This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.
Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.
Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.
This statistic represents the tax burden of the leading one percent in the U.S. in 2018, by state. The tax rate is the total average state and local taxes as a percentage of income. In 2018, the leading one percent in California paid around **** percent of their family income as tax.
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
While a household in the United States must earn greater than $380,000 to rank in the top 1% of all American households, a much higher income is required in most of California's coastal communities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the detailed breakdown of the count of individuals within distinct income brackets, categorizing them by gender (men and women) and employment type - full-time (FT) and part-time (PT), offering valuable insights into the diverse income landscapes within Sausalito. The dataset can be utilized to gain insights into gender-based income distribution within the Sausalito population, aiding in data analysis and decision-making..
Key observations
https://i.neilsberg.com/ch/sausalito-ca-income-distribution-by-gender-and-employment-type.jpeg" alt="Sausalito, CA gender and employment-based income distribution analysis (Ages 15+)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Employment type classifications include:
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Sausalito median household income by gender. You can refer the same here
The median income indicates the income bracket separating the income earners into two halves of equal size.
This statistic shows the total personal income in the United States from 1990 to 2023. The data are in current U.S. dollars not adjusted for inflation or deflation. According to the BEA, personal income is the income that is received by persons from all sources. It is calculated as the sum of wage and salary disbursements, supplements to wages and salaries, proprietors' income with inventory valuation and capital consumption adjustments, rental income of persons with capital consumption adjustment, personal dividend income, personal interest income, and personal current transfer receipts, less contributions for government social insurance. Personal income increased to about 23 trillion U.S. dollars in 2023.Personal income Personal income in the United States has risen steadily over the last decades from 5.07 trillion U.S. dollars in 1991 to 23 trillion U.S. dollars in 2023. Personal income includes all earnings including wages, investments, and other sources. Personal income also varied widely across the U.S., where those living in the District of Columbia, on the higher scale, earned an average of 96,873 U.S. dollars per capita and on the lower end of the spectrum, people in Mississippi earned 45,438 U.S. dollars per capita. In the District of Columbia, disposable income averaged some 81,193 U.S. dollars. In total, California earned the most personal income followed by Texas, receiving three trillion U.S. dollars and 1.76 trillion U.S. dollars, respectively. Income tends to vary widely between demographics in the United States. Those with higher education levels tend to earn more money. However, only 25.7 percent of persons with a disability that had a Bachelor's degree or higher were employed in 2020. The Social Security and Supplemental Security Income disability programs provide monetary benefits to the disabled and certain family members.
This table contains 186 series (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Income quintile (6 items: All quintiles; Lowest income quintile; Second income quintile; Third income quintile; ...); Socio-demographic characteristics (31 items: All households; One-person households; Single less than 65 years; Single 65 years and older; ...).
Families of tax filers; Single-earner and dual-earner census families by number of children (final T1 Family File; T1FF).
Distribution of total income in constant 2020 dollars by age and gender.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Household income statistics by household type (couple family, one-parent family, non-census family households) and household size for Canada, provinces and territories, census divisions and census subdivisions.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The one-time top-up to the Canada Housing Benefit helped low-income renters with the cost of renting. To be eligible for the tax-free one-time payment of $500, applicants must have filed their 2021 income tax return. They must have had a 2021 adjusted family net income of $35,000 or less for families, or $20,000 or less for individuals, and paid at least 30% of their 2021 adjusted family net income towards rent in the 2022 calendar year. These tables contain statistics by province, age, gender, adjusted family net income, family type and forward sortation area.
