From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.
This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.
Life expectancy in North America
Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).
Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.
Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).
Life expectancy at birth and at age 65, by sex, on a three-year average basis.
The life expectancy of men at birth in the United States stood at 75.8 years in 2023. Between 1960 and 2023, the life expectancy rose by 9.2 years, though the increase followed an uneven trajectory rather than a consistent upward trend.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
Life Expectancy Statistics: Life expectancy is the average number of years a person is expected to live based on current mortality rates in a specific population.
It is influenced by healthcare quality, lifestyle choices, economic conditions, genetics, environmental factors, and social determinants like education and public health policies.
Typically measured as life expectancy at birth, it reflects the average lifespan of a newborn. However, it can also be assessed for older ages, such as 65, to predict additional years of life.
In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.
The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 18.2 more years on average. Women aged 65 years can expect to live around 20.7 more years on average. Life expectancy in the U.S. As of 2023, the average life expectancy at birth in the United States was 78.39 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2023, a woman in the U.S. could be expected to live up to 81.1 years. Leading causes of death The leading causes of death in the United States include heart disease, cancer, unintentional injuries, and cerebrovascular diseases. However, heart disease and cancer account for around 42 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.
This table contains 2754 series, with data for years 2005/2007 - 2012/2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (153 items: Canada; Newfoundland and Labrador; Eastern Regional Integrated Health Authority, Newfoundland and Labrador; Central Regional Integrated Health Authority, Newfoundland and Labrador; ...); Age group (2 items: At birth; At age 65); Sex (3 items: Both sexes; Males; Females); Characteristics (3 items: Life expectancy; Low 95% confidence interval, life expectancy; High 95% confidence interval, life expectancy).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
The life expectancy of women at birth in the United States stood at 81.1 years in 2023. Between 1960 and 2023, the life expectancy rose by eight years, though the increase followed an uneven trajectory rather than a consistent upward trend.
This table contains mortality indicators by sex for Canada and all provinces except Prince Edward Island. These indicators are derived from three-year complete life tables. Mortality indicators derived from single-year life tables are also available (table 13-10-0837). For Prince Edward Island, Yukon, the Northwest Territories and Nunavut, mortality indicators derived from three-year abridged life tables are available (table 13-10-0140).
National Records of Scotland Guidance;What is ‘period’ life expectancyAll of the estimates presented in this report are ‘period’ life expectancy. They are calculated assuming that mortality rates for each age group in the time period (here 2021-2023) are constant throughout a person’s life. Period life expectancy is often described as how long a baby born now could expect to live if they experienced today’s mortality rates throughout their lifetime. It is very unlikely that this would be the case as it means that future changes in things such as medicine and legislation are not taken into consideration.Period life expectancy is not an accurate prediction of how long a person born today will actually live, but it is a useful measure of population health at a point in time and is most useful for comparing trends over time, between areas of a country and with other countries.How national life expectancy is calculatedThe latest life expectancy figures are calculated from the mid-year population estimates for Scotland and the number of deaths registered in Scotland during 2021, 2022, and 2023. Life expectancy for Scotland is calculated for each year of age and represents the average number of years that someone of that age could expect to live if death rates for each age group remained constant over their lifetime. Life expectancy in Scotland is calculated as a three-year average, produced by combining deaths and population data for the three-year period. Three years of data are needed to provide large enough numbers to make these figures accurate and lessen the effect of very ‘good’ or ‘bad’ years. Throughout this publication, the latest life expectancy figures refer to 2021-2023 period. How sub-national life expectancy is calculatedWe calculate life expectancy for areas within Scotland using a very similar method to the national figures but with a few key differences. Firstly, we use age groups rather than single year of age. This is to increase the population size of each age group to reduce fluctuations and ensure accurate calculation of mortality rates. Secondly, we use a maximum age group of 90+ whereas the national figures are calculated up to age 100. These are known as ‘abridged life tables.’ Because these methods produce slightly different figures, we also calculate a Scotland figure using the abridged method to allow for accurate comparisons between local areas for example. This Scotland figure is only for comparison and does not replace the headline national figure. You can read more information about the methods in this publication in our methodology guide on the NRS website. Uses of life expectancyLife expectancy at birth is a very useful indicator of mortality conditions across a population at a particular point in time. It also provides an objective means of comparing trends in mortality over time, between areas of a country and with other countries. This is used to monitor and investigate health inequalities and to set public health targets. Life expectancy is also used to inform pensions policy, research and teaching.
