded price - Low - The lowest traded price - Close - The final traded price - Volume - The total volume traded by all trades - Trades - The number of individual trades

    Don't hesitate to tell me if you need other period interval ๐Ÿ˜‰ ...

    Update

    This dataset will be updated every quarter to add new and up to date market trend. Let me know if you need an update more frequently.

    Inspiration

    Can you beat the market? Let see what you can do with these data!

  17. Samsung Stock Data 2024

    • kaggle.com
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umer Haddii (2024). Samsung Stock Data 2024 [Dataset]. https://www.kaggle.com/datasets/umerhaddii/samsung-stock-data-2024/versions/1
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 20, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Umer Haddii
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Samsung Group is a South Korean conglomerate behind Samsung Electronics, the world's largest manufacturer of DRAM, NAND flash memory, SSD, television, refrigerator, cell phones and smartphones.

    Market cap: $265.36 Billion USD

    As of November 2024 Samsung has a market cap of $265.36 Billion USD. This makes Samsung the world's 37th most valuable company by market cap according to our data. The market capitalization, commonly called market cap, is the total market value of a publicly traded company's outstanding shares and is commonly used to measure how much a company is worth.

    Content

    Geography: SK

    Time period: Jan 2007- November 2024

    Unit of analysis: Samsung Stock Data 2024

    Variables

    VariableDescription
    datedate
    openThe price at market open.
    highThe highest price for that day.
    lowThe lowest price for that day.
    closeThe price at market close, adjusted for splits.
    adj_closeThe closing price after adjustments for all applicable splits and dividend distributions. Data is adjusted using appropriate split and dividend multipliers, adhering to Center for Research in Security Prices (CRSP) standards.
    volumeThe number of shares traded on that day.

    Acknowledgements

    This dataset belongs to me. Iโ€™m sharing it here for free. You may do with it as you wish.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F416b4979bb4cb14fd67c074fdd79bc8d%2FScreenshot%202024-11-20%20174451.png?generation=1732106787272689&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F18335022%2F92ec4bb9683e7c0d4325ca5680a911bf%2FScreenshot%202024-11-20%20174553.png?generation=1732106801362941&alt=media" alt="">

  18. T

    NZX - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Nov 5, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). NZX - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/nzx:nz
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Nov 5, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jun 22, 2025
    Area covered
    New Zealand
    Description

    NZX stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  19. TRX-USD Stock Market @Kraken

    • kaggle.com
    zip
    Updated Mar 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    olmatz (2022). TRX-USD Stock Market @Kraken [Dataset]. https://www.kaggle.com/datasets/olmatz/trxusd-stock-market-kraken/discussion
    Explore at:
    zip(25243469 bytes)Available download formats
    Dataset updated
    Mar 8, 2022
    Authors
    olmatz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Real and up to date stock market exchange of cryptocurrencies can be quite expensive and are hard to get. However, historical financial data are the starting point to develop algorithm(s) to analyze market trend and why not beat the market by predicting market movement.

    Content

    Data provided in this dataset are historical data from the beginning of TRX-USD pair market on Kraken exchange up to the present (2021 December). This data comes frome real trades on one of the most popular cryptocurrencies exchange.

    Trading history

    Historical market data, also known as trading history, time and sales or tick data, provides a detailed record of every trade that happens on Kraken exchange, and includes the following information: - Timestamp - The exact date and time of each trade. - Price - The price at which each trade occurred. - Volume - The amount of volume that was traded.

    OHLCVT

    In addition, OHLCVT data are provided for the most common period interval: 1 min, 5 min, 15 min, 1 hour, 12 hours and 1 day. OHLCVT stands for Open, High, Low, Close, Volume and Trades and represents the following trading information for each time period: - Open - The first traded price - High - The highest traded price - Low - The lowest traded price - Close - The final traded price - Volume - The total volume traded by all trades - Trades - The number of individual trades

    Don't hesitate to tell me if you need other period interval ๐Ÿ˜‰ ...

    Update

    This dataset will be updated every quarter to add new and up to date market trend. Let me know if you need an update more frequently.

    Inspiration

    Can you beat the market? Let see what you can do with these data!

  20. k

    Financials Dow Jones U.S. index to see moderate gains. (Forecast)

    • kappasignal.com
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Financials Dow Jones U.S. index to see moderate gains. (Forecast) [Dataset]. https://www.kappasignal.com/2025/05/financials-dow-jones-us-index-to-see.html
    Explore at:
    Dataset updated
    May 5, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Financials Dow Jones U.S. index to see moderate gains.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500

S&P 500

SP500

Explore at:
89 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Jun 20, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

Search
Clear search
Close search
Google apps
Main menu