Urban Displacement Project’s (UDP) Estimated Displacement Risk (EDR) model for California identifies varying levels of displacement risk for low-income renter households in all census tracts in the state from 2015 to 2019(1). The model uses machine learning to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP defines displacement risk as a census tract with characteristics which, according to the model, are strongly correlated with more low-income population loss than gain. In other words, the model estimates that more low-income households are leaving these neighborhoods than moving in.This map is a conservative estimate of low-income loss and should be considered a tool to help identify housing vulnerability. Displacement may occur because of either investment, disinvestment, or disaster-driven forces. Because this risk assessment does not identify the causes of displacement, UDP does not recommend that the tool be used to assess vulnerability to investment such as new housing construction or infrastructure improvements. HCD recommends combining this map with on-the-ground accounts of displacement, as well as other related data such as overcrowding, cost burden, and income diversity to achieve a full understanding of displacement risk.If you see a tract or area that does not seem right, please fill out this form to help UDP ground-truth the method and improve their model.How should I read the displacement map layers?The AFFH Data Viewer includes three separate displacement layers that were generated by the EDR model. The “50-80% AMI” layer shows the level of displacement risk for low-income (LI) households specifically. Since UDP has reason to believe that the data may not accurately capture extremely low-income (ELI) households due to the difficulty in counting this population, UDP combined ELI and very low-income (VLI) household predictions into one group—the “0-50% AMI” layer—by opting for the more “extreme” displacement scenario (e.g., if a tract was categorized as “Elevated” for VLI households but “Extreme” for ELI households, UDP assigned the tract to the “Extreme” category for the 0-50% layer). For these two layers, tracts are assigned to one of the following categories, with darker red colors representing higher displacement risk and lighter orange colors representing less risk:• Low Data Quality: the tract has less than 500 total households and/or the census margins of error were greater than 15% of the estimate (shaded gray).• Lower Displacement Risk: the model estimates that the loss of low-income households is less than the gain in low-income households. However, some of these areas may have small pockets of displacement within their boundaries. • At Risk of Displacement: the model estimates there is potential displacement or risk of displacement of the given population in these tracts.• Elevated Displacement: the model estimates there is a small amount of displacement (e.g., 10%) of the given population.• High Displacement: the model estimates there is a relatively high amount of displacement (e.g., 20%) of the given population.• Extreme Displacement: the model estimates there is an extreme level of displacement (e.g., greater than 20%) of the given population. The “Overall Displacement” layer shows the number of income groups experiencing any displacement risk. For example, in the dark red tracts (“2 income groups”), the model estimates displacement (Elevated, High, or Extreme) for both of the two income groups. In the light orange tracts categorized as “At Risk of Displacement”, one or all three income groups had to have been categorized as “At Risk of Displacement”. Light yellow tracts in the “Overall Displacement” layer are not experiencing UDP’s definition of displacement according to the model. Some of these yellow tracts may be majority low-income experiencing small to significant growth in this population while in other cases they may be high-income and exclusive (and therefore have few low-income residents to begin with). One major limitation to the model is that the migration data UDP uses likely does not capture some vulnerable populations, such as undocumented households. This means that some yellow tracts may be experiencing high rates of displacement among these types of households. MethodologyThe EDR is a first-of-its-kind model that uses machine learning and household level data to predict displacement. To create the EDR, UDP first joined household-level data from Data Axle (formerly Infogroup) with tract-level data from the 2014 and 2019 5-year American Community Survey; Affirmatively Furthering Fair Housing (AFFH) data from various sources compiled by California Housing and Community Development; Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data; and the Environmental Protection Agency’s Smart Location Database.UDP then used a machine learning model to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP modeled displacement risk as the net migration rate of three separate renter households income categories: extremely low-income (ELI), very low-income (VLI), and low-income (LI). These households have incomes between 0-30% of the Area Median Income (AMI), 30-50% AMI, and 50-80% AMI, respectively. Tracts that have a predicted net loss within these groups are considered to experience displacement in three degrees: elevated, high, and extreme. UDP also includes a “At Risk of Displacement” category in tracts that might be experiencing displacement.What are the main limitations of this map?1. Because the map uses 2019 data, it does not reflect more recent trends. The pandemic, which started in 2020, has exacerbated income inequality and increased housing costs, meaning that UDP’s map likely underestimates current displacement risk throughout the state.2. The model examines displacement risk for renters only, and does not account for the fact that many homeowners are also facing housing and gentrification pressures. As a result, the map generally only highlights areas with relatively high renter populations, and neighborhoods with higher homeownership rates that are known to be experiencing gentrification and displacement are not as prominent as one might expect.3. The model does not incorporate data on new housing construction or infrastructure projects. The map therefore does not capture the potential impacts of these developments on displacement risk; it only accounts for other characteristics such as demographics and some features of the built environment. Two of UDP’s other studies—on new housing construction and green infrastructure—explore the relationships between these factors and displacement.Variable ImportanceFigures 1, 2, and 3 show the most important variables for each of the three models—ELI, VLI, and LI. The horizontal bars show the importance of each variable in predicting displacement for the respective group. All three