In 2023, a woman in the United States aged 65 years could expect to live another **** years on average. This number decreased in the years 2020 and 2021, after reaching a high of **** years in 2019. Nevertheless, the life expectancy of a woman aged 65 years in the United States is still higher than that of a man of that age. In 2023, a man aged 65 years could be expected to live another 18.2 years on average. Why has the life expectancy in the U.S. declined? Overall, life expectancy in the United States has declined in recent years. In 2019, the life expectancy for U.S. women was **** years, but by 2023 it had decreased to **** years. Likewise, the life expectancy for men decreased from **** years to **** years in the same period. The biggest contributors to this decline in life expectancy are the COVID-19 pandemic and the opioid epidemic. Although deaths from the COVID-19 pandemic have decreased significantly since 2022, deaths from opioid overdose continue to increase, reaching all-time highs in 2022. The leading causes of death among U.S. women The leading causes of death among women in the United States in 2022 were heart disease, cancer, stroke, and COVID-19. That year, heart disease and cancer accounted for a combined **** percent of all deaths among women, while around *** percent of deaths were due to COVID-19. The overall leading causes of death in the United States generally reflect the leading causes among women, with some slight variations. For example, Alzheimer’s disease is the ***** leading cause of death among women but the ******* leading cause of death overall in the United States.
This statistic shows the average life expectancy in Europe for those born in 2024, by gender and region. The average life expectancy in Western Europe was 79 years for males and 84 years for females in 2024. Additional information on European life expectancy The difference in life expectancy seen between men and women across all European regions is in line with the global trends of women outliving men, on average. The average life expectancy at birth worldwide by income group shows that the gender life expectancy gap is not only a consistent trend across countries, but also income groups. Moreover, the higher life expectancy for those in high income groups may help to explain the lower average life expectancy for those born in Eastern Europe where average incomes are generally lower than other European regions. Although income and length of life are not directly correlated, higher income individuals are generally able to afford access to superior nutrition and healthcare as well as having leisure time for exercise. That said, current trends in the increases in life expectancy worldwide by country between 1970 and 2017 suggest economic growth will lead to larger increases in life expectancy. Those increases are less likely to occur to such a degree in the more developed regions of Europe where Italy, Spain, France, Switzerland, Iceland and Austria all rank in the top 20 countries with the highest life expectancy.
As of 2023, the countries with the highest life expectancy included Switzerland, Japan, and Spain. As of that time, a new-born child in Switzerland could expect to live an average of **** years. Around the world, females consistently have a higher average life expectancy than males, with females in Europe expected to live an average of *** years longer than males on this continent. Increases in life expectancy The overall average life expectancy in OECD countries increased by **** years from 1970 to 2019. The countries that saw the largest increases included Turkey, India, and South Korea. The life expectancy at birth in Turkey increased an astonishing 24.4 years over this period. The countries with the lowest life expectancy worldwide as of 2022 were Chad, Lesotho, and Nigeria, where a newborn could be expected to live an average of ** years. Life expectancy in the U.S. The life expectancy in the United States was ***** years as of 2023. Shockingly, the life expectancy in the United States has decreased in recent years, while it continues to increase in other similarly developed countries. The COVID-19 pandemic and increasing rates of suicide and drug overdose deaths from the opioid epidemic have been cited as reasons for this decrease.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Average population increase in life expectancy and quality-adjusted life expectancy by IMD.
From the mid-19th century until today, life expectancy at birth in the United States has roughly doubled, from 39.4 years in 1850 to 79.6 years in 2025. It is estimated that life expectancy in the U.S. began its upward trajectory in the 1880s, largely driven by the decline in infant and child mortality through factors such as vaccination programs, antibiotics, and other healthcare advancements. Improved food security and access to clean water, as well as general increases in living standards (such as better housing, education, and increased safety) also contributed to a rise in life expectancy across all age brackets. There were notable dips in life expectancy; with an eight year drop during the American Civil War in the 1860s, a seven year drop during the Spanish Flu empidemic in 1918, and a 2.5 year drop during the Covid-19 pandemic. There were also notable plateaus (and minor decreases) not due to major historical events, such as that of the 2010s, which has been attributed to a combination of factors such as unhealthy lifestyles, poor access to healthcare, poverty, and increased suicide rates, among others. However, despite the rate of progress slowing since the 1950s, most decades do see a general increase in the long term, and current UN projections predict that life expectancy at birth in the U.S. will increase by another nine years before the end of the century.