models share a similar order of variable importance with median rent, percent non-white, rent gap (i.e., rental market pressure calculated using the difference between nearby and local rents), percent renters, percent high-income households, and percent of low-income households driving much of the displacement estimation. Other important variables include building types as well as economic and socio-demographic characteristics. For a full list of the variables included in the final models, ranked by descending order of importance, and their definitions see all three tabs of this spreadsheet. “Importance” is defined in two ways: 1. % Inclusion: The average proportion of times this variable was included in the model’s decision tree as the most important or driving factor.2. MeanRank: The average rank of importance for each variable across the numerous model runs where higher numbers mean higher ranking. Figures 1 through 3 below show each of the model variable rankings ordered by importance. The red lines represent Jenks Breaks, which are designed to sort values into their most “natural” clusters. Variable importance for each model shows a substantial drop-off after about 10 variables, meaning a relatively small number of variables account for a large amount of the predictive power in UDP’s displacement model.Figure 1. Variable Importance for Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Figure 2. Variable Importance for Very Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet. Figure 3. Variable Importance for Extremely Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Source: Chapple, K., & Thomas, T., and Zuk, M. (2022). Urban Displacement Project website. Berkeley, CA: Urban Displacement Project.(1) UDP used this time-frame because (a) the 2020 census had a large non-response rate and it implemented a new statistical modification that obscures and misrepresents racial and economic characteristics at the census tract level and (b) pandemic mobility trends are still in flux and UDP believes 2019 is more representative of “normal” or non-pandemic displacement trends.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
In 2023, the resident population of California was ***** million. This is a slight decrease from the previous year, with ***** million people in 2022. This makes it the most populous state in the U.S. Californian demographics Along with an increase in population, California’s gross domestic product (GDP) has also been increasing, from *** trillion U.S. dollars in 2000 to **** trillion U.S. dollars in 2023. In the same time period, the per-capita personal income has almost doubled, from ****** U.S. dollars in 2000 to ****** U.S. dollars in 2022. In 2023, the majority of California’s resident population was Hispanic or Latino, although the number of white residents followed as a close second, with Asian residents making up the third-largest demographic in the state. The dark side of the Golden State While California is one of the most well-known states in the U.S., is home to Silicon Valley, and one of the states where personal income has been increasing over the past 20 years, not everyone in California is so lucky: In 2023, the poverty rate in California was about ** percent, and the state had the fifth-highest rate of homelessness in the country during that same year, with an estimated ** homeless people per 10,000 of the population.
This map compares the number of people living above the poverty line to the number of people living below. Why do this?There are people living below the poverty line everywhere. Nearly every area of the country has a balance of people living above the poverty line and people living below it. There is not an "ideal" balance, so this map makes good use of the national ratio of 6 persons living above the poverty line for every 1 person living below it. Please consider that there is constant movement of people above and below the poverty threshold, as they gain better employment or lose a job; as they encounter a new family situation, natural disaster, health issue, major accident or other crisis. There are areas that suffer chronic poverty year after year. This map does not indicate how long people in the area have been below the poverty line. "The poverty rate is one of several socioeconomic indicators used by policy makers to evaluate economic conditions. It measures the percentage of people whose income fell below the poverty threshold. Federal and state governments use such estimates to allocate funds to local communities. Local communities use these estimates to identify the number of individuals or families eligible for various programs." Source: U.S. Census BureauIn the U.S. overall, there are 6 people living above the poverty line for every 1 household living below. Green areas on the map have a higher than normal number of people living above compared to below poverty. Orange areas on the map have a higher than normal number of people living below the poverty line compared to those above in that same area.The map shows the ratio for counties and census tracts, using these layers, created directly from the U.S. Census Bureau's American Community Survey (ACS)For comparison, an older layer using 2013 ACS data is also provided.The layers are updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. Current Vintage: 2014-2018ACS Table(s): B17020Data downloaded from: Census Bureau's API for American Community Survey National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
As of the 2023/24 academic year, graduates from the Massachusetts Institute of Technology (MIT) had a starting salary of 110,200 U.S. dollars, and a mid-career salary of 196,900 U.S. dollars. Top universities in the United States One of the top universities in the United States, Harvey Mudd College, is located in Claremont, California. Not only do graduates earn a high salaries after graduation, they also pay the most. In the academic year of 2020-2021, Harvey Mudd College was one of the most expensive school by total annual cost. The best university in the United States in 2021 belonged to the University of California, Berkeley. The Ivy League The Ivy League is a group of eight private universities in the Northeastern United States. It is not only a collegiate athletic conference, but also a group of highly respected academic institutions. They are usually regarded as the best eight universities in the United States and the world. They are extremely selective with their admissions process. However, these universities are extremely expensive to attend. Despite the high price tag, students who graduate from Princeton University have the highest early career salary out of all Ivy League attendees in 2021. This is compared to the overall expected starting salaries of recent college graduates across the United States, which was less than 35,000 U.S. dollars.
Note: Data on gender diverse households (formerly "2SLGBTQ+" households) has been added as of March 28th, 2025.
For more information, please visit HART.ubc.ca.
This dataset contains 18 tables which draw upon data from the 2021 Canadian Census of Population. The tables are a custom order and contain data pertaining to core housing need and characteristics of households and dwellings. This custom order was placed in collaboration with Housing, Infrastructure and Communities Canada to fill data gaps in their Housing Needs Assessment Template.
17 of the tables each cover a different geography in Canada: one for Canada as a whole, one for all Canadian census divisions (CD), and 15 for all census subdivisions (CSD) across Canada. The 18th table contains the median income for all geographies. Statistics Canada used these median incomes as the "area median household income (AMHI)," from which they derived some of the data fields within the Shelter Costs/Household Income dimension.
The dataset is in Beyond 20/20 (.ivt) format. The Beyond 20/20 browser is required in order to open it. This software can be freely downloaded from the Statistics Canada website: https://www.statcan.gc.ca/eng/public/beyond20-20 (Windows only). For information on how to use Beyond 20/20, please see: http://odesi2.scholarsportal.info/documentation/Beyond2020/beyond20-quickstart.pdf https://wiki.ubc.ca/Library:Beyond_20/20_Guide
Custom order from Statistics Canada includes the following dimensions and data fields:
Geography:
- Country of Canada, all CDs & Country as a whole
- All 10 Provinces (Newfoundland, Prince Edward Island (PEI), Nova Scotia, New Brunswick, Quebec, Ontario, Manitoba, Saskatchewan, Alberta, and British Columbia), all CSDs & each Province as a whole
- All 3 Territories (Nunavut, Northwest Territories, Yukon), all CSDs & each Territory as a whole
*- Data on gender diverse households is only available for geographies (provinces, territories, CDs, CSDs) with a population count greater than 50,000.
Data Quality and Suppression:
- The global non-response rate (GNR) is an important measure of census data quality. It combines total non-response (households) and partial non-response (questions). A lower GNR indicates a lower risk of non-response bias and, as a result, a lower risk of inaccuracy. The counts and estimates for geographic areas with a GNR equal to or greater than 50% are not published in the standard products. The counts and estimates for these areas have a high risk of non-response bias, and in most cases, should not be released.
- Area suppression is used to replace all income characteristic data with an 'x' for geographic areas with populations and/or number of households below a specific threshold. If a tabulation contains quantitative income data (e.g., total income, wages), qualitative data based on income concepts (e.g., low income before tax status) or derived data based on quantitative income variables (e.g., indexes) for individuals, families or households, then the following rule applies: income characteristic data are replaced with an 'x' for areas where the population is less than 250 or where the number of private households is less than 40.
Source: Statistics Canada
- When showing count data, Statistics Canada employs random rounding in order to reduce the possibility of identifying individuals within the tabulations. Random rounding transforms all raw counts to random rounded counts. Reducing the possibility of identifying individuals within the tabulations becomes pertinent for very small (sub)populations. All counts greater than 10 are rounded to a base of 5, meaning they will end in either 0 or 5. The random rounding algorithm controls the results and rounds the unit value of the count according to a predetermined frequency. Counts ending in 0 or 5 are not changed. Counts less than 10 are rounded to a base of 10, meaning they will be rounded to either 10 or Zero.
Universe:
Private Households in Non-farm Non-band Off-reserve Occupied Private Dwellings with Income Greater than zero.
Households examined for Core Housing Need:
Private, non-farm, non-reserve, owner- or renter-households with incomes greater than zero and shelter-cost-to-income ratios less than 100% are assessed for 'Core Housing Need.' Non-family Households with at least one household maintainer aged 15 to 29 attending school are considered not to be in Core Housing Need, regardless of their housing circumstances.
Data Fields:
Tenure Including Presence of Mortgage and Subsidized Housing; Household size (7)
1. Total - Private households by tenure including presence of mortgage payments and subsidized housing
2. Owner
3. With mortgage
4. Without mortgage
5. Renter
6. Subsidized housing
7. Not subsidized housing
Housing indicators in Core Housing Universe (12)
1. Total - Private Households by core housing need status
2. Households examined for core housing need
3. Households in core housing need
4. Below one standard only
5. Below affordability standard only
6. Below adequacy standard only
7. Below suitability standard only
8. Below 2 or more standards
9. Below affordability and suitability
10. Below affordability and adequacy
11. Below suitability and adequacy
12. Below affordability, suitability, and adequacy
Period of construction (10)
1. Total – Period of Construction
2. Before 2016
3. 1960 or before
4. 1961 to 1980
5. 1981 to 1990
6. 1991 to 2000
7. 2001 to 2005
8. 2006 to 2010
9. 2011 to 2015
10. 2016 to 2021 (Note 1)
Note 1). Includes data up to May 11, 2021.
Structural type of dwelling and Household income as proportion to AMHI (16)
1. Total - Structural type of dwelling
2. Single-detached house
3. Apartment in a building that has five or more storeys
4. Other attached dwelling
5. Apartment or flat in a duplex
6. Apartment in a building that has fewer than five storeys
7. Other single-attached house
8. Row house
9. Semi-detached house
10. Movable dwelling
11. Total – Private households by household income proportion to AMHI
12. Households with income 20% or under of area median household income (AMHI)
13. Households with income 21% to 50% of AMHI
14. Households with income 51% to 80% of AMHI
15. Households with income 81% to 120% of AMHI
16. Households with income 121% or more of AMHI
Selected characteristics (12)
1. Total – Private households by presence of activity limitation (Q18e only)
2. HH has at least one person who had an activity limitations reported for Question 18 e) only 1
3. Total – Age of primary household maintainer
4. 18 to 29 years
5. Total – Private households by military service status of the HH members
6. HH includes a person who is currently serving member and/or veteran
11. Total – Private households by shelter cost proportion to AMHI_1
12. Households with shelter cost 0.5% and under of AMHI
13. Households with shelter cost 0.6% to 1.25% of AMHI
14. Households with shelter cost 1.26% to 2% of AMHI
15. Households with shelter cost 2.1% to 3% of AMHI
16. Households with shelter cost 3.1% or more of AMHI*
Median income (2)
1. Number of households
2. Median income of household ($)
The household median income in the custom tabulation were estimates from a 25% sample-based data that have undergone weighting. These weights were applied to the sample data to produce estimates from the census long-form sample. The incomes used were drawn from the previous tax year, and therefore represent 2020 dollars.
[Only in "Census 2021 - Gender Diverse HHs" file] Genderdiversity (2)
1. Total - Gender diversity status of households
2. HH is gender diverse
File list (19 total):
Original data files (18):
1. Census 2021 - Table 1 - Median Incomes.ivt
2. Census 2021 - Table 2 - Canada.ivt
3. Census 2021 - Table 3 - Census Divisions.ivt
4. Census 2021 - Table 4 - Ontario CSDs.ivt
5. Census 2021 - Table 5 - BC CSDs.ivt
6. Census 2021 - Table 6 - Alberta CSDs.ivt
7. Census 2021 - Table 7 - Manitoba CSDs.ivt
8. Census 2021 - Table 8 - Saskatchewan CSDs.ivt
9. Census 2021 - Table 9-1 - Quebec CSDs (Part 1 of 3).ivt
10. Census 2021 - Table 9-2 - Quebec CSDs (Part 2 of 3).ivt
11. Census 2021 - Table 9-3 - Quebec CSDs (Part 3 of 3).ivt
12. Census 2021 - Table 10 - Newfoundland&Labrador CSDs.ivt
13. Census 2021 - Table 11 - PEI CSDs.ivt
14. Census 2021 - Table 12 - Nova Scotia CSDs.ivt
15. Census 2021 - Table 13 - New Brunswick CSDs.ivt
16. Census 2021 - Table 14 - Yukon CSDs.ivt
17. Census 2021 - Table 15 - NWT CSDs.ivt
18. Census 2021 - Table 16 - Nunavut CSDs.ivt
19. Census 2021 - Gender Diverse HHs.ivt
Pour de plus amples renseignements, veuillez visiter HART.ubc.ca.
Cet ensemble de données contient 18 tableaux qui s’appuient sur les données
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 186 series (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 item: Canada); Income quintile (6 items: All quintiles; Lowest income quintile; Second income quintile; Third income quintile; ...); Socio-demographic characteristics (31 items: All households; One-person households; Single less than 65 years; Single 65 years and older; ...).